
A Learning-Based Framework for
Memory-Bounded Heuristic Search: First Results

Carlos Hernández Ulloa,1 Jorge Baier,2,6 William Yeoh,3 Vadim Bulitko,4 Sven Koenig5

1 Departamento de Ciencias de la Ingenierı́a, Universidad Andrés Bello, Chile
2 Departamento de Ciencia de la Computación, Pontificia Universidad Católica de Chile, Chile
3 Department of Computer Science & Engineering, Washington University in St. Louis, USA

4 Department of Computing Science, University of Alberta, Canada
5 Department of Computer Science, University of Southern California, USA

6 Instituto Milenio Fundamentos de los Datos, Chile

Introduction

Memory-bounded search algorithms are typically used when
the search space is too large for regular best-first search algo-
rithms like A* to store in memory. There exists a large class
of memory-bounded best-first search algorithms including
Depth-First Branch-and-Bound (DFBnB), Iterative Deepen-
ing A* (IDA*) (Korf 1985), Recursive Best-First Search
(RBFS) (Korf 1993), and Simplified Memory-Bounded A*
(SMA*) (Russell 1992). Each of these algorithms rely on
a different strategy to ensure that they use only a bounded
amount of memory: IDA* bounds the amount of memory
used by repeatedly running depth-first searches, increasing
the explored depth at each iteration. RBFS uses lower and
upper bounds that are tightened over time as it explores the
search space while keeping only b · d nodes in memory,
where b is the branching factor and d is the depth of the
tree. And, finally, SMA* keeps only a bounded number of
nodes in memory by pruning the least promising nodes from
the OPEN list when it runs out of memory.

In this abstract, we summarize an alternative approach to
memory-bounded best-first search. It is motivated by real-
time heuristic search algorithms (Korf 1990), many of which
iterate the following steps until the goal is reached: up to k
nodes are expanded, where k is a user-defined bound; the h
values of expanded nodes are updated to make them more
informed; the agents moves along a path along the search
tree just expanded. We propose a general framework that
iteratively (1) runs a memory-bounded best-first search al-
gorithm that terminates when k nodes are generated. If no
solution is found, (2) it updates the h-values of the gener-
ated nodes, and (3) purges the h values of some nodes from
memory. As such, the total number of h-values ever stored
by our approach is upper-bounded by a constant. Under
certain (reasonable) conditions, our framework is complete
and preserves the (sub)optimality guarantees of the given
best-first search algorithm in tree-shaped search spaces. The
main conceptual difference between our framework and the
SMA* algorithm is that it can be combined with any best-
first algorithm with very minor modifications.

We present experimental results where we plug into our

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

framework memory-bounded variants of Weighted A* (Pohl
1970). On traveling salesman problems we show that our
framework is often able to find better solutions than DFBnB
and Weighted DFBnB (wDFBnB) and in a smaller amount
of time, especially in problems with large search spaces.

Proposed Approach
Our framework can work with any best-first search algo-
rithm that satisfies the following constraints. First, it main-
tains two sets of states: an OPEN list (implemented as
a priority queue) that contains the search frontier and a
CLOSED list that contains the set of nodes that have been
expanded. Second, it uses a heuristic h to define the key in
OPEN and that it returns the goal node when it is expanded.
Third, the OPEN and CLOSED lists remain in memory af-
ter the algorithm returns. A best-first search algorithm can
be made memory bounded by keeping track of the size of its
OPEN and CLOSED lists and stopping when expansion
would lead to exceeding a given size limit.

Our main function repeatedly iterates through the follow-
ing operations: (i) run Bounded-BFS, (ii) update h-values to
make it more informed, and (iii) purge the h-values from
previous invocations of the BFS search.
Bounded-BFS. We borrow the concept of heuristic updates
from real-time heuristic search and make the h-values of
states more informed between calls to Bounded-BFS. We as-
sume the user provides a consistent heuristic function h0,
and that Bounded-BFS uses function h to compute the key.
Function h(s), when no predecessor of s has been gener-
ated and s is not the root, initializes the stored h-value of s,
hT (s), to h0(s). Otherwise, it updates hT (s) with a variant
of the pathmax rule (Mero 1984). hT (s) is then returned to
be used by the Bounded-BFS algorithm.
Update. If a goal is not found by the algorithm when it is
about to grow the CLOSED and OPEN lists beyond k then
we update the h-values in such a way that consistency is
preserved with respect to all states in OPEN ∪ CLOSED .
The update procedure essentially backs up the h-values from
the states in OPEN to states in CLOSED . The updated h-
value of each state s is stored as hT (s).
Purge. After the h-values are updated, the h-values of states
that were not recently expanded or generated (i.e., are not in

Proceedings of the Twelfth International
Symposium on Combinatorial Search (SoCS 2019)

178

the OPEN or CLOSED lists) are purged from memory. In
this way, in iteration i + 1 of the main loop, the algorithm
uses the (learned) h-values of states generated in iteration i.

Theoretical Analysis

Theorem 1 If h0 is a consistent then hT is also consistent
on OPEN ∪ CLOSED after each heuristic update.

To prove completeness of our algorithm (i.e., that it finds a
solution when one exists) we need the following three prop-
erties to hold. (P1) Bounded-BFS breaks ties in favor of
nodes with a higher g-value. Such algorithms always expand
subtrees of the search space whose nodes have the same f -
value in a depth-first manner. (P2) The framework is given a
bound that allows Bounded-BFS to expand the longest pos-
sible path (without state repetition) in the search space. This
bound may sound exceedingly large but it is important to
note that this is a worst-case theoretical bound. (P3) If state
t has been generated from state s and f(s) < f(t), then
h(s) < c(s, t) + h(t). This property restricts the way in
which f is defined in terms of g and h and is satisfied by
a wide range of algorithms including Weighted A*, Greedy
Best-First Search and Focal Search (Pearl and Kim 1982).

