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Abstract

We consider multi-objective combinatorial optimization prob-
lems where preferences can be represented by a parameterized
scalarizing function that is linear in its parameters. Assum-
ing that the parameters are initially not known, we iteratively
collect preference information from the decision maker until
being able to identify her preferred solution. To obtain infor-
mative preference information, we ask the decision maker to
compare two promising solutions generated using the extreme
points of the polyhedron representing the admissible param-
eters. Moreover, our stopping criterion guarantees that the
returned solution is optimal (or near-optimal) according to the
decision maker’s preferences. Finally, we provide numerical
results to demonstrate the practical efficiency of our approach.

Introduction

Multi-objective optimization is concerned with optimization
problems involving several (conflicting) objectives to be opti-
mized simultaneously. Without preference information, we
only know that the best solution for the decision maker (DM)
is among the Pareto-optimal solutions. Since the number of
these solutions can be exponential in the size of the problem,
one may want to refine Pareto dominance with preferences
to be able to determine the best solution for the DM. We as-
sume here that the DM’s preferences can be represented by a
parameterized scalarizing function, the corresponding param-
eters being initially unknown, and we study the potential of
incremental elicitation (White III , Sage, and Dozono 1984;
Wang and Boutilier 2003) in this setting.

Preference elicitation on combinatorial domains is an ac-
tive topic that has been recently studied in various con-
texts, e.g., (Korhonen 2005; Regan and Boutilier 2011;
Weng and Zanuttini 2013; Drummond and Boutilier 2014;
Benabbou and Perny 2016; Kaddani et al. 2017; Benabbou
and Perny 2018). Our aim is to propose a general interac-
tive approach for multi-objective optimization with imprecise
preference parameters. Our approach is general in the sense
that it can be applied to any multi-objective optimization
problem, providing that the scalarizing function is linear in
its parameters (e.g., weighted sums, Choquet integrals) and
that there exists an efficient algorithm to solve the problem
when the parameters are known.
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Background and Notations

We consider a general multi-objective combinatorial opti-
mization (MOCO) problem with n objective functions yi, i ∈
{1, . . . , n}, to be minimized. Any solution x ∈ X is therefore
associated with a cost vector y(x) = (y1(x), . . . , yn(x)) ∈
R

n where X is the feasible set in the decision space and
yi(x) is the evaluation of x on the i-th objective. Solutions
are here compared through their images in the objective
space. We assume that the DM’s preferences can be rep-
resented by a scalarizing function fω that is linear in its
parameters ω; hence x ∈ X is preferred to x′ ∈ X iff
fω(y(x)) ≤ fω(y(x

′)). Assuming that ω are initially not
known, we consider the set Ω of all parameters satisfying
fω(u) ≤ fω(v) for every collected pair (u, v) ∈ R

n × R
n

such that u is known to be preferred to v. Since fω is linear
in ω, we can assume that Ω is a convex polyhedron through-
out the paper. To reduce parameter imprecision, we use the
minimax regret criterion (MMR) which can be defined using
pairwise max regrets (PMR) and max regrets (MR):

Definition 1. For any two solutions x, x′ ∈ X :
PMR(x, x′,Ω) = maxω∈Ω{fω(y(x))− fω(y(x

′))}
MR(x,X ,Ω) = maxx′∈X PMR(x, x′,Ω)
MMR(X ,Ω) = minx∈X MR(x,X ,Ω)

The set argminx∈X MR(x,X ,Ω) is the set of MMR-
optimal solutions, allowing to minimize the worst-case loss;
note that if MMR(X ,Ω) = 0, then these solutions are nec-
essarily optimal according to the DM’s preferences. As ob-
served in previous works, MMR(X ,Ω) can only decrease
when collecting new preference data. This observation has
led to the following incremental elicitation approach: reduce
parameter imprecision by asking queries to the DM in an iter-
ative way, until MMR(X ,Ω) drops below a given threshold
δ ≥ 0 representing the maximum allowable gap to optimality.

