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Abstract

This paper proves several new properties of the Meet in the
Middle (MMε) bidirectional heuristic search algorithm when
applied to graphs with unit edge costs. Primarily, it is shown
that the length of the first path discovered by MMε never ex-
ceeds the optimal length by more than one and that if the
length of the first path found is odd, then it must be optimal.
These properties suggest that the search strategy should em-
phasize finding a complete path as soon as possible. Compu-
tational experiments demonstrate that fully exploiting these
new properties can decrease the number of nodes expanded
by anywhere from twofold to over tenfold.

1 Introduction

Bidirectional Heuristic Search (BHS) algorithms essentially
perform two interleaved A* searches, one in the forward di-
rection and one in the backward direction, to find the lowest
cost path from a given start node s to a given goal node t
in a graph G = (V,E). It is assumed throughout this paper
that the cost of every edge is one, hence the lowest cost path
is the shortest path as measured by the number of edges tra-
versed. The unit cost assumption is valid for many types of
problems to which bidirectional search has been applied. For
example, the sliding tile problem and pancake puzzle both
have unit costs and are tested in the computational results
section of this paper. Generally the unit cost assumption is
valid for any problem in which the objective is to find the
number of nodes between the start and goal, in which case
every edge naturally becomes unit cost.

BHS was introduced by Pohl (1971) with the goal of re-
placing one large unidirectional search by two much smaller
searches, resulting in fewer node expansions in total. De-
spite a steady stream of research on BHS (see the review by
Sturtevant and Felner (2018)), the results were largely dis-
appointing. In many cases, BHS was outperformed by A*
or its variants, and in the cases where BHS performed bet-
ter than A*, the primary reason might have been better tie-
breaking rules that lead to finding the shortest path sooner.
These disappointing computational results were followed by
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a theoretical analysis (Kaindl and Kainz 1997) demonstrat-
ing that if all the f -values are distinct, then traditional BHS
algorithms must expand at least as many nodes as either for-
ward A* or reverse A* expands. More recently, Barker and
Korf (2015) analyzed the viability of BHS algorithms com-
pared to unidirectional search with an emphasis on the qual-
ity of the heuristic that is available for the problem. Their
conclusion, with a few caveats, was: If a strong heuristic is
available then either forward or reverse A* will outperform
BHS, and if the heuristic is weak, then brute-force bidirec-
tional search (i.e., no heuristic is used) will outperform BHS.
Their analysis only applies to front-to-end BHS algorithms.

As part of Barker and Korf’s analysis, they posited the
existence of a BHS algorithm that is guaranteed to meet in
the middle, although no such algorithm existed at that time.
In response, Holte et al. (2016) developed the MM algorithm
that is guaranteed to meet in the middle. Sharon et al. (2016)
presented a variation of MM named MMε. Both algorithms
are extensively analyzed by Holte et al. (2017).

This line of meet in the middle research has been extended
in several directions. Shaham et al. (2017) presented Frac-
tional MM (fMM), which is a generalization of MM that per-
mits flexibility in choosing the meeting point of the forward
and backward searches. Shaham et al. (2018) generalized
the theory behind the fMM algorithm and constructed the
Meet at the Threshold (MT) algorithm that uses a threshold
parameter to control the meeting point of the forward and
backward search. Eckerle et al. (2017) characterized pairs
of nodes that must be expanded by any BHS algorithm that
satisfies certain assumptions. This characterization served as
the basis for the development of the Near-Optimal Bidirec-
tional Search (NBS) front-to-end BHS algorithm (Chen et
al. 2017). In this paper, they developed a method to deter-
mine the minimum number of nodes that must be expanded
by any front-to-end BHS algorithm (under the same assump-
tions as in the paper by Eckerle et al.). They proved that
NBS will never expand more than twice the number of such
nodes and that no BHS algorithm can provide a stronger
guarantee than this. Shperberg et al. (2019) constructed the
Dynamic Vertex Cover Bidirectional Search (DVCBS) al-
gorithm, which improves upon NBS in practice although it
does not share NBS’s theoretical guarantees. Finally, Bar-
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ley et al. (2018) created an algorithm named Generalized
Breadth-First Heuristic Search (GBFHS), which controls
where the forward and backward searches meet by expand-
ing one level of nodes at a time.

