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Abstract

Embedding undirected graphs in a Euclidean space has many
computational benefits. FastMap is an efficient embedding al-
gorithm that facilitates a geometric interpretation of problems
posed on undirected graphs. However, Euclidean distances
are inherently symmetric and, thus, Euclidean embeddings
cannot be used for directed graphs. In this paper, we present
FastMap-D, an efficient generalization of FastMap to directed
graphs. FastMap-D embeds vertices using a potential field to
capture the asymmetry between the pairwise distances in di-
rected graphs. FastMap-D learns a potential function to define
the potential field using a machine learning module. In exper-
iments on various kinds of directed graphs, we demonstrate
the advantage of FastMap-D over other approaches.

Introduction

Graph embeddings have been studied in multiple research
communities. For example, in Artificial Intelligence (AI),
they are used for shortest path computations (Cohen et al.
2018) and solving multi-agent meeting problems (Li et al.
2019). In Knowledge Graphs, they are used for entity reso-
lution (Bordes et al. 2013); and in Social Network Analysis,
they are used for encoding community structures (Perozzi,
Al-Rfou, and Skiena 2014). In general, graph embeddings
are useful because they facilitate geometric interpretations
and algebraic manipulations in vector spaces. Such manipu-
lations in turn yield interpretable results in the original prob-
lem domain, such as in question-answering systems (Bordes,
Weston, and Usunier 2014).

Despite the existence of many graph embedding tech-
niques, there are only a few that work in linear or near-linear
time1. FastMap (Cohen et al. 2018; Li et al. 2019) is a near-
linear-time algorithm that embeds undirected graphs in a Eu-
clidean space with a user-specified number of dimensions.
The efficiency of FastMap makes it applicable to very large
graphs and to dynamic graphs such as traffic networks and
marine environments for unmanned surface vehicles.

The resulting Euclidean embedding can be used in a va-
riety of contexts. The L1-variant of FastMap (Cohen et al.
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1linear time after ignoring logarithmic factors

2018) produces an embedding useful for shortest path com-
putations. Here, the L1 distances between the points cor-
responding to pairs of vertices are used as heuristic dis-
tances between them in the original graph; and this L1

distance function is provably admissible and consistent,
thereby enabling A* to produce optimal solutions without
re-expansions. The L2-variant of FastMap (Li et al. 2019)
produces an embedding that is generally useful for geomet-
ric interpretations. In the multi-agent meeting problem, for
example, the problem is first analytically solved in the Eu-
clidean space and then projected back to the original graph
using Locality Sensitive Hashing (LSH) (Datar et al. 2004).

In general, the properties of the Euclidean space can be
leveraged in many ways. For example, a Euclidean space is
a metric space in which the triangle inequality holds for dis-
tances. In addition, in a Euclidean space, geometric objects,
like straight lines, angles and bisectors, are well defined. The
ability to conceptualize these objects facilitates visual intu-
ition and can help in the design of efficient algorithms for
Euclidean interpretations of graph problems.

Despite the usefulness of Euclidean embeddings, Eu-
clidean distances are inherently symmetric and, thus, cannot
be used for directed graphs. Directed graphs arise in many
real-world applications where the relations between entities
are asymmetric, such as in temporal networks and social net-
works. In this paper, we present FastMap-D, an efficient gen-
eralization of FastMap to directed graphs. FastMap-D em-
beds vertices using a potential field to capture the asym-
metry between the pairwise distances in directed graphs.
Like the L2-variant of FastMap, FastMap-D focuses on min-
imizing the distortion between pairwise distances in the po-
tential field and the corresponding true distances in the di-
rected graph. FastMap-D therefore provides physical inter-
pretations of problems posed on directed graphs by enabling
vector arithmetic in potential fields. It is a back-end algo-
rithm meant to support a number of applications, including
question-answering, machine learning and multi-agent tasks
on directed graphs.2

The difference in potential of two points in a potential

2Shortest path computation is just one more application that re-
quires FastMap-D to also consider the properties of admissibility
and consistency if the intended search framework is related to A*.
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field is inherently asymmetric and therefore a good choice
for capturing distances in a directed graph. FastMap-D con-
structs a potential function defining the potential field us-
ing a machine learning module. Through experiments con-
ducted on various kinds of directed graphs, we demonstrate
the advantage of FastMap-D over other approaches, includ-
ing those that directly apply machine learning techniques to
learning pairwise distances between the vertices.

