
Assigning Suppliers to Meet a Deadline

Liat Cohen,1 Tal Grinshpoun,2 Roni Stern1

1Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
2Ariel University, Ariel 40700, Israel

{liati,sternron}@post.bgu.ac.il, talgr@ariel.ac.il

Abstract

In our setting, we consider projects that consist of completing
tasks, where each task needs to be executed by a single sup-
plier chosen from a subset of suppliers. The suppliers differ
in their execution times, which are stochastically taken from
known distributions. The Supplier Assignment for Meeting
a Deadline (SAMD) problem is the problem of assigning a
supplier to each task in a manner that maximizes the chance
to meet some overall project deadline. We propose an A*-
based approach, along with an efficient admissible heuristic
function that guarantees an optimal solution for this problem.

Introduction

We introduce the SAMD problem, in which a sequence of
tasks T = {t1, . . . tN} must be completed before a prede-
fined deadline d. The tasks must be completed sequentially,
i.e., if i < j then ti must be completed before starting tj .
Each task t needs to be executed by a single supplier (agent),
chosen from a subset of suppliers St that have the required
proficiency to handle that task. The suppliers differ in their
execution times, which are stochastically taken from known
distributions. A solution to a SAMD problem is an assign-
ment of suppliers to tasks such that each task t is assigned
a supplier that can execute it, and an optimal solution is an
assignment that maximizes the probability of meeting the
deadline, i.e., of completing all tasks before the deadline.

SAMD is particularly challenging because computing the
probability of some assignment of suppliers to meet a dead-
line is equivalent to an existing NP-hard problem (Cohen,
Shimony, and Weiss 2015). Our main contribution is a com-
plete and optimal algorithm that is based on the A* algo-
rithm (Hart, Nilsson, and Raphael 1968). The SAMD prob-
lem has some unique properties that require making several
non-trivial adjustments to A*, as well as developing a novel
efficient domain-specific admissible heuristic.

Problem Definition

Let S be the set of all suppliers. For ease of presentation,
we assume that every supplier can perform exactly one task.
The task completion time of a supplier s ∈ S is represented
by real-valued random variable Xs taking values in [0,∞).

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

A supplier assignment is a function ϕ : T → S such that
ϕ(t) ∈ St. For a given sequence of tasks T , supplier as-
signment function ϕ, and a deadline d > 0, we denote by
M(T, ϕ, d) the probability that all tasks in T will be com-
pleted in their respective order by the suppliers assigned to
do them according to ϕ before time d. Formally,

M(T, ϕ, d) = Pr

(∑
t∈T

Xϕ(t) ≤ d

)
(1)

Corollary 1. The computation of M(T, ϕ, d) is NP-hard.

Corollary 1 follows from Cohen et al. (2015, Theorem 5).

Definition 1. An SAMD problem is defined by the tuple
〈T, S,X, d〉, where T is an ordered set of tasks, S is a set
of suppliers, X is the set of random variables, one for each
supplier, that represents the task completion time of this sup-
pliers, and d is the deadline. A solution to an SAMD problem
is a supplier assignment ϕ for T and S. An optimal solution
to an SAMD problem is a supplier assignment ϕ∗ that maxi-
mizes M(T, ϕ∗, d), that is, for every other solution ϕ it holds
that M(T, ϕ∗, d) ≥ M(T, ϕ, d).1

We conjecture that finding an optimal solution to a given
SAMD problem is NP-hard because computing M(T, ϕ, d)
is NP-hard (Corollary 1). Nevertheless, for small enough
number of tasks, it is possible to compute M(T, ϕ, d) ex-
actly. Thus, a brute-force approach to solve an SAMD prob-
lem optimally is to compute the value of M(T, ϕ, d) for ev-
ery possible assignment ϕ and return the assignment that
yields the maximal value. Next, we propose a A*-based al-
gorithm that is guaranteed to find an optimal solution to any
SAMD problem and is significantly more efficient than the
brute-force approach.

A∗ for SAMD

First, we define SAMD as a search problem in the follow-
ing graph. A node in this graph represents a partial supplier
assignment, which is function that assigns suppliers to a sub-
set of the tasks in T . The initial node n is an empty supplier
assignment, that is, a partial supplier assignment that does
not assign any supplier to any tasks. Every child node of n
represents a possible assignment of a supplier to T1. Every

1This notion of optimality we introduced by Frank (1969).

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

170

child node of these nodes represents a possible assignment
of a supplier to T2, and so forth.

