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Abstract

This is an extended abstract of a previously published paper
at AAAI 2019 (Ma et al. 2019). We study the Multi-Agent
Pickup and Delivery (MAPD) problem where a large number
of agents attend to a stream of incoming pickup-and-delivery
tasks. We present an efficient and effective MAPD algorithm
that can compute paths with continuous agent movements for
hundreds of agents and thousands of tasks in seconds.

Introduction
In the Multi-Agent Pickup and Delivery (MAPD) problem
(Ma et al. 2017), we are given a 2-dimensional 4-neighbor
grid with cells of size L×L each andm agents that attend to
a stream of incoming pickup-and-delivery tasks. Each task
τj has a pickup cell sj and a delivery cell gj and is added
to the system at an unknown time. The task set T is the
set of unassigned tasks. An agent not executing a task can
be assigned any task τj ∈ T . In order to execute τj , the
agent has to move from its current cell via sj to gj . Appli-
cations include warehouse robots that move shelves (Wur-
man, D’Andrea, and Mountz 2008), aircraft towing robots
that move planes (Morris et al. 2016), and office delivery
robots that move packages (Veloso et al. 2015).

Existing MAPD algorithms repeatedly solve the multi-
agent pathfinding (MAPF) problem (Ma and Koenig 2017)
that computes collision-free paths for multiple agents as-
suming discrete agent movements and is NP-hard to solve
optimally (Yu and LaValle 2013b; Ma et al. 2016b). MAPF
algorithms include reductions to other problems (Yu and
LaValle 2013a; Erdem et al. 2013; Surynek 2015) and dedi-
cated algorithms (Wang and Botea 2011; Sharon et al. 2013;
Wagner and Choset 2015; Sharon et al. 2015; Ma and
Koenig 2016; Ma, Kumar, and Koenig 2017), as described
in several surveys (Ma et al. 2016a; Felner et al. 2017).

In this paper, we present an efficient and effective MAPD
algorithm based on the recent MAPD algorithm Token
Passing (TP) (Ma et al. 2017). TP assumes discrete agent
movements in the main compass directions with uniform
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velocity but can use MAPF-POST (Hönig et al. 2016a;
2016b) in a post-processing step to adapt its paths to contin-
uous movements with given velocities. We propose to com-
bine TP with Safe Interval Path Planning with Reservation
Table (SIPPwRT), our contribution to improving Safe Inter-
val Path Planning (SIPP) (Phillips and Likhachev 2011). The
resulting MAPD algorithm TP-SIPPwRT directly computes
continuous forward movements and point turns with given
velocities, guarantees a safety distance between agents, and
solves all well-formed MAPD instances (Cáp, Vokrı́nek, and
Kleiner 2015), a realistic subset of MAPD instances that
models automated warehouses and other real-world environ-
ments.

TP-SIPPwRT
TP (Ma et al. 2017) lets agents repeatedly plan paths for
themselves using space-time A* (Silver 2005) considering
the other agents as dynamic obstacles that follow their paths
and with which collisions need to be avoided. It uses a token
(a synchronized block of shared memory) that stores the task
set T and the current paths. Each time an agent that is cur-
rently not following a path gets the token, it greedily assigns
itself a task τj from T . Then, it plans a time-minimal path
from its current cell to sj and then a time-minimal path from
sj to gj that both avoid collisions with all other paths in the
token. Finally, it releases the token and follows the planned
paths.

We propose to replace space-time A* with SIPPwRT, that
computes continuous forward movements and point turns
with given velocities. We assume that each agent is a disk
with radius ≤ L/2 and always moves from the center of its
current cell to the center of an adjacent unblocked cell via
the following available actions, besides waiting: a point turn
of π/2 rads (ninety degrees) in either clockwise or counter-
clockwise direction with a given rotational velocity and a
forward movement to the center of the adjacent cell with a
given translational velocity.

Space-time A* and SIPP are two versions of A* with
discrete agent movements: (1) Space-time A* operates on
pairs of cells and time steps; and (2) SIPP operates on pairs
of cells and safe intervals. A safe interval of a cell is the
contiguous time steps during which a cell is not occupied.
Therefore, it is always preferable for an agent to arrive at
a cell earlier during the same safe interval since it can then
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Figure 1: Left: Agent simulator. Right: Robot simulator.

simply wait at the cell. If SIPP has found a path that arrives
at some cell at some time during some safe interval and then
discovers a path that arrives at the same cell at a later time
in the same safe interval, then it can prune the latter path
without losing optimality.

However, SIPP represents the path of each dynamic obsta-
cle as a chronologically ordered list of cells and is thus not
efficient since it has to iterate through all these lists to cal-
culate all safe intervals of a given cell. SIPPwRT improves
upon SIPP using a novel data structure, called reservation
table, that handles continuous agent movements with given
velocities. Each reservation table entry of a given cell is a
priority queue that contains all reserved intervals for that
cell, each being a maximal contiguous interval during which
the cell is occupied by some dynamic obstacle, in increas-
ing order of their lower bounds. The reservation table thus
allows SIPPwRT to efficiently (1) calculate all safe intervals
of a given cell; (2) add reservation table entries after a new
path has been calculated; and (3) delete reservation table en-
tries that refer to irrelevant times in the past in order to keep
the reservation table small.

We demonstrate the benefits of TP-SIPPwRT for auto-
mated warehouses using both an agent simulator with per-
fect path execution and a standard robot simulator with im-
perfect path execution resulting from unmodeled kinody-
namic constraints and motion noise by the MAPD algo-
rithms (Figure 1). We report our experimental results on a
2.50 GHz Intel Core i5-2450M laptop with 6 GB RAM: (1)
The planning time of TP-SIPPwRT is less than 16 seconds
for up to 250 agents and 2,000 tasks in the agent simula-
tor; and (2) all robots follow their paths safely in the robot
simulator. Videos of sample experiments can be found at

http://idm-lab.org/project-p.html
We refer the reader to the original paper (Ma et al. 2019)

for the detailed description and theoretical analysis of SIP-
PwRT and more experimental insights, including compar-
isons to existing MAPD algorithms.
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