
Solving the Watchman Route Problem on a Grid with Heuristic Search∗

Shawn Seiref
Ben Gurion Univ.
Be’er Sheva, Israel

shawn@post.bgu.ac.il

Tamir Jaffey
Ben Gurion Univ.
Be’er Sheva, Israel

tamiry@post.bgu.ac.il

Margarita Lopatin
Ben-Gurion University

Be’er Sheva, Israel
marglup@rnd-hub.com

Ariel Felner
Ben Gurion Univ.
Be’er Sheva, Israel
felner@bgu.ac.il

Introduction

In the Watchman Route Problem (WRP), we are given a map
and the task is to (offline) find a route that sees every point in
the map. WRP was proven to be NP-hard for polygons (Chin
and Ntafos 1986) and in full paper we prove that it is NP-
hard on grids too. Nevertheless, finding an optimal WRP
route in a grid with heuristic search is our main focus.

The input is a grid-map M . The set of traversable (non ob-
stacles) cells is denoted by C. A cell start ∈ C is also given
as input. A path π = 〈s0 = start, . . . , sk〉 is a sequence
of adjacent cells starting from start. In a watchman path π,
for every cell c ∈ C there is line-of-sight from at least one
cell si ∈ π. Our task is to find an optimal (= minimal cost)
watchman path.

The line-of-sight (LOS) function determines whether any
given two cells can visually see each other and it can be any
arbitrary function. In this paper we use Bresenham LOS
(BresLos): a function commonly used in computer graphics,
video games and bitmap pictures (Bresenham 1965). It is
perhaps the most suitable LOS function that discretizes real-
world continuous domains and simulates a continuous field
of view. Figure 1(left) shows BresLos for the Green cell.

WRP is different than SLAM problems where an au-
tonomous moving agent needs to explore the environment
and build a map while simultaneously locate itself in the
map (Taketomi, Uchiyama, and Ikeda 2017). A reminiscent
offline problem is the Art Gallery Problem (AGP) (Garey
and Johnson 1979) where the task is to find the minimal set
of points S (not a tour as in WRP) on the map such that all
points in the map can be seen by at least one point s ∈ S.

WRP as a Search Problem

We next formulate WRP as a search problem and define its
corresponding search tree.
Node: A node is a pair 〈location, seen〉 where location is
a cell (current location of the agent) and seen is a list of
cells (all the cells that have been seen so far by the agent).

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.∗This paper is an extended abstract of a paper with the same
title that appears at ICAPS-2020.

The complement of seen is the unseen list; their union is the
entire set of cells (seen ∪ unseen = C).
Root Node: Root is a node such that Root.location =
start and Root.Seen = LOS(start).
Expansion: Expanding node S = 〈location, seen〉 is to
perform all legal movements on S.location. For each child
S′ of S, S′.location is the neighboring cell of S.location
derived from the movement. S′.seen is first inherited from
the parent S.seen. Then, we add to S′.seen all the cells that
are now seen from S′.location and were not seen before
(i.e., S′.seen = S.seen ∪ LOS(S′.location)). The cost of
the edge from S to S′ is the cost of the movement action.
Goal Node: Goal.location may be any cell in C such that
Goal.seen = C.

Every node S in this search tree is associated with a path
π = 〈s0 = start, ..., sk = S.location〉 which is determined
by the branch of the search tree associated with S. S.seen
includes all the cells that have LOS to at least one of the
locations in the path associated S. The cost of node S in the
tree is the sum of the costs of applying the operators from
Root to S. We use Open to denote the Open list of the A*
search that is activated on this search tree.

A* relies on an admissible heuristic to return optimal so-
lutions. We introduce such heuristics next.

Singleton Heuristic

Our first heuristic is based on the idea that in order to solve
WRP the watchman agent must see each of the cells from
S.unseen. Thus, for each cell p ∈ S.unseen (denoted as the
pivot p) we define its singleton heuristic to be the minimal
distance from S.location to a cell q ∈ LOS(p). Formally,
given a pivot cell p ∈ S.unseen:

hp(S) = min
q∈LOS(p)

d(S.location, q)

where d(x, y) is the cost of the shortest path between cells x
and y. For every p ∈ S.unseen, hp(S) is admissible because
the agent will surely travel to some cell that has LOS to p and
hp(S) takes the minimum among all those cells.

Every possible pivot has its own singleton heuristic.
Therefore, we can take the maximum of each of these heuris-
tics in order to maintain admissibility (Holte et al. 2006). In
our experiments below we took the extreme case of maxi-
mizing over all cells in the unseen list as pivots.