One conclusion that can be drawn from this line of re-
search is that Barker and Korf’s assessment of the viabil-
ity of BHS was overly pessimistic. The papers above have
demonstrated that BHS can outperform both A* and brute-
force bidirectional search on a variety of problem domains
and with heuristics of diverse strengths. Another conclusion
that can be drawn is that BHS is an active area of research
and it appears that there is still room for improvement. This
paper continues this line of research by proving several new
properties of the MMε algorithm when applied to graphs
with unit edge costs. The primary result is the length of
the first path discovered by MMε never exceeds the optimal
length by more than one and that if the length of the first
path found is odd, then it must be optimal. These proper-
ties suggest that the search strategy should emphasize find-
ing a complete path as soon as possible. Computational ex-
periments confirm that this approach can reduce the number
of nodes expanded and the resulting algorithm is competi-
tive with the best of the algorithms described in the previous
paragraph.

2 New Properties of MMε for Graphs with

Unit Costs

The GBFHS algorithm is designed such that if it is applied
to a graph with unit costs, then the first path it discovers is an
optimal path. MMε does not share this property, but in this
section we prove that the first path discovered never exceeds
the optimal length by more than one and that if the length of
the first path is odd, then it must be optimal.

It is assumed that a path from s to t exists in order to
simplify the presentation. It also is assumed that an admis-
sible heuristic hF (hB) is available in the forward (back-
ward) direction. Let gF (n) be the distance from s to node
n, fF (n) = gF (n) + hF (n), CF be the set of closed nodes
in the forward direction, OF be the set of open nodes in
the forward direction, gminF = min{gF (n) : n ∈ OF },
and fminF = min{fF (n) : n ∈ OF }. For the backward
search, gB(n), fB(n), CB , OB , gminB , and fminB are
defined analogously.

The particular algorithm of interest in this paper is the
MMε algorithm. It defines the following priority functions:

pF (n) = max(2gF (n) + ε, fF (n))

and
prminF = min{pF (n) : n ∈ OF },

with pB(n) and prminB defined analogously. The direction
for each iteration is selected by choosing the direction with
the smaller value of prminF and prminB . Once a direc-
tion is selected, say the forward direction, a node with the
minimum value of pF is chosen as the next node to be ex-
panded. It is these definitions that permit MMε to satisfy the
following definition.
Definition 1. (Meet in the middle). A bidirectional search
algorithm meets in the middle if its forward search never

Algorithm 1: Pseudocode for MMε

1 gF (s) := gB(t) = 0
2 OF := {s}
3 OB := {t}
4 U := ∞
5 while (OF �= ∅) and (OB �= ∅) do
6 C := min(prminF , prminB)
7 if U ≤

max(C, fminF , fminB , gminF +gminB + ε)
then

8 return U

9 if C = prminF then
10 // Expand in the forward direction
11 choose n ∈ OF for which pF = prminF

12 move n from OF to CF

13 foreach child c of n do
14 if c ∈ OF ∪ CF and

gF (c) ≤ gF (n) + cost(n, c) then
15 continue
16 if c ∈ OF ∪ CF then
17 remove c from OF ∪ CF

18 gF (c) := gF (n) + cost(n, c)
19 add c to OF

20 if c ∈ OB then
21 U := min(U, gF (c) + gB(c))

22 else
23 // Expand in the backward direction

analogously

24 return ∞

expands a node n with gF (n) > C∗/2 and its backward
search never expands a node n with gB(n) > C∗/2. A bidi-
rectional search algorithm strongly meets in the middle if
its forward search never expands a node n with gF (n) >
(C∗ − ε)/2 and its backward search never expands a node
n with gB(n) > (C∗ − ε)/2, where ε is the smallest cost of
an edge in G.