A General Interactive Method

At each step, MMR(X ,Ω) could be obtained by computing
PMR(x, x′,Ω) for all pairs x, x′ ∈ X . However this would
not be efficient for MOCO problems due to the large size of
X . We propose instead to combine incremental elicitation
and search as follows: at each step, we generate a (small)
set of promising solutions using the extreme points of Ω, we
ask the DM to compare two of these solutions, we update Ω
according to her answer and we stop the process whenever
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a (near-)optimal solution is detected (i.e. a solution x ∈ X
s.t. MR(x,X ,Ω) ≤ δ). More precisely, taking as input a
MOCO problem P , a threshold δ ≥ 0, a scalarizing function
fω with unknown parameters and an initial set Ω of feasible
parameters, our algorithm iterates as follows:

1. We generate the set EPΩ of all extreme points of polyhe-
dron Ω; its kth element is denoted by ωk.

2. For all ωk ∈ EPΩ, we compute xk the optimal solution of
problem P for the precise function fωk .

3. We compute MMR(XΩ,Ω), where XΩ = ∪|EPΩ|
k=1 {xk}.

If MMR(XΩ,Ω)>δ, then the DM is asked to compare
two solutions x, x′ ∈ XΩ and we update Ω by imposing
the linear constraint fω(x) ≤ fω(x

′) (or fω(x) ≥ fω(x
′)

depending on her answer); otherwise, the algorithm returns
a solution x∗ in argminx∈XΩ

MR(x,XΩ,Ω).

Our algorithm is called IEEP for Incremental Elicitation
based on Extreme Points. Its validity is established by the fol-
lowing proposition (proof omitted due to space constraints):

Proposition 1. For any positive threshold δ, algorithm IEEP
returns a solution x∗ ∈ X such that MR(x∗,X ,Ω) ≤ δ.

Experimental Results

We focus here on the multicriteria spanning tree (MST) prob-
lem1. We generate instances of graph G = (V,E) with a
number of vertices |V | varying between 50 and 100 and a
number of objectives n ranging from 3 to 5. The edge costs
are drawn within {1, . . . , 1000}n uniformly at random. The
DM’s preferences are here represented by a weighted sum
and we start the execution with no preference information.
In our experiments, we simulate answers to queries by gen-
erating a weighting vector ω uniformly at random before
running the algorithm. We compare our interactive method
with the state-of-the-art method proposed in (Benabbou and
Perny 2015) called IE-Prim hereafter. For both procedures,
we consider the following query generation strategies:
• Random: The DM is asked to compare two solutions that
are randomly chosen in XΩ.
•Max-Dist: We choose a pair of solutions in XΩ that maxi-
mizes the Euclidean distance in the objective space.
• CSS: The Current Solution Strategy (Boutilier et al. 2006).
These strategies are evaluated in terms of running time and
number of generated preference queries. Results obtained by
averaging over 30 runs are given in Table 1 for δ = 0. First,
we see that IEEP outperforms IE-Prim in all settings. Then,
we observe that Random and Max-Dist strategies are much
faster than CSS strategy. Finally, we see that Max-Dist is
the best strategy for minimizing the number of preference
queries, which is quite surprising since CSS is intensively
used in incremental elicitation (e.g., (Boutilier et al. 2006)).
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1Tests were performed on a Intel Core i7-7700, at 3.60GHz;
the extreme points of Ω are generated by polymake library; MST
problems with precise weights are solved using Prim algorithm.

IEEP - Random IEEP - Max Dist IEEP - CSS

n |V | time (s) queries time (s) queries time (s) queries
3 50 16.91 16.17 16.46 15.23 17.91 16.90
3 100 18.66 17.57 19.00 17.37 18.97 17.73
4 50 27.51 25.73 26.40 24.60 30.69 28.93
4 100 31.99 29.90 30.11 28.43 34.83 32.47
5 50 37.73 35.03 36.24 34.33 42.29 39.83
5 100 41.84 39.77 42.07 39.20 55.89 51.70

IE-Prim - Random IE-Prim - Max-Dist IE-Prim - CSS

n |V | time (s) queries time (s) queries time (s) queries
3 50 28.56 26.67 26.05 24.50 31.90 29.57
3 100 34.60 32.37 33.61 31.07 36.93 35.27
4 50 45.02 42.13 42.48 39.70 55.55 50.83
4 100 55.56 51.60 54.73 51.17 66.60 61.63
5 50 59.71 55.47 56.94 53.23 80.41 73.40
5 100 75.36 70.70 76.39 71.73 103.69 95.33

Table 1: Comparison between IEEP and IE-Prim algorithms.
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