The Thirteenth International Symposium 
 on Combinatorial Search (SoCS 2020)

139



Figure 1: BresLos view, Optimal path and a 11x11 maze

Graph Heuristics

Our next two heuristics are based on a graph called the Dis-
joint LOS Graph (GDLS = (V,E)). GDLS is abstracted
from the grid map M for every node S in Open. We say
that two cells are LOS-disjoint if there is no cell that they
both see. We say that a set of cells P is LOS-disjoint if
every two cells in P are LOS-disjoint.

GDLS is built by identifying a set of LOS-disjoint cells
P ∈ S.unseen. Each cell in P is called a pivot and is added
as a node to GDLS . For each pivot p we also add all cells
in LOS(p) as watcher vertices to the graph. The edges be-
tween pivot p and its Watchers has weight of 0, the Watch-
ers are connected with Watchers of different Pivots with the
weight of the true distance cost between them. The current
location of the agent S.location and its Watchers are also
similarly added to GDLS . We are interested in the minimum-
cost Hamiltonian path from S.location that visits all other
vertices in GDLS . This is a lower bound on the path that will
see all vertices in S.unseen.

MST heuristic The Minimum Spanning Tree (MST) of a
graph is the spanning tree with the minimal sum of edge
costs. The MST heuristic computes a MST of GDLS . MST
of a graph is a lower bound on a Hamiltonian path through
that graph which ensures admissibility of the MST heuristic.

TSP heuristic A more informed but more expensive
heuristic is a modification of the Traveling Salesman Prob-
lem (TSP) tour, which calculates a minimal cycle in com-
plete. We slightly modified a TSP solver to find the minimal
path that starts at location c and passes in all pivots of GDLS .

Reducing the Size of the Search Tree

Trivially, when node S is expanded, then new nodes are gen-
erated for all the cells that are neighbours of S.location.
However, based on GDLS we can significantly reduce the
size of the search tree. An optimal path must include at least
one watcher for each pivot in GDLS . We are interested in
the first such watcher. The optimal watchman path will in-
clude one of them as the first such watcher. To have a com-
plete search (and not lose any possible path) we add all of
them as neighbours in the search tree. Formally, when ex-
panding a node S, we generate one child C for each edge
in GDLS that connects S.location to a watcher W as fol-
lows: C.location = W . The cost of edge (S,C) in the
search tree is set to the cost of the corresponding edge in
GDLS . C.seen is updated to also include LOS(p) for each

Basic Expansion Jump to Front
LOS h Nodes Time Nodes Time

BresLos
OPT=57

BFS 149,450 6,345 2,316 503
Singleton 61,959 2,639 1,175 246

MST 921 143 93 44
TSP 293 75 35 18

Table 1: Nodes expanded and CPU time on the 11x11 maze.

cell p ∈ π(S.location,W ). This method is denoted as Jump
to Frontier expansion (JF).

Experimental Results

We have performed extensive experiments on many maps.
Indeed, each of our improvements achieved a significant re-
duction in performance. The baseline breadth-first search
algorithm (labelled BFS) which did not have any heuristic
could only solve relatively small problem instances within
reasonable computing resources while the best method
(TSP+JF) could solve much larger problem instances.

Table 1 shows representative experimental results on the
11x11 maze map shown in Figure 1 with a specific start state
(the top left green cell). The columns give the number of
nodes expanded and the CPU time (in msec) to fully solve
the problem for the basic expansion (left) and for JF (right)
for whem using BresLos. Rows correspond to the different
algorithms. For BFS, JF outperformed basic expansion by
almost a factor of two orders of magnitude. This factor is
naturally smaller when the heuristics were added. However,
even when JF was applied the heuristics further achieved a
significant reduction over BFS. For BresLos, TSP+JF solved
the entire problem in only 18ms.

Acknowledgments

The research was supported by Rafael Advanced Defense
Systems, by Israel Science Foundation (ISF) grant #844/17
and by the Cyber grant by from the Prime Minister office.

References

Bresenham, J. E. 1965. Algorithm for computer control of
a digital plotter. IBM Systems journal 4(1):25–30.
Chin, W.-P., and Ntafos, S. 1986. Optimum watchman
routes. In Proceedings of the second annual symposium on
Computational geometry, 24–33. ACM.
Garey, M. R., and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern
databases speeds up heuristic search. Artificial Intelligence
170(16):1123–1136.
Taketomi, T.; Uchiyama, H.; and Ikeda, S. 2017. Visual slam
algorithms: a survey from 2010 to 2016. IPSJ Transactions
on Computer Vision and Applications 9(1):16.

140