Theorem 2 If our algorithm satisfies P1, P2, and P3, then
it is complete over tree-shaped graphs.

Theorem 3 If the memory-unbounded version of Bounded-
BFS run with a consistent heuristic h returns a solution
upper-bounded by C then a solution returned by our frame-
work with Bounded-BFS and h is upper-bounded by C.

Table 1: Experimental results.
Time (ms) Solution Cost

Cities Alg. w=1.0 1.1 1.2 1.3 w=1.0 1.1 1.2 1.3
22 wA*(464) 303 0.4 0.2 0.3 183.8 184.3 184.1 184.1

wA*(926) 286 0.1 0.3 0.4 183.8 184.3 184.1 184.1
wA*(1850) 275 0.2 0.3 0.6 183.8 184.3 187.0 201.5
wDFBnB 24 2 0.1 0.1 183.8 184.3 196.6 201.8

32 wA*(994) - 7,705 694 329 - 465.8 473.3 471.1
wA*(1986) - 3,090 438 424 - 465.8 465.8 471.1
wA*(3970) - 2,697 747 768 - 465.8 465.8 471.1
wDFBnB 9,147 356 13 0.5 465.8 467.4 472.7 492.0

51 wA*(2552) - 97 584 2 - 426.9 444.9 448.1
wA*(5102) - 250 41 4 - 426.9 444.7 448.1

wA*(10202) - 392 67 5 - 426.9 444.7 448.1
wDFBnB - 1,712 578 90 - 434.8 451.2 469.9

55 wA*(2972) - - - 83,594 - - - 579.7
wA*(5942) - - - 32,251 - - - 592.4

wA*(11882) - - - 31,509 - - - 588.6
wDFBnB - - - 4,087 - - - 574.1

76 wA*(5702) - - 13 4 - - 560.7 561.7
wA*(11402) - - 24 6 - - 560.7 561.7
wA*(22802) - - 38 8 - - 560.7 561.7

wDFBnB - - 21,302 1,493 - - 587.9 612.6
101 wA*(10102) - - 4,473 45 - - 659.3 669.0

wA*(20202) - - 3,463 44 - - 663.8 671.0
wA*(40402) - - 445 37 - - 664.7 666.3

wDFBnB - - - 31 - - - 723.0
151 wA*(22652) - - - - - - - -

wA*(45302) - - - 13,972 - - - 743.9
wA*(90602) - - - 25,629 - - - 743.9

wDFBnB - - - - - - - -

Empirical Evaluation

To evaluate the potential of our framework, we ran it
using Weighted A* with w ∈ {1.0, 1.1, 1.2, 1.3} on 7

routing problems from the literature1 (P-n22-k2.vrp,
A-n32-k5.vrp, eil51.tsp, A-n55-k9.vrp, pr76.tsp,
eil101.tsp and M-n151-k12.vrp) with 22, 32, 51, 55,
76, 101, and 151 cities respectively. Each routing prob-
lem was solved as a symmetric TSP (sTSP). We used three
memory-bound values (k) linked to the size of a given prob-
lem. We defined the minimum bound (mb) for an sTSP of
n cities, with n > 3, as mb = (n(n − 1))/2 + 2, which is
the minimum number of nodes that must be generated to ob-
tain a solution of depth n in the search tree of an sTSP. The
bound values were then k ∈ {2mb, 4mb, 8mb}. We com-
pare the results with wDFBnB (Hernández and Baier 2014)
for the same values of w. The initial heuristic, h0, is the in-
out estimator (Pohl 1973).

We used a time limit of 100 seconds. Table 1 lists the
number of cities of the problem, the algorithms (bound in
parentheses), the runtime in milliseconds and the resulting
solution cost. Hyphens mean that the algorithm timed out
before finding a solution.

With Bounded Weighted A*, our framework is slower
than wDFBnB on smaller problems (22, 32 and 55 cities) but
superior for larger problems. For example, with 151 cities
only our algorithm makes the time cutoff. With 101 cities,
our algorithm finished for w = 1.2 while wDFBnB does not
finish in time. In terms of suboptimality, our algorithm finds
shorter solutions for most problems and w values.

Second, on some problems and some w values, the run-
time decreases when the memory bound k increases. How-
ever, for other problems the opposite happens. This sug-
gests that, to minimize the runtime, k has to be selected in a
problem-dependent manner.

References
Hernández, C., and Baier, J. A. 2014. Toward a search strategy for
anytime search in linear space using depth-first branch and bound.
In SoCS.
Korf, R. E. 1985. Depth-first iterative-deepening: An optimal ad-
missible tree search. Artificial Intelligence 27(1):97–109.
Korf, R. E. 1990. Real-time heuristic search. Artificial Intelligence
42(2-3):189–211.
Korf, R. E. 1993. Linear-space best-first search. Artificial Intelli-
gence 62(1):41–78.
Mero, L. 1984. A heuristic search algorithm with modifiable esti-
mate. Artificial Intelligence 23:13–27.
Pearl, J., and Kim, J. H. 1982. Studies in semi-admissible heuris-
tics. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 4:392–399.
Pohl, I. 1970. Heuristic search viewed as path finding in a graph.
Artificial Intelligence 1(3-4):193–204.
Pohl, I. 1973. The avoidance of (relative) catastrophe, heuristic
competence, genuine dynamic weighting and computational issues
in heuristic problem solving. In IJCAI, 12–17.
Russell, S. 1992. Efficient memory-bounded search methods.
ECAI.

1http://neo.lcc.uma.es/vrp/vrp-instances/, http://elib.zib.de/
pub/mp-testdata/tsp/tsplib/tsp/

179