Related Work
There are a variety of approaches that embed undirected
graphs in a Euclidean space. While some approaches sim-
ply try to preserve the pairwise distances between vertices
in the embedding, other approaches try to meet additional
constraints. For example, (Linial, London, and Rabinovich
1995) surveys several methods for the low-distortion em-
bedding of undirected graphs and their usage in algorith-
mic applications such as clustering. On the other hand, the
Euclidean Heuristic Optimization (EHO) (Rayner, Bowling,
and Sturtevant 2011) and the L1-variant of FastMap (Cohen
et al. 2018) meet additional constraints on the pairwise dis-
tances in the embedding. In particular, these distances satisfy
admissibility and consistency, which are useful for shortest
path computations with heuristic search.

Global Network Positioning (Ng and Zhang 2002) first
embeds landmarks in a Euclidean space and then uses them
for a frame of reference. Like EHO, this algorithm relies
on solving Semi-Definite Programs (SDPs) or similar ap-
proaches that are prohibitively expensive for large graphs.
Big-Bang Simulation (BBS) (Shavitt and Tankel 2004) is a
different method that simulates an explosion of particles un-
der a force field derived from the embedding error. Although
it does not rely on solving SDPs, it is still prohibitively ex-
pensive for large graphs.

Existing works on embedding directed graphs, such as
Node2Vec (Grover and Leskovec 2016), LINE (Tang et al.
2015) and APP (Zhou et al. 2017), focus on preserving the
proximity of vertices. First-order proximity refers to the dis-
tance between two vertices; second-order proximity is re-
lated to the similarity of their one-hop neighboring vertices;
third-order proximity is related to the similarity of their two-
hop neighboring vertices; and so forth. These proximity-
preserving embedding algorithms are based on skip-gram
models originally developed in the context of Natural Lan-
guage Processing (Mikolov et al. 2013). Before training,
they generate samples of vertex neighborhoods via param-
eterized random walks. To represent asymmetric proximi-
ties, these techniques use two points for each vertex, one
to represent the vertex as a source and the other to repre-
sent it as a destination. They are appropriate for link predic-
tion, node labeling and community detection in social net-
works (Grover and Leskovec 2016). These algorithms differ
from our approach in important ways. First, they lose the
physical interpretation since they use two points for each
vertex in directed graphs. Second, they are semi-supervised
algorithms that require labels or data about vertex similar-
ities while our approach is an unsupervised approach that
does not require any information other than the given di-
rected graph. Third, our approach has a plug-and-play ma-
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Figure 1: (a) shows the “cosine law” projection in a triangle.
(b) illustrates how coordinates are computed and recursion
is carried out in FastMap.

chine learning module that works well even with an Ordi-
nary Least Squares (OLS) method, in which case it has a
strongly polynomial runtime. HOPE (Ou et al. 2016) is an-
other algorithm that tries to preserve higher-order proximi-
ties, but it forgoes the use of random walks in favor of an
approximate Singular Value Decomposition (SVD) of the
similarity matrix. The top eigenvectors define the embed-
ding space. Since HOPE relies on solving SVDs, it is pro-
hibitively expensive for large graphs.

Background

FastMap (Faloutsos and Lin 1995) was introduced in the
Data Mining community for automatically generating Eu-
clidean embeddings of abstract objects. For example, if we
are given objects in the form of long DNA strings, multime-
dia datasets such as voice excerpts and images or medical
datasets such as ECGs or MRIs, there is no geometric space
in which these objects can be naturally visualized. However,
there is often a well-defined distance function between each
pair of objects. For example, the edit distance3 between two
DNA strings is well defined although an individual DNA
string cannot be conceptualized in geometric space. Clus-
tering techniques, such as the k-means algorithm (Alpay-
din 2010), are well studied in Machine Learning but cannot
be applied directly to domains with abstract objects because
they assume that objects are described as points in geometric
space. FastMap revives their applicability by first creating a
Euclidean embedding for the abstract objects that approxi-
mately preserves the pairwise distances between them.

