
Brigitte, a Bridge-Based Grid Path-Finder

Alban Grastien
Data61, Australia

alban.grastien@data61.csiro.au

Abstract

We present BRIGITTE, a new path-finding algorithm for 8-
connected grids. BRIGITTE partitions the map into large re-
gions and computes bridges between every pair of regions. At
runtime, BRIGITTE finds the best bridge for the path query
and builds the path from the bridge. BRIGITTE competes
favourably compared to CH-SG-R and COPP, although she
currently requires extensive pre-processing.

1 Problem Definition and Brigitte
We are interested in the optimal path-finding problem over
an 8-connected uniform-cost grid, with four cardinal moves
of length 1 and four ordinal moves of length

√
2. “Corner-

cutting” is also allowed as illustrated by the south-east move
from C on Fig. 1, used to illustrate the following definitions.
Definition 1 (Region) A region R is a non-empty set of
cells that is grid-convex, i.e., it satisfies:

1. ∀{s, t} ⊆ R. all the cells of one of the optimal paths
between s and t belong to R; and

2. ∀{s, t} ⊆ R. the grid distance d(s, t) between s and t
equals the octile distance h(s, t), i.e., the distance if there
was no obstacle.

For instance Q in Fig. 1 cannot be added to the left re-
gion as d(A,Q) = 3 + 2

√
2 > 5 = h(A,Q). By definition

computing the distance between any two cells s and t from
the same region is simple (2nd item). Furthermore it is also
simple to compute an optimal path between these cells. Prac-
tically the path can be computed by looking at the cell p in
one of the maximum two directions from s towards t: if p is
in the same region then it is on an optimal path to t, other-
wise the cell p′ reached from s through the other direction
is. We use the notation πR(s, t) for such a “region path”.
Definition 2 (Abutment) An abutment of region R is a
triple 〈r, a, b〉 where i) a and b belong to R, ii) r is a cell
which is called the root, and iii) all cells c ∈ R that satisfy
�rc = α · �ra+ β · �rb (α, β ≥ 0) are visible from r. We define
the abutment path πab(p) as follows:

• if �rp = α · �ra+ β · �rb (α, β ≥ 0) then πab(p) = π→(p, r)
is the (grid-discretised) straight path from p to r:

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

• otherwise, πab(p) = πR(p, x)π→(x, r), i.e., a region path
to x followed by a straight path from x to r where x is
either a or b, whichever leads to the shortest path. Notice
that |πR(p, x)π→(x, r)| = h(p, x) + h(x, r).
Clearly computing the path πab(p) or its distance is simple

because it only requires to i) determine whether p is in the
cone and then ii) use the simple procedures described before.
Definition 3 A bridge between two regions R1 and R2 is
a triple 〈ab1, ab2, δ〉 where ab1 and ab2 are abutments of
R1 and R2, and δ = d(r1, r2), called the core distance,
is the distance between the two roots r1 and r2 of ab1 and
ab2. Given a bridge br = 〈ab1, ab2, δ〉 between the two re-
gions R1 and R2 and given two cells s ∈ R1 and t ∈ R2,
the bridge path πbr(s, t) is the path πab1(s)π

∗(r1, r2)πab2(t)
where r1 and r2 are the roots of ab1 and ab2 and π is the re-
verse of π. In this path, the optimal path π∗(r1, r2) is called
the core path.

Computing the distance of the bridge path πbr(s, t) is sim-
ple, because it is the sum d(s, r1) + δ + d(r2, t) of the
distances of two abutment paths and the (known) core dis-
tance δ. Computing the bridge path itself is also simple if
computing the core path is simple.

A bridge covers a pair of cells if the bridge path between
these cells is optimal and either of its abutment paths is non-
empty. For two regions R1 and R2, we say that a collection
B of bridges is complete for this pair of regions if for all pair
of cells s ∈ R1 and t ∈ R2, either t is visible from s or there
exists a bridge br ∈ B that covers this pair of cells.
Definition 4 A bridge network is a pair N = 〈R,B〉 where
R is a partition of the grid into regions and B is a map that
associates each pair of regions with a set of bridges that is
complete for this pair.