If a BHS algorithm satisfies the strongly meets in the mid-
dle definition, it will be denoted as an SMMBHS algorithm.
MM is an example of a BHS algorithm that meets in the
middle and MMε is an example of an SMMBHS algorithm.
For the sake of completeness, the pseudocode for MMε from
Holte et al. (2017) is provided in Algorithm 1.

The meet in the middle definition explicitly places re-
strictions on which nodes can be expanded, or equivalently,
which nodes can be in CF and CB . It also implicitly places
restrictions on which nodes can be generated, or equiva-
lently, which nodes can be in CF ∪OF and CB ∪OB . These
restrictions are set forth in the next lemma and corollary.
Lemma 1. If an SMMBHS algorithm is applied to a graph
with unit edge costs, then gF (n) ≤ (C∗ + 1)/2 for every
node n ∈ CF ∪ OF and gB(n) ≤ (C∗ + 1)/2 for every
node n ∈ CB ∪OB .
Proof. Proof in the forward direction. Suppose n ∈ CF ∪
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OF . The conclusion clearly is true if n = s, so suppose
n �= s. Then n must have been generated by some other
node, say m. The strong meet in the middle property then
implies

gF (n) = gF (m) + 1

≤ (C∗ − 1)/2 + 1

= (C∗ + 1)/2.

Corollary 1. If an SMMBHS algorithm is applied to a graph
with unit edge costs and C∗ is even, then gF (n) ≤ C∗/2 for
every node n ∈ CF ∪OF and gB(n) ≤ C∗/2 for every node
n ∈ CB ∪OB .
Proof. Proof in the forward direction. Given that C∗ is even
and that gF (n) is an integer, it follows from Lemma 1 that
gF (n) ≤ C∗/2.

Every time MMε generates a node, it checks if that node
already has been generated in the opposite direction. If so, a
path from s to t has been discovered and the length of that
path can serve as an upper bound on the length of the shortest
path. This leads to the definition that a path from s to t has
been discovered if and only if every node on the path is in
CF ∪OF ∪ CB ∪OB and at least one node on the path has
been generated in both the forward and reverse directions,
i.e., there is a node n on the path such that n ∈ CF ∪ OF

and n ∈ CB ∪ OB . The following theorem uses Lemma 1
to prove that the length of the first path discovered by MMε
never exceeds C∗ by more than one.
Theorem 1. If an SMMBHS algorithm is applied to a graph
with unit edge costs, then the length of the first path discov-
ered by the algorithm is less than or equal to C∗ + 1.
Proof. Suppose the first path, say P , from s to t discovered
by the algorithm has length d greater than C∗ + 1.

Case 1. d is even. In this case, there is one node, say m,
exactly in the middle of P , i.e., gF (m) = gB(m) = d/2.
Thus,

gF (m) = d/2 > (C∗ + 1)/2.

Lemma 1 then implies that m /∈ CF ∪OF . Similarly, m /∈
CB ∪OB . This contradicts that P has been discovered.

Case 2. d is odd. In this case, there are two consecutive
nodes, say m1 and m2, in the middle of P such that
gF (m1) = gB(m2) = (d− 1)/2. Then

gB(m1) = gB(m2) + 1 = (d− 1)/2 + 1

> (C∗ + 1− 1)/2 + 1 = (C∗ + 2)/2.

Lemma 1 then implies that m1 /∈ CB ∪ OB . Similarly,
m2 /∈ CF ∪OF . This leads to the conclusion that no node
on P is in both CF ∪OF and CB∪OB , which contradicts
that P has been discovered.

The following corollary uses Theorem 1 to conclude that
the first path discovered by MMε is optimal whenever C∗ is
even.
Corollary 2. If an SMMBHS algorithm is applied to a graph
with unit edge costs and C∗ is even, then the first path dis-
covered by the algorithm is optimal.

Proof. Suppose the first path, say P , from s to t discovered
by the algorithm has length d greater than C∗. Theorem 1
then implies that d = C∗ + 1, which in turn implies d is
odd, because C∗ is even. The proof of Case 2 of Theorem
1 can be modified slightly to show that gB(m1) = (C∗ +
2)/2, leading to the same contradiction that P has not been
discovered.