In the Data Mining community, FastMap gets as input
a complete non-negative edge-weighted undirected graph
G = (V,E,w). Each vertex vi ∈ V represents an abstract
object Oi. Between any two vertices vi and vj , there is an
edge (vi, vj) ∈ E with weight D(Oi, Oj) that corresponds
to the symmetric distance between objects Oi and Oj . A Eu-
clidean embedding assigns a K-dimensional point pi ∈ R

K

to each object Oi. A good Euclidean embedding is one in

3The edit distance between two strings is the minimum number
of insertions, deletions or substitutions that are needed to transform
one to the other.
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Figure 2: Illustrates the difference between (a) the embedding produced by FastMap and (b) the embedding produced by
FastMap-D. In (a), 3 dimensions are used to represent the symmetric distances between vertices. In (b), 2 dimensions are used
to represent the symmetric average distances between vertices and the 3rd dimension is used to represent the correction factors
via the potential function ψ. Points pi and pj are the embeddings of vertices vi and vj , respectively.

which the Euclidean distance between any two points pi and
pj closely approximates D(Oi, Oj).

FastMap creates a Euclidean embedding in linear time by
first assuming the existence of a very high dimensional em-
bedding and then carrying out dimensionality reduction to a
user-specified number of dimensions. In principle, it works
as follows: In the first iteration, it heuristically identifies the
farthest pair of objects Oa and Ob in linear time. It does this
by initially choosing a random object Ob and then choosing
Oa to be the object farthest away from Ob. It then reassigns
Ob to be the object farthest away from Oa. Once Oa and Ob

are determined, every other object Oi defines a triangle with
sides of lengths dai = D(Oa, Oi), dab = D(Oa, Ob) and
dib = D(Oi, Ob). Figure 1(a) shows this triangle. The sides
of the triangle define its entire geometry, and the projection
of Oi onto OaOb is given by xi = (d2ai+d2ab−d2ib)/(2dab).
FastMap sets the first coordinate of pi, the embedding of ob-
ject Oi, to xi. In particular, the first coordinate of pa is 0 and
of pb is dab. Computing the first coordinates of all objects
takes only linear time since the distance between any two
objects Oi and Oj for i, j /∈ {a, b} is never computed.

In the subsequent K − 1 iterations, the same procedure
is followed for computing the remaining K − 1 coordinates
of each object. However, the distance function is adapted for
different iterations. For example, for the first iteration, the
coordinates of Oa and Ob are 0 and dab, respectively. Be-
cause these coordinates fully explain the true distance dab
between them, from the second iteration onward, the re-
maining coordinates of pa and pb should be identical. In-
tuitively, this means that the second iteration should mimic
the first one on a hyperplane that is perpendicular to OaOb.

Figure 1(b) explains this intuition. Although the hyperplane
is never constructed explicitly, its conceptualization implies
that the distance function for the second iteration should be
changed to: Dnew(O

′
i, O

′
j)

2 = D(Oi, Oj)
2 − (xi − xj)

2.
Here, O′

i and O′
j are the projections of Oi and Oj , respec-

tively, onto this hyperplane, and Dnew(·, ·) is the new dis-
tance function.

FastMap-D

In this section, we present FastMap-D, a generalization of
FastMap to directed graphs. We assume that the given di-
rected graph, G = (V,E,w), is strongly connected, that is,
there exists a path from any vertex vi ∈ V to any other vertex
vj ∈ V . While FastMap produces an embedding of the ver-
tices in a Euclidean space for undirected graphs, FastMap-D
produces an embedding of the vertices in a potential field for
directed graphs. A K-dimensional potential field is a func-
tion ψ : R

K → R. The potential field is used to capture
asymmetric distances that are inherent in directed graphs.

Figure 2 illustrates the difference between the embed-
dings created by FastMap and FastMap-D. FastMap creates
a K-dimensional point pi = 〈[pi]1, . . . , [pi]K〉 for each ver-
tex vi, as shown in Figure 2(a). Here, the Euclidean distance

‖pj − pi‖2 =
√∑K

k=1([pj ]k − [pi]k)2 approximates the
graph-based distance dG(vi, vj).

