Multi-Directional Search

Dor Atzmon, ${ }^{1}$ Jiaoyang Li, ${ }^{2}$ Ariel Felner, ${ }^{1}$ Eliran Nachmani, ${ }^{1}$ Shahaf Shperberg, ${ }^{1}$ Nathan Sturtevant, ${ }^{3}$ Sven Koenig ${ }^{2}$
${ }^{1}$ Ben-Gurion University
${ }^{2}$ University of Southern California
${ }^{3}$ University of Alberta
dorat@post.bgu.ac.il, jiaoyanl@usc.edu, felner@bgu.ac.il, nachamni@post.bgu.ac.il, shperbsh@post.bgu.ac.il, nathanst@ualberta.ca, skoenig@usc.edu

1 Problem Definition

In the Multi-Agent Meeting (MAM) (Yan, Zhao, and Ng 2015) problem we are given a weighted graph $G=(V, E)$ and a set of k start locations $S=\left\{s_{1}, \ldots, s_{k}\right\}(S \subseteq V)$ for k agents $A=\left\{a_{1}, \ldots, a_{k}\right\}$. The cost of edge $\left(v, \overline{v^{\prime}}\right) \in E$ is denoted by $c\left(v, v^{\prime}\right) \geq 0$. A solution to MAM is a target location $t \in V$ indicating a meeting location for the agents, plus a set of paths from each s_{i} to t. An optimal solution (meeting location) t^{*} has the lowest cost among all solutions, and its cost is C^{*}. Let $d(v, u)$ be the cost of the shortest path from v to u. We consider two cost functions: Sum-Of-Costs (SOC) and Makespan (MKSP) that are defined as follows. SOC: $C_{S O C}(t)=\sum_{a_{i} \in A} d\left(s_{i}, t\right)$, and MKSP: $C_{M K S P}(t)=\max _{a_{i} \in A} d\left(s_{i}, t\right)$.

2 Multi-Directional MM (MM*)

MM* is a multi-directional best-first search algorithm that guarantees to return an optimal MAM solution for either SOC or MKSP. A node in MM* is a pair $\left(a_{i}, v\right)$ representing an agent and its location. MM^{*} organizes nodes in a single open-list (denoted OPEN) and a single closed-list (denoted CLOSED). Open is initialized with k root nodes: $\left(a_{i}, s_{i}\right)$ representing each of the k agents and its start location. Each node is associated with a g-value. Naturally, $g\left(a_{i}, s_{i}\right)=0$. Let $N(v)$ be the neighbours of v. Expanding a node $\left(a_{i}, v\right)$ is composed of two actions: (1) Generating a node $\left(a_{i}, v^{\prime}\right)$ for each $v^{\prime} \in N(v)$, while setting $g\left(a_{i}, v^{\prime}\right)=g\left(a_{i}, v\right)+c\left(v, v^{\prime}\right)$ and inserting it to Open. (2) Moving $\left(a_{i}, v\right)$ to Closed.

We say that v is a possible goal if it was generated from all directions. Its cost, $C(v)$, depends on the cost function. Let U be the cost of the incumbent solution, i.e., U is the minimum $C(v)$ among all possible goals (initially $U=\infty$). U is an upper bound on $C^{*} . \mathrm{MM}^{*}$ halts when $f \min \geq U$, where f min is the minimum f-value in Open.

Consider node $\left(a_{i}, v\right)$ in OPEN. $f_{S O C}^{*}\left(a_{i}, v\right)$ is the cost of the minimum solution such that: (1) a_{i} is forced to pass through v. (2) a_{i} continues from v to meet the other agents at some location t. (3) Each of the other agents a_{j} travels from s_{j} to t. Now, $f_{S O C}^{*}\left(a_{i}, v\right)=g\left(a_{i}, v\right)+h_{S O C}^{*}\left(a_{i}, v\right)$

[^0]where $h_{S O C}^{*}\left(a_{i}, v\right)$ is the sum of the minimal remaining cost for a_{i} that will complement the path that a_{i} has passed (with cost $g\left(a_{i}, v\right)$) getting it to t (item 2), plus the cost of the other agents to get from their start locations to t (item 3): $h_{S O C}^{*}\left(a_{i}, v\right)=\min _{t \in V}\left[d(v, t)+\sum_{a_{j} \in A \backslash\left\{a_{i}\right\}} d\left(s_{j}, t\right)\right]$.