Theorem 1 and Corollary 2 can be combined to yield the
following corollary.
Corollary 3. If an SMMBHS algorithm is applied to a graph
with unit edge costs and the length of the first path discov-
ered is odd, then it is optimal.
Proof. Suppose the first path, say P , from s to t discov-
ered by the algorithm has odd length d. Corollary 2 states
that if C∗ is even, then the first path discovered is optimal,
which means that the first path must have even length. Con-
sequently, C∗ cannot be even, hence it is odd. Theorem 1
then implies that d ≤ C∗ +1, which in turn implies d = C∗
because d and C∗ are both odd.

It is important to notice that while this paper focuses on
improving the MMε algorithm, the results in this section ap-
ply to any BHS algorithm that satisfies the strongly meet in
the middle property given in Definition 1.

3 Search Strategy

Broadly speaking, a search algorithm must perform two
tasks, namely, it must find the optimal path and it must ver-
ify that this path is optimal by expanding nodes until the
termination criteria is satisfied. One of the stopping criteria
included in MMε is U ≤ gminF + gminB + ε, where U
is the length of the shortest path found so far. To exploit this
stopping criteria, the creators of MMε decided that when-
ever prminF = prminB the algorithm should continue to
expand nodes in the same direction until there no longer is
a tie or gmin in that direction has increased. Furthermore,
they chose to break ties among nodes with the same priority
value in favor of nodes with smaller g. Their search strategy
was designed to focus on verifying optimality quickly, not
on finding the optimal quickly.

The new properties enumerated in Theorem 1 and Corol-
laries 2 and 3 suggest that for graphs with unit costs, it might
be better to use a search strategy that emphasizes finding the
shortest path as soon as possible rather than trying to exploit
the stopping criteria. After all, if the length of the first path
discovered is odd, then the algorithm can be terminated im-
mediately, without satisfying any of the other stopping cri-
teria. The search strategy tested in this paper employs two
phases corresponding to the two tasks that must be accom-
plished, i.e., finding and optimal path and verifying its opti-
mality. The first phase breaks ties in choosing the direction
and ties among nodes with the same priority with the goal
of discovering a path as soon as possible. The second phase,
which begins as soon as the first path has been discovered,
breaks ties with the goal of verifying the optimality of the
path that has been discovered. Of course, it may be the case
that the first path discovered is not optimal, in which case
the second phase can terminate as soon as it finds the lower
cost path which is guaranteed to be optimal.
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Algorithm 2: Pseudocode for choosing the direction
1 if prminF < prminB then return F
2 if prminF > prminB then return B
3 if U = ∞ then
4 // Phase I
5 if min{fF (n) : n ∈ OF , pF (n) = prminF } ≤

min{fB(n) : n ∈ OB , pB(n) = prminB} then
6 return F

7 else
8 return B

9 else
10 // Phase II
11 if U or prminF or prminB changed during

previous iteration then
12 if |OF | ≤ |OB | then return F
13 else return B

14 else
15 return direction used in previous iteration

In particular, the first phase breaks ties in favor of smaller
values of fmin, i.e., whenever prminF = prminB the
direction containing the node with the smallest value of f
is chosen, regardless of the direction chosen in the previ-
ous iteration. Furthermore, once a direction has been cho-
sen, ties among nodes with the same priority value in that
direction are broken in favor of nodes with smaller f . The
second phase uses p-leveling, meaning that when a direction
is chosen, all the nodes with minimum p-value are expanded
in that direction before switching to the other direction. If
prminF = prminB when the first path is discovered, then
the tie is broken by choosing the direction that has fewer
open nodes. Within a given direction, ties are still broken
in favor of nodes with smaller f with the goal of finding
a shorter path, if one exists. The pseudocode for choosing
the search direction is provided in Algorithm 2. The result-
ing algorithm is called Meet in the Middle for Unit Costs
(MMUCε).

4 Computational Results

Computational experiments were conducted on the pancake
problem and the 15-sliding tile puzzle.