FastMap-D also creates a K-dimensional point pi =
〈[pi]1, . . . , [pi]K〉 for each vertex vi, as shown in Fig-
ure 2(b). However, [pi]K = ψ([pi]1, . . . , [pi]K−1) for some
(K − 1)-dimensional potential field ψ. The FastMap-D dis-

50



tance ‖pj − pi‖�, defined to be
√∑K−1

k=1 ([pj ]k − [pi]k)2 +

[pj ]K − [pi]K , approximates dG(vi, vj). The first term,√∑K−1
k=1 ([pj ]k − [pi]k)2, approximates the symmetric av-

erage distance d̄G(vi, vj) =
dG(vi,vj)+dG(vj ,vi)

2 , and the
second term, [pj ]K − [pi]K , approximates the asymmetric
correction component dG(vi, vj)− d̄G(vi, vj).

Algorithm Description

Algorithm 1 presents FastMap-D for directed graphs. The
input is a non-negative edge-weighted directed graph G =
(V,E,w) along with two user-specified parameters Kmax

and ε. Kmax is the maximum number of dimensions allowed
in the embedding. It bounds the amount of memory needed
to store the embedding of any vertex. ε is the threshold that
marks a point of diminishing returns when the distance be-
tween the farthest pair of vertices becomes negligible. The
output is an embedding pi ∈ R

K+1 (with K + 1 ≤ Kmax)
for each vertex vi ∈ V .

FastMap-D first embeds all vertices using average dis-
tances in a K-dimensional Euclidean space (lines 2-25). It
then learns a potential function that is used to determine the
(K + 1)th coordinate (lines 26-38), which captures asym-
metric distances as mentioned above.

Embedding Average Distances: This phase of the algo-
rithm (lines 2-25) is similar to the regular FastMap proce-
dure that is applicable to undirected graphs. However, the
input here is a directed graph, and the distances are asym-
metric. Thus, we use the average distances d̄G(vi, vj) as
a symmetric measure derived from the directed graph. All
pairwise distances or average distances are never explicitly
computed since doing so would be computationally expen-
sive. Instead, we use the function AVERAGE-DISTANCE that
is invoked only O(Kmax) times.

The function AVERAGE-DISTANCE (lines 39-43) com-
putes d̄G(vi, vj) for a given vi and all vj ∈ V . It does this
efficiently by computing two shortest path trees rooted at vi.
The first is computed on G to yield dG(vi, vj) for all vj ∈ V .
The second is computed on GR, which is identical to G but
with all edges reversed, to yield dGR

(vi, vj) = dG(vj , vi)
for all vj ∈ V .

In each iteration of K (line 4), the farthest pair of ver-
tices (va, vb) is heuristically chosen in near-linear time (lines
5-14). This pair of vertices is identified with respect to the
residual distances for that iteration (line 9).4 The square of
the residual distances in iteration K, d2ij −

∑K−1
k=1 ([pj ]k −

[pi]k)
2, is the square of the original average distances minus

the square of the Euclidean distances already explained by
the first K − 1 coordinates created so far. This is similar to
the residual distances used in the L2-variant of FastMap (Li
et al. 2019). The farthest pair of vertices, va and vb, are
added to pivots, a list of pivots, before the Kth coordi-
nate for each vertex is computed (lines 16-25) as follows:
First, the AVERAGE-DISTANCE function is called on va and
vb to yield dai and dib for all vi ∈ V (lines 17-18). Then, the

4Note that dij = d̄G(vi, vj).

residual distances are computed (line 19), and FastMap’s tri-
angle projection rule is used to compute the Kth coordinate
(lines 23-25).

Learning a Potential Function: This phase of the
algorithm (lines 26-38) constructs a potential function
ψ(x1, . . . , xK) to account for asymmetric distances. The
value of ψ([pi]1, . . . , [pi]K) is recorded in the last co-
ordinate of the embedding [pi]K+1. In this phase, a
sampling procedure accompanies a learning procedure to
construct ψ(x1, . . . , xK). As shown in the pseudocode,
ψ(x1, . . . , xK) can be in the form of a multi-variate poly-
nomial of degree D on x1, . . . , xK . It can also be in the
form of a Neural Network (NN), as discussed in the next sec-
tion. Of course, any machine learning algorithm can be used
in this phase, but we choose to illustrate the pseudocode of
the algorithm using polynomial fitting to facilitate our later
discussion of overfitting. While fitting a multi-variate poly-
nomial can itself be done in many ways, here, we use an
OLS method (Strutz 2010) to find the unknown coefficients
of the multi-variate polynomial. The complexity of the OLS
method depends on the number of training samples.