Let $h_{S O C}\left(a_{i}, v\right)$ be an admissible heuristic, i.e., $h_{S O C}\left(a_{i}, v\right) \leq h_{S O C}^{*}\left(a_{i}, v\right)$. For SOC, naturally,

$$
\begin{equation*}
f_{S O C}\left(a_{i}, v\right)=g\left(a_{i}, v\right)+h_{S O C}\left(a_{i}, v\right) \tag{1}
\end{equation*}
$$

The MKSP case is more complicated. Since in MKSP we take the maximum among agents (not the sum), we do not know which agent will be taken by the max operation. We begin by defining $f_{M K S P}^{*}\left(a_{i}, v\right)$, which is the best solution given that a_{i} is forced to pass through v :

$$
f_{M K S P}^{*}\left(a_{i}, v\right)=\min _{t \in V}\left[\max \left\{\begin{array}{c}
g\left(a_{i}, v\right)+d(v, t) \tag{2}\\
\max _{a_{j} \in A \backslash\left\{a_{i}\right\}} d\left(s_{j}, t\right)
\end{array}\right\}\right] .
$$

For a given possible meeting location t we want the maximal path of one of the agents. If it is our current agent a_{i} then this is given by $g\left(a_{i}, v\right)+d(v, t)$ (top line of the max term). If it is some other agent a_{j} then it is given by $d\left(s_{j}, t\right)$ (bottom).

Next, we need to define $f_{M K S P}$ as a lower bound on $f_{M K S P}^{*}$. Here, we do not define $h_{M K S P}^{*}$ and $h_{M K S P}$ but define $f_{M K S P}\left(a_{i}, v\right)$ in terms of $h_{S O C}\left(a_{i}, v\right)$ as follows:

$$
\begin{equation*}
f_{M K S P}\left(a_{i}, v\right)=\max \left\{g\left(a_{i}, v\right), \frac{g\left(a_{i}, v\right)+h_{S O C}\left(a_{i}, v\right)}{k}\right\} . \tag{3}
\end{equation*}
$$

$g\left(a_{i}, v\right)$ is a lower bound because a_{i} has already traveled a path of cost $g\left(a_{i}, v\right)$ and $f_{M K S P}^{*}\left(a_{i}, v\right) \geq g\left(a_{i}, v\right)$. Observe that $\frac{f_{S O C}^{*}\left(a_{i}, v\right)}{k} \leq f_{M K S P}^{*}\left(a_{i}, v\right)$. This is because one of the agents must at least travel $\frac{f_{S O C}^{*}\left(a_{i}, v\right)}{k}$. Since $f_{S O C}\left(a_{i}, v\right)$ is a lower bound on $f_{S O C}^{*}\left(a_{i}, v\right)$ then dividing it by k will yield a lower bound on $f_{M K S P}^{*}\left(a_{i}, v\right)$.

Costs of subsets $f_{M K S P}^{*}$ for k agents is determined by the longest path of one of the agents. Therefore, $f_{M K S P}^{*}$ as well as $f_{M K S P}$ for any subset of these k agents are also lower bounds on $f_{M K S P}^{*}$ of all k agents. Thus, for any subset of $k^{\prime}<k$ agents, we can compute $f_{M K S P}$ and use it as a lower bound for $f_{M K S P}^{*}$ for the entire set of k agents. In our experiments, we tried all combinations of pairs of agents.