For the pancake problem, one thousand random instances
were generated for each value of n = 10, 20, 30, 40. The
gap heuristic (Helmert 2010) was used. The strength of the
heuristic was varied by using GAP-X, where the gaps in-
volving the X smallest pancakes are ignored. The number of
nodes that could be stored was limited to 300 million. The
results are presented in Table 1. In this table, n is the number
of pancakes and the columns labelled MMε and MMUCε
contain the average number of nodes expanded by each of
these algorithms. If the entry is a percentage, then this is
the percentage of the 1,000 instances that were successively
solved before running out of memory. For n = 40, MMε
was only able to solve 969 of the instances before exceed-

n MMε MMUCε Ratio
GAP

10 76 40 1.9
20 6,905 1,099 6.3
30 127,634 11,738 10.9
40 1,312,112 82,558 15.9

GAP-1
10 559 286 2.0
20 881,162 91,202 9.7
30 61.4% 91.2%

GAP-2
10 1,681 1,105 1.5
20 56.6% 95.0%

GAP-3
10 2,433 2,089 1.2

Table 1: Computational results for the pancake problem.

MMε MMUCε Ratio
1,634,245 687,669 2.4

Table 2: Computational results for the 15-puzzle.

ing the memory limitation; the averages shown in Table 1
are limited to these 969 instances. The column labelled Ra-
tio is the ratio of the number of nodes expanded by MMε to
the number expanded by MMUCε. Table 1 shows that this
ratio grows as the number of pancakes increases, culminat-
ing in a reduction factor of 15.9 for n = 40 with GAP-0.
The same trend is seen for GAP-1. Only the smallest in-
stances (n = 10) could be solved reliably when GAP-2 or
GAP-3 was used. The ratio for these instances is smaller,
perhaps because both algorithms are degenerating towards
brute-force search due to the weaker heuristic.

For the 15-puzzle, the algorithms were tested on the 100
problems created by Korf (1985). A 3-4-4-4 disjoint pattern
database (Korf and Felner 2002) was used as the heuristic.
The stronger 7-8 database was not used because it takes
longer to generate the 7-8 database than to solve all 100
problems using the 3-4-4-4 database. The sliding tile puzzle
has the property that every path from the starting configu-
ration to the goal configuration has the same parity. In this
case, Theorem 1 and Corollary 2 imply that the first path
discovered by MMε must be optimal. On average, MMUCε
reduced the number of nodes expanded by a factor of 2.4.

Table 3 compares MMUCε to MMε and NBS, as pre-
sented in Chen et al. (2017), on a set of 50 randomly gen-
erated pancake problems with 16 pancakes and on the 100
test problems for the 15-puzzle problem using the Manhat-
tan Distance (MD) heuristic. Table 3 also includes the results
obtained by GBFHS, as presented in Barley et al. (2018), on
the same sets of instances.

Table 3 shows that MMUCε significantly outperformed
MMε and NBS on the pancake instances when GAP-2 and
GAP-3 were used. MMUCε performed slightly better than
MMε and NBS on the 15-puzzle instances. MMUCε per-
formed slightly worse than GBFHS on the pancake in-

148



hF , hB MMε NBS GBFHS MMUCε
GAP 283 335 279 315

GAP-2 587,283 625,900 250,941 293,874
GAP-3 7,100,998 6,682,497 2,140,718 2,454,084

MD 13,162,312 12,851,889 12,507,393 12,270,697

Table 3: Computational comparison of MMUCε to MMε,
NBS, and GBFHS for the pancake problem and the 15-
puzzle.

stances and slightly better on the 15-puzzle instances. We
just learned of the DVCBS algorithm and are in the process
of obtaining the test instances that were used in that paper.

5 Conclusions

We have established a stronger termination condition for
SMMBHS algorithms such as MMε when applied to the unit
cost domain. That analysis lead us to implement a two-phase
search strategy which resulted in the new MMUCε algorithm
as a modification of MMε. The new MMUCε algorithm is
competitive with the best BHS algorithms that have been
published.
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