The sampling procedure uses two qualifying sets S1 and
S2 (line 27), and all pairs (vi, vj) with vi ∈ S1 and vj ∈
S2 are used as training samples (line 32). The number of
training samples is therefore |S1||S2|. Different variants of
FastMap-D can be created by varying the choices of S1 and
S2. To keep the learning procedure efficient, both S1 and S2

cannot simultaneously be large subsets of V . On the other
hand, restricting S1 and S2 to significantly smaller subsets
can negatively impact the accuracy of the learning proce-
dure. Therefore, FastMap-D chooses S1 and S2 judiciously,
sometimes using pivots computed in the first phase of the
algorithm.

Consider a multi-variate polynomial ψ(x1, . . . , xK) of
degree D having the form

∑M
r=1 crx

dr
1

1 . . . x
dr
K

K , where
dr1, . . . , d

r
K ≥ 0 and dr1 + . . . + drK ≤ D for 1 ≤ r ≤

M . The number of terms, M , in the multi-variate polyno-
mial is given by

∑D
i=0

(
i+K−1
K−1

)
. We construct c ∈ R

M to
be the vector of unknown coefficients of ψ(x1, . . . , xK).
A ∈ R

|S1||S2|×M is a matrix in which row s corresponds
to sample s. For sample s = (vi, vj), ψ([pj ]1, . . . , [pj ]K)−
ψ([pi]1, . . . , [pi]K) evaluates to a linear combination of the
unknown coefficients and is desired to be equal to the cor-
rection factor dG(vi, vj) − d̄G(vi, vj), which is held in
[b]s. Therefore, [A]sh is equal to the coefficient of [c]h in
ψ([pj ]1, . . . , [pj ]K)− ψ([pi]1, . . . , [pi]K).5

The OLS method minimizes (Ac − b)T (Ac − b) in
O(|S1||S2|M2) time to determine the unknown coefficients
c1, . . . , cM (line 36). To address the regularization issue of
OLS, ridge regression with the same complexity can also be
used (Strutz 2010).

5ψ(x1, . . . , xK) has unknown coefficients on line 35 and,
thus, ψ([pj ]1, . . . , [pj ]K)−ψ([pi]1, . . . , [pi]K) evaluates to a lin-
ear combination of the unknown coefficients. However, on line
38, the unknown coefficients have been determined and, thus,
ψ([pi]1, . . . , [pi]K) evaluates to a real number.
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Algorithm 1: Shows the FastMap-D algorithm. G = (V,E,w) is a non-negative edge-weighted directed graph; Kmax

is the user-specified upper bound on the dimensionality; ε is a user-specified threshold; K + 1 ≤ Kmax is the dimen-
sionality of the computed embedding; pi is the embedding of vertex vi ∈ V .

1 Function FastMap-D
Input: G = (V,E,w), Kmax and ε.
Output: K + 1 and pi ∈ R

K+1 for all vi ∈ V .
2 • Embed average distances in Euclidean space using FastMap.
3 pivots ← ∅;
4 for K = {1, . . . ,Kmax − 1} do
5 • Heuristically choose the farthest pair.
6 Choose va ∈ V uniformly at random and let vb ← va;
7 for t = 1, . . . , C do // C is a small constant
8 {dai}vi∈V ← Average-Distance (G, va);
9 vc ← argmaxvi{d2ai −

∑K−1
k=1 ([pi]k − [pa]k)

2};
10 if vc = vb then
11 Break;
12 else
13 vb ← va;
14 va ← vc;

15 pivots ← pivots ∪ {va, vb};
16 • Compute the Kth coordinate.
17 {dai}vi∈V ← Average-Distance (G, va);
18 {dib}vi∈V ← Average-Distance (G, vb);
19 d′ab ← d2ab −

∑K−1
k=1 ([pb]k − [pa]k)