3 Heuristics for MM*

We introduce a number of heuristics that are plugged directly in $f_{S O C}\left(a_{i}, v\right)$ and indirectly for $f_{M K S P}$ (Equations 1 and 3). Let $t^{*}\left(a_{i}, v\right)$ be the optimal meeting location where a_{i} is forced to go through v. For simplicity, we use t^{*} to denote $t^{*}\left(a_{i}, v\right)$ and $h\left(a_{i}, v\right)$ to denote $h_{S O C}\left(a_{i}, v\right)$. Let $S_{i}(v)$ be a set of all start locations in S, except for s_{i} which is replaced with $v\left(S_{i}(v)=S \backslash\left\{s_{i}\right\} \cup\{v\}\right)$. Thus, $h_{S O C}^{*}\left(a_{i}, v\right)=$ $\sum_{v^{\prime} \in S_{i}(v)} d\left(v^{\prime}, \hat{t}^{*}\right)$.
h_{1} : Clique Heuristic We assume that for every pair of locations $\left(v_{1}, v_{2}\right)$ there exists a classic admissible heuristic h, such that $h\left(v_{1}, v_{2}\right) \leq d\left(v_{1}, v_{2}\right)$. Based on the triangle inequality, for every pair of locations $v_{1}, v_{2} \in S_{i}(v)$ ($v_{1} \neq v_{2}$) we have that: $d\left(v_{1}, v_{2}\right) \leq d\left(v_{1}, \hat{t^{*}}\right)+d\left(v_{2}, t^{*}\right)$. By summing all such pairs, we get: $\sum_{v_{1}, v_{2} \in S_{i}(v)} d\left(v_{1}, v_{2}\right) \leq$ $\sum_{v_{1}, v_{2} \in S_{i}(v)} d\left(v_{1}, \hat{t^{*}}\right)+d\left(v_{2}, \hat{t^{*}}\right)$. As each $v^{\prime} \in S_{i}(v)$ exists in $k-1$ pairs, we can rewrite the right side of the equation as $(k-1) \cdot \sum_{v^{\prime} \in S_{i}(v)} d\left(v^{\prime}, t^{*}\right)$. Since $h\left(v_{1}, v_{2}\right) \leq d\left(v_{1}, v_{2}\right)$ we get the Clique heuristic:

$$
\begin{equation*}
h_{1}\left(a_{i}, v\right)=\sum_{v_{1}, v_{2} \in S_{i}(v)} \frac{h\left(v_{1}, v_{2}\right)}{k-1} \leq h^{*}\left(a_{i}, v\right) \tag{4}
\end{equation*}
$$

$h_{2}:$ Median Heuristic For a set of numbers $B \subset \mathbb{R}$, it is provable that the median of B minimizes the sum of the absolute deviations, i.e., $\operatorname{argmin}_{r \in \mathbb{R}} \sum_{b \in B}|b-r|=$ median $\{B\}$. Let $t m_{d}$ be the median number of dimension d. This creates a potential meeting location $t m=\left(t m_{1}, t m_{2}\right)$ that minimizes the sum of absolute deviations over two dimensions. Assume that the input graph $G=(V, E)$ is a 4-connected 2D grid where every location $v \in V$ can be represented by its coordinates $\vec{v}=\left(v_{1}, v_{2}\right)$. The $L_{1^{-}}$ distance for any two locations $u, v \in V$ is defined as $\|\vec{u}-\vec{v}\|_{1}=\left|u_{1}-v_{1}\right|+\left|u_{2}-v_{2}\right|(=\Delta x+\Delta y)$. By modeling the problem in an empty $2 \mathrm{D} L_{1}$-space (no obstacles), we introduce the Median heuristic:

$$
\begin{equation*}
h_{2}\left(a_{i}, v\right)=\sum_{v^{\prime} \in S_{i}(v)}\left|v_{1}^{\prime}-t m_{1}\right|+\left|v_{2}^{\prime}-t m_{2}\right| \leq h^{*}\left(a_{i}, v\right) \tag{5}
\end{equation*}
$$

h_{3} : FastMap Heuristic FastMap (Cohen et al. 2018; Li et al. 2019) is a near-linear preprocessing algorithm that embeds the locations of a given edge-weighted undirected connected graph $G=(V, E)$ into a D-dimensional L_{1}-space \mathbb{R}^{D}. Each location $v_{i} \in V$ is mapped to a D-dimensional point $\overrightarrow{p_{i}} \in \mathbb{R}^{D}$. The length of the shortest path $d\left(v_{i}, v_{j}\right)$ between any two locations $v_{i}, v_{j} \in V$ is approximated by the L_{1}-distance $\left\|\overrightarrow{p_{i}}-\overrightarrow{p_{j}}\right\|_{1}$ between the corresponding two points $\overrightarrow{p_{i}}, \overrightarrow{p_{j}} \in \mathbb{R}^{D}$ in this space. See (Cohen et al. 2018) for more details of FastMap. To compute h-values for MAM, h_{3} applies the Median heuristic on the generated embedding \mathbb{R}^{D}. Let $\overrightarrow{p^{\prime}} \in \mathbb{R}^{D}$ be the corresponding point of the embedding of location v^{\prime} generated by FastMap. The FastMap heuristic is defined as:

$$
\begin{equation*}
h_{3}\left(a_{i}, v\right)=\min _{\vec{t} \in \mathbb{R}^{D}}\left\{\sum_{v^{\prime} \in S_{i}(v)}\left\|\overrightarrow{p^{\prime}}-\vec{t}\right\|_{1}\right\} \leq h^{*}\left(a_{i}, v\right) \tag{6}
\end{equation*}
$$

	SOC				MKSP				
\#Agents	3	5	7	9	3	5	7	9	
h_{0}	6.87	18.98	29.46	44.17	1.91	6.73	11.03	18.07	
h_{1}	$\mathbf{0 . 1 6}$	4.66	16.15	36.29	0.47	2.62	3.57	6.53	
h_{2}	$\mathbf{0 . 1 6}$	$\mathbf{0 . 8 1}$	$\mathbf{0 . 8 5}$	$\mathbf{1 . 2 7}$	$\mathbf{0 . 4 6}$	$\mathbf{2 . 6 0}$	$\mathbf{3 . 5 2}$	$\mathbf{6 . 3 8}$	
h_{3}	1.92	8.50	18.66	33.20	1.48	6.57	9.59	16.46	

Table 1: Average time on 500×500 grids with 10% obstacles

Figure 1: (a) Enigma map. (b) SOC time. (c) MKSP time.

4 Experimental Results

We compared all our new heuristics to the Dijkstra version of MM* $\left(h=0\right.$; denoted by $\left.h_{0}\right)$. For h_{1}, we used Manhattan Distance (MD) as a classic admissible heuristic between any two locations. The number of dimensions D for h_{3} was always set to 10 as was suggested by Li et al. (2019).

We experimented on a 500×500 grid with 10% obstacles while varying the number of randomaly placed agents from 3 to 9 . Table 1 shows the average time over 50 instances. For SOC, h_{2} was the best as it is suitable for grids with small number of obstacles. h_{3} incurred preprocessing time of ≈ 30 secs. For MKSP, h_{2} was the best too, but here (unlike SOC), h_{1} was very close to h_{2}. This is probably because the clique heuristic for MKSP also guides the agents to the median.

We also experimented on the Enigma map (768x768; Figure 1(a)) from the Starcraft video game (Sturtevant 2012). Figure 1(b) shows the average time of 50 instances for 3 up to 9 agents for minimizing SOC. Here, h_{3} was the best. Since this map has many obstacles, h_{2} and h_{1} were less effective than h_{3} which uses real distances. Nevertheless, h_{3} required preprocessing time of 39 s for this map (done once). Similarly, for MKSP (Figure 1(c)) h_{3} was again the best.

In conclusion, for grids with few obstacles, h_{2} is best. For domains with many obstacles, h_{3} is best but requires preprocessing. h_{1} is not far from both and it is applicable to all domains without the need of preprocessing.

References

Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.; Koenig, S.; and Kumar, T. K. S. 2018. The FastMap algorithm for shortest path computations. In IJCAI, 1427-1433.
Li, J.; Felner, A.; Koenig, S.; and Kumar, T. S. 2019. Using fastmap to solve graph problems in a euclidean space. In ICAPS, 273-278.
Sturtevant, N. R. 2012. Benchmarks for grid-based pathfinding. Computational Intelligence and AI in Games 4(2):144148.

Yan, D.; Zhao, Z.; and Ng, W. 2015. Efficient processing of optimal meeting point queries in euclidean space and road networks. Knowledge and Information Systems 42(2):319351.

[^0]: Copyright (C) 2020, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