BRIGITTE computes a bridge network as a pre-processing
stage, and uses this network to answer a path query 〈s, t〉.
BRIGITTE determines the optimal path by checking whether
s is visible from, or belongs to the same region as, t (in
which case the path can be easily computed). Otherwise,
BRIGITTE retrieves the collection of bridges that support
the regions of the two cells, identifies the bridge that min-
imises the bridge distance, and returns the corresponding
bridge path. This requires to compute the core path, itera-
tively. In practice, each bridge also stores the “sub-bridge”
that supports the two abutment cores.

Proceedings of the Twelfth International  
Symposium on Combinatorial Search (SoCS 2019)

176



A

B

C

X

Y

Z

P Q

Figure 1: Two regions represented by the pale orange and pale green backgrounds. Two abutments 〈C,A,B〉 and 〈Z,X, Y 〉.
One bridge defined as the two abutments and the distance of the red dashed line. A bridge path over this bridge i) exits the left
region between A and B, ii) reaches C, iii) follows the dashed line to Z, and iv) enters the right region between X and Y . Such
a path can be suboptimal (e.g., one starting from P ), which is why a pair of regions is generally supported by several bridges.

The size of the bridge network is essentially the total num-
ber of bridges in the network. This number is bounded by
the number of cell pairs, which makes it quadratic. Given a
grid, we call zoom-in a copy of this grid where each original
cell is split into z × z cells, and such that the convexity is
maintained. Then the grid can be partitioned in essentially
the same set of regions and, except for some rare instances,
the same set of bridges could be defined.

2 Empirical Evaluation and Future Works
We compared BRIGITTE (grastien.net/ban/projects/brigitte.
htm) to the fastest existing competitors, CH-SG-R (Uras and
Koenig 2018) and COPP (Salvetti et al. 2018), on the bench-
marks from the 2012 Grid based Path-Planning Competition
(Sturtevant 2012).

Pre-processing is expensive for BRIGITTE, and some of
the grids could not be processed in reasonable time. There-
fore we have no results for the RANDOM maps, some of the
bigger ROOMS maps, as well as some STARCRAFT maps.
The hardest grid that we processed is BLACK LOTUS, for
which CH-SG-R requires 0.7s, COPP 3.5h, and BRIGITTE
roughly 2 days. Clearly the pre-processing is still an issue
and will need to be sorted.

The aggregated results for the grids that BRIGITTE was
able to handle are given on Figure 2. BRIGITTE answers
path queries in roughly 81% of the runtime required by
COPP, and 26% of CH-SG-R’s. These results are distributed
over all benchmarks, although for some benchmarks COPP
and BRIGITTE are similar. Memory-wise, BRIGITTE re-
quires some amount of memory but quite reasonably so. The
text representation of the bridge networks caps generally at
20Mb except for BLACK LOTUS, which requires 100Mb
(down to 30Mb for a zipped version).

In conclusion BRIGITTE, while still in her infancy, man-
ages to improve performance over already excellent solvers.
The main concern is the amount of pre-processing that
makes the approach currently impractical. Pre-processing
will never be cheap (as for COPP) but we believe it can
be eased. In particular the current implementation pushes
for long abutments and short core bridges. We think that a

1

10

100

0 20000 40000 60000 80000 100000

Ti
m

e
(m

ic
ro

se
co

nd
s)

Number of queries

CH-SG-R
COPP

BRIGITTE

Figure 2: Aggregated results: ordered runtime of the path-
finding problems. Below is better.

bridge network with short abutments is simpler to construct,
but we need to verify how it will affect performance. Also
notice that pre-processing can be parallelised as each pair of
regions can be processed independently.

3 Acknowledgement
We want to thank Nathan Sturtevant, Adi Botea, Mattia
Chiari, Sven Koenig, Tansel Uras, and Daniel Harabor for
their advices and access to their code.

References
Salvetti, M.; Botea, A.; Gerevini, A. E.; Harabor, D.; and
Saetti, A. 2018. Two-oracle optimal path planning on grid
maps. In 28th International Conference on Automated Plan-
ning and Scheduling (ICAPS-18), 227–231.
Sturtevant, N. 2012. Benchmarks for grid-based pathfind-
ing. IEEE Transactions on Computational Intelligence and
AI in Games (TCI) 4(2):144–148.
Uras, T., and Koenig, S. 2018. Understanding subgoal
graphs by augmenting contraction hierarchies. In 27th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-
18), 1506–1513.

177