2;
20 if d′ab < ε then
21 Break;
22 for each vi ∈ V do

23 d′ai ← d2ai −
∑K−1

k=1 ([pi]k − [pa]k)
2;

24 d′ib ← d2ib −
∑K−1

k=1 ([pb]k − [pi]k)
2;

25 [pi]K ← (d′ai + d′ab − d′ib)/(2
√
d′ab);

26 • Learn potential function and compute the last coordinate.
27 Let S1 and S2 be the two qualifying sets that define the sampling procedure;
28 Let ψ(x1, . . . , xK) =

∑M
r=1 crx

dr
1

1 . . . x
dr
K

K be a multi-variate polynomial of degree D with unknown
coefficients c1, . . . , cM ; note that M =

∑D
i=0

(
i+K−1
K−1

)
;

29 Let A = [A]ij be a matrix of dimensions |S1||S2| ×M ;
30 Let b = [b]i be a vector of length |S1||S2|;
31 Let c = [c]i be a vector of length M ;
32 for each (vi, vj) such that vi ∈ S1, vj ∈ S2 do
33 Let 1 ≤ s ≤ |S1||S2| be the current sampling index;
34 [b]s ← dG(vi, vj)− d̄G(vi, vj);
35 Let [A]sh be the coefficient of [c]h in ψ([pj ]1, . . . , [pj ]K)− ψ([pi]1, . . . , [pi]K) for 1 ≤ h ≤ M ;

36 c∗ ← OLS solution to (Ac− b)T (Ac− b);
37 for each vi ∈ V do
38 [pi]K+1 ← ψ([pi]1, . . . , [pi]K);

39 Function Average-Distance
Input: G = 〈V,E,w〉 and a root vi ∈ V .
Output: Average distance dG(vi,vj)+dG(vj ,vi)

2 for all vj ∈ V .
40 Compute the shortest path tree rooted at vi in G to get dG(vi, vj) for all vj ∈ V ;
41 Let GR be G with every edge reversed;
42 Compute the shortest path tree rooted at vi in GR to get dGR

(vi, vj) (that is, dG(vj , vi)) for all vj ∈ V ;
43 return

dG(vi,vj)+dG(vj ,vi)
2 for all vj ∈ V ;
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Time Complexity

FastMap-D makes O(Kmax) calls to AVERAGE-DISTANCE.
The time complexity of AVERAGE-DISTANCE is O(|E| +
|V | log |V |). Therefore, the time complexity of the first
phase of FastMap-D is O(Kmax(|E| + |V | log |V |)). Since
the OLS method takes O(|S1||S2|M2) time, the overall time
complexity of FastMap-D is O(Kmax(|E|+ |V | log |V |) +
|S1||S2|M2), which is linear in Kmax, near-linear in the size
of the graph, linear in the number of training samples and ex-
ponential in the degree of ψ. In the next section, we discuss
how to keep |S1||S2| low. We also keep the degree of ψ to a
low constant.

Experiments

In this section, we present experimental results that demon-
strate the benefits of FastMap-D. We conduct three kinds
of experiments: (1) Comparing the accuracy of the embed-
ding produced by FastMap-D to that of FastMap; (2) Eval-
uating different combinations of parameter values, specifi-
cally, the number of dimensions6 K and the degree of the
potential function D; and (3) Evaluating the effectiveness of
NNs trained on the FastMap coordinates of the vertices over
NNs trained directly on the grid coordinates of the vertices.
All experiments were conducted and evaluated on a 3.4GHz
Intel-Xeon CPU with 64GB RAM. All algorithms were im-
plemented in Python.

In our experiments, we also use a few implementation-
level enhancements of the pseudocode of Algorithm 1. First,
to exercise more control over the number of dimensions
K, and to experiment with larger values of it, we try to
avoid the break condition on line 21. We recognize that, if
d2ab −

∑K−1
k=1 ([pb]k − [pa]k)

2 < ε on line 11, the break con-
dition on line 21 is satisfied. Therefore, we modify line 11
to reassign va and vb randomly and continue the loop with-
out breaking if indeed d2ab −

∑K−1
k=1 ([pb]k − [pa]k)