To apply A* to search in this graph and solve SAMD op-
timally, however, is not trivial. This is because the notion
of paths and costs of paths in this tree is not fully defined
in SAMD, since we can only compute the actual value –
M(T, ϕ, d) – for a complete supplier assignment. To ad-
dress this, we define for every node n a single value, de-
noted U(n), that is an upper bound over the cost of all
goal nodes in the sub-tree of the search space rooted by
n. Then, in every iteration of our modified A*, we pop
from the open list the node with the highest U(n) value
and insert its children to the open list. A leaf node repre-
sents a complete supplier assignment. So, for every gener-
ated leaf node n we compute its corresponding M value,
and store the leaf with the highest M value seen so far. We
refer to this leaf node as nbest and its M value as Mbest.
The search halts when either the open list is empty or the
expanded node n is such that U(n) ≤ Mbest. When the
former condition occurs, we know that all supplier assign-
ments have been checked, in which case nbest is indeed op-
timal. If the latter condition occurs, we know that for every
node n in the open list it holds that U(n) ≤ Mbest, and
thus nbest is optimal. Consequently, given that an admissi-
ble, i.e., upper bound, U(·) function is implemented, com-
pleteness and optimality are guaranteed (Stern et al. 2014;
Holte and Zilles 2019).
Corollary 2. A* for SAMD is complete and optimal.

Computing an Upper Bound

Our A* can be used with any implementation of U(·) as long
as it is admissible for maximization problems, i.e., returns
a valid upper bound over all the goals in its subtree. Next,
we propose a concrete admissible U(·) that works well in
practice.

Let n be the node we wish to compute U(n) for, and
assume that n represents a partial assignment ϕn that as-
signs a supplier to tasks t1, . . . ti for some i < N . We
compute U(n) by assuming that in every unassigned task
t ∈ {ti+1, . . . , tN} all suppliers that can perform this task
do so simultaneously, so that the task is completed when the
fastest one finished. Formally, for the computation of U(n),
we assume that the completion time of every unassigned task
t to be mins∈St

Xs. This is a random variable that can be
computed easily given all the Xs random variables. Since
in our setting only a single supplier performs each task, the
real completion time of any single supplier must be larger
than this value (or at least equal). Thus, it can be used as an
admissible heuristic.

To summarize, we define U(n) as follows:

U(n) =
∑

t∈{t1,...ti}
Xϕn(t) +

∑
t∈{ti+1,...tN}

min
s∈St

Xs (2)

While the above U(·) is clearly admissible, its compu-
tational effort is equivalent to that of the M(T, ϕ, d) value
of some complete supplier assignment ϕ, which is NP-hard
(Corollary 1). For small problems it may be feasible to apply
such a computation for a limited number of times, as is done

in SAMPLING. However, U(n) needs to be computed fre-
quently for every node n that is added to the open list, which
renders its exact computation inapplicable. Hence, we turn
to an approximate computation of U(·).

The problem with computing the M value stems from the
hardness of computation that lies in the exponential growth
of the support size (2015). Consequently, after every ad-
dend in the computation of U(·) we apply the OPTAPPROX
(X,m) operator of Cohen et al. (2018), which for a given
random variable X and a requested support size m returns a
new random variable X ′ with a support size of at most m in
polynomial time. By restricting the support size to a given
m, we bound the exponential growth.
Lemma 3. UOPTAPPROX(·) is admissible.

Discussion and Conclusion
We performed an initial experimental evaluation that shows
promising trends for our A*-based approach that on the
one hand, finds better solutions than various heuristic meth-
ods, and on the other hand, significantly outperforms the
mentioned above brute-force approach in terms of run-time.
Nevertheless, its exponential search space prevents applying
it to large-scale projects. One of the main barriers in this
context is the exact computation of M for complete supplier
assignments. An interesting direction for future work would
be to use OPTAPPROX also there (instead of only in the com-
putation of UOPTAPPROX(·)). This compromises the optimality
of the algorithm, but will enable using the (now suboptimal)
A*-based approach to much larger problems.

We believe that the presented SAMD problem is a chal-
lenging problem that can bridge the gap between the re-
search areas of Artificial Intelligence and Project Manage-
ment. In future research it will be interesting to see how
SAMD can be extended to allow solving projects with par-
allel tasks, which are common in many real-world projects.

Acknowledgments. This research was supported by the
Lynn and William Frankel Centre for Computer Science at
Ben-Gurion University.

References
Cohen, L.; Grinshpoun, T.; and Weiss, G. 2018. Optimal ap-
proximation of random variables for estimating the probability of
meeting a plan deadline. In AAAI Conference on Artificial Intel-
ligence.
Cohen, L.; Shimony, S. E.; and Weiss, G. 2015. Estimating the
probability of meeting a deadline in hierarchical plans. In Inter-
national Joint Conference on Artificial Intelligence (IJCAI).
Frank, H. 1969. Shortest paths in probabilistic graphs. Operations
Research 17(4):583–599.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths. IEEE
transactions on Systems Science and Cybernetics 4(2):100–107.
Holte, R., and Zilles, S. 2019. On the optimal efficiency of cost-
algebraic A*. In AAAI Conference on Artificial Intelligence.
Stern, R.; Kiesel, S.; Puzis, R.; Felner, A.; and Ruml, W. 2014.
Max is more than min: Solving maximization problems with
heuristic search. In Symposium on Combinatorial Search (SoCS).

171

