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Abstract

Search methods are useful in hierarchical task network
(HTN) planning to make performance less dependent on the
domain knowledge provided, and to minimize plan costs.
Here we investigate Monte-Carlo tree search (MCTS) as a
new algorithmic alternative in HTN planning. We implement
combinations of MCTS with heuristic search in Panda. We
furthermore investigate MCTS in JSHOP, to address lifted
(non-grounded) planning, leveraging the fact that, in contrast
to other search methods, MCTS does not require a grounded
task representation. Our new methods yield coverage perfor-
mance on par with the state of the art, but in addition can
effectively minimize plan cost over time.

1 Introduction

Hierarchical Task Network (HTN) planning complements
actions causing state transition like in classical planning
with a hierarchy on the things to do, the tasks. Abstract tasks
are not applicable directly and are decomposed in a pro-
cess similar to the derivation of words from a formal gram-
mar. Solutions need to satisfy constraints induced by de-
composition structure and state transition system. The mo-
tivation behind the hierarchy is manifold: it allows the de-
scription of complex behavior (Erol, Nau, and Hendler 1994;
Höller et al. 2014), enables the communication with users on
different levels of abstraction (see e.g. Behnke et al., 2019)
or to add advice, i. e., to guide the search using human do-
main knowledge (as e.g. exploited by Nau et al., 2003).

Traditionally, HTN planning systems relied mostly on the
informativeness of the domain knowledge provided, mak-
ing do with simple search algorithms like depth-first search
(Nau et al. 2003). Recent work lines have established more
informed search mechanisms, namely sophisticated reacha-
bility analysis (Bit-Monnot, Smith, and Do 2016; Behnke et
al. 2020), heuristic search (Bercher, Keen, and Biundo 2014;
Bercher et al. 2017; Höller et al. 2018), compilations to clas-
sical planning (Alford, Kuter, and Nau 2009; Alford et al.
2016), and SAT (Behnke, Höller, and Biundo 2018; 2019a;
Schreiber et al. 2019). These methods improve HTN plan-
ning performance, make it less dependent on the domain
knowledge, and provide it with the ability to search for low-
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cost plans (sometimes with optimality guarantees depend-
ing on the technique used, see e.g. Behnke, Höller, and Bi-
undo, 2019b). Here we investigate Monte-Carlo Tree Search
(MCTS) as a new algorithmic alternative in HTN planning.

MCTS is a well-known search paradigm, originating
in probabilistic planning problems (Kocsis and Szepesvári
2006; Keller and Helmert 2013), but successful also in
games (Silver et al. 2016) and in deterministic planning set-
tings (Trunda and Barták 2013; Schulte and Keller 2014).
MCTS is essentially based on sampling the state space, feed-
ing back rewards obtained at terminal states to inform the
action decisions on earlier states. This converges to optimal
decisions in the limit, but its main prowess in practice is
to take good action decisions in limited time, with an any-
time behavior where decisions improve over time. MCTS
can also be combined with heuristic search, as systematized
by Keller and Helmert (2013) in their trial-based heuristic
tree search (THTS) framework. Here, the focus is to balance
exploration and exploitation during search.

Our contribution here is the implementation and evalu-
ation of MCTS in HTN planning. We do so in two HTN
planning systems, namely Panda (Bercher, Keen, and Bi-
undo 2014) and SHOP (Nau et al. 1999).

Panda is the state-of-the-art system incorporating heuris-
tic search, thus facilitating a direct empirical comparison,
and allowing to leverage prior work on heuristic functions
(Höller et al. 2018). We implement and evaluate THTS.

SHOP (Nau et al. 1999; 2003) is the state-of-the-art sys-
tem for lifted HTN planning, not requiring a grounded task
representation. This serves to leverage the milder repre-
sentation requirements of MCTS: in difference to heuristic
search and SAT, MCTS does not require a grounded task
representation. This is a key advantage because grounded
representations quickly become prohibitively large when
the object universe is large, and/or when predicate/action
arity is high. This happens, for example, in natural lan-
guage generation (Koller and Stone 2007; Koller and Hoff-
mann 2010) and in Minecraft planning (Roberts et al. 2017;
Wichlacz, Torralba, and Hoffmann 2019). Implementing
MCTS in JSHOP, a version of SHOP, with a number of adap-
tations for increased efficiency, we obtain the first non-blind
HTN planner not requiring a grounded task representation. 1

1Attempts have been made to compute heuristic functions with-
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Evaluating our implementations on standard HTN bench-
marks, we find that our new methods are generally on par
with previous methods in terms of coverage, thus adding
new technology options into the HTN arsenal. More specif-
ically, in Panda, it turns out that the exploration term can
yield benefits beyond purely relying on heuristics to guide
search. In JSHOP, a naı̈ve implementation of MCTS lags be-
hind in coverage, but our adaptations – in particular, using
backtracking on MCTS samples to escape shallow dead-end
paths – remove