2 < ε.
We also modify line 21 to set d′ab to 1 instead of breaking
the loop.7 Second, to avoid obtuse triangles for the cosine
law projection in Figure 1(a), we modify lines 23 and 24
so that d′ai ← max(0, d2ai −

∑K−1
k=1 ([pi]k − [pa]k)

2) and
d′ib ← max(0, d2ib −

∑K−1
k=1 ([pb]k − [pi]k)

2).
Since the machine learning module of FastMap-D is de-

signed to be a plug-and-play component, we implemented
it using an OLS method as well as an NN method.8 For the
OLS method, we found it beneficial to set S1 to pivots
since the pivots can be thought of as critical vertices identi-
fied in the first phase of FastMap-D. S2 is set to a randomly
chosen subset of vertices such that |S1||S2| ≥ M . For train-
ing NNs, however, we generated training samples slightly
differently (as described later in that subsection).

Although there exist benchmark instances for directed
graphs, none of them come with the assurance of being

6K + 1 in pseudocode of Algorithm 1
7Otherwise, d′ab has a very low value, and the division in line

25 leads to numerical instability.
8Unless specified otherwise, FastMap-D refers to the one with

the OLS method.

strongly connected. For this reason, and to allow for a di-
rect comparison with FastMap, the maps in this section are
taken from a standard benchmark repository for undirected
graphs (Sturtevant 2012), which were also used in (Cohen et
al. 2018; Li et al. 2019). For each map, we converted every
edge into two directed edges in opposite directions to gener-
ate a directed version of it. We first created a virtual height
h(v) for each vertex v ∈ V based on its 2D grid coordinates
(xv, yv). The height is assigned according to two possibili-
ties: (a) polynomial function h(v) = xv + y2v + (xv + yv)

3,
or (b) exponential function h(v) = 1.01xv + 1.02yv +
1.03xv+yv . Then, we set w(vi, vj) to be 2(h(vj) − h(vi))
if h(vj) ≥ h(vi), and (h(vi)− h(vj))/2 otherwise.

To measure distortion, we use the Normalized Root Mean
Square Error (NRMSE). We first sample S vertices uni-
formly at random. We then compute the shortest path dis-
tances dij between all possible S(S − 1) pairs of vertices
and compare them against their corresponding embedding
distances ‖pj − pi‖�. To normalize the data coming from
graphs of different sizes, the NRMSE is given by σ/d̄ where

σ =
√∑

1≤i �=j≤S(dij−‖pj−pi‖�)2

S(S−1) and d̄ =
∑

1≤i �=j≤S dij

S(S−1) .

FastMap vs FastMap-D: Figure 3 shows the NRMSE
values of FastMap and FastMap-D for different values of the
number of dimensions K on four different kinds of maps.
The top four panels show the results using the polynomial
height function,9 and the bottom four panels show the results
using the exponential height function. In all cases, we set
the degree D of ψ to 2. Since FastMap works only for undi-
rected graphs, it can only embed the symmetric distances
d̄G(vi, vj). In other words, FastMap and FastMap-D differ
only in the last coordinate that FastMap uses as an additional
coordinate and FastMap-D uses as a correction factor to ac-
count for asymmetric distances.

We observe that FastMap-D outperforms FastMap on all
maps for a sufficiently large number of dimensions K. Not
only does FastMap-D outperform FastMap on mazes and
random maps, but it also significantly outperforms FastMap
on structured game maps and real-world city maps such
as ‘hrt201n’ and ‘Boston 2 256’. We also note that the
FastMap-D NRMSE values often decrease faster than the
FastMap NRMSE values for increasing K. This shows
that FastMap-D utilizes additional dimensions better than
FastMap does.

Varying FastMap-D Parameter Values: Figure 4 shows
the effect of K and D on the NRMSE values of FastMap-D
for a representative map. In general, increasing K improves
the NRMSE values. However, increasing D is not always
helpful since it runs the risk of overfitting.

NNs on FastMap Coordinates: NNs can learn pairwise
distances between the vertices in a grid map. Naively ap-
plied, an NN can be trained on the 2D grid coordinates of

9Using the polynomial height function for edge weights does
not mean that the shortest path distances between vertices follow
the same pattern. This is so because the map still has obstacles and
the edge weights combine in complex ways to form shortest paths
and graph distances.
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(a) hrt201n with polynomial height function (b) Boston 2 256 with polynomial height function

(c) maze 512-32-0 with polynomial height function (d) random 512-40-0 with polynomial height function

(e) hrt201n with exponential height function (f) Boston 2 256 with exponential height function

(g) maze 512-32-0 with exponential height function (h) random 512-40-0 with exponential height function

Figure 3: Shows the NRMSE values of FastMap and FastMap-D for different values of the number of dimensions K. In all
cases, the degree D of ψ is 2. The undirected version of the map is shown as an inlay.
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(a) random 512-40-0 with polynomial height function (b) random 512-40-0 with polynomial height function

Figure 4: Shows the NRMSE values of FastMap-D with different parameter values. K is the number of dimensions; and D is
the degree of ψ. The undirected version of the map is shown as an inlay.

Instance Direct NN FastMap-D (NN) FastMap-D (OLS)
Lak503d Poly 1.238 0.048 0.125
Lak503d Exp 0.901 0.071 0.102
hrt201n Poly 0.944 0.028 0.078
hrt201n Exp 1.239 0.083 0.585

Boston 2 256 Poly 0.994 0.039 0.116
Boston 2 256 Exp 2.795 0.043 0.388

Table 1: Compares the NRMSE values of the direct NN ap-
proach and FastMap-D on a few representative maps. The
best NN designed for the direct approach uses 4, 1000, 500,
200, 200 and 1 nodes in fully connected consecutive lay-
ers. The NN designed for FastMap-D uses K = 15 and 30,
1000, 500 and 1 nodes in fully connected consecutive layers.
538560, 709530 and 1458360 training samples were used
for the Lak503d, hrt201n and Boston 2 256 maps, respec-
tively. ‘Poly’ and ‘Exp’ indicate polynomial and exponential
height functions, respectively.

the source and destination vertices. However, there are sev-
eral problems with this direct approach. First, it is not ap-
plicable to general graphs where vertices do not have coor-
dinates. Second, even for grid maps, the feature set is very
small since it is limited to the grid coordinates. Third, it re-
mains oblivious of many parts of the graph even with a large
number of training samples since there are a quadratic num-
ber of pairs of source and destination vertices.

There are several benefits of using the FastMap coordi-
nates instead of the grid coordinates for training NNs. First,
this approach is applicable to general graphs. Second, the
feature set is larger and depends on the user-controlled pa-
rameter K. Third, since the link structure of the graph is
summarized in the FastMap coordinates, not too many sam-
ples are required. In fact, we simply use |pivots| randomly
selected vertices, compute the shortest path trees rooted at
each of them, and draw training samples only from these
trees with the source vertex restricted to be the root vertex.
This keeps the number of training samples linear in the size
of the graph.

Table 1 shows the benefit of training NNs on the FastMap
coordinates compared to training them on the grid coordi-
nates. For the same number of training samples, the NRMSE
values of FastMap-D with NNs are significantly smaller than
those of the direct approach with NNs that uses the grid co-
ordinates. They are also smaller than those of FastMap-D
with the OLS module.

Conclusions and Future Work

In this paper, we generalized FastMap for undirected graphs
to FastMap-D for directed graphs. FastMap-D efficiently
embeds the vertices of a given directed graph in a poten-
tial field. Unlike a Euclidean embedding, a potential-field
embedding can represent asymmetric distances. FastMap-D
uses a machine learning module to learn a potential function
that defines the potential field. In experiments, we demon-
strated the advantage of FastMap-D on various kinds of di-
rected graphs. An important upshot of our approach is that
applying machine learning algorithms to the FastMap coor-
dinates of the vertices of a graph is much better than ap-
plying them directly to the grid coordinates of the vertices
since the FastMap coordinates capture important informa-
tion of the link structure of the graph - not to mention that
the grid coordinates are not even defined for general graphs.

In future work, we will apply FastMap-D to very large di-
rected graphs, such as knowledge graphs, and to intensional
graphs, such as in automated planning and plan visualiza-
tion. The success of FastMap-D exemplifies the benefits of
using the FastMap coordinates as features for machine learn-
ing algorithms, and we hope to do the same for other graph
problems that involve machine learning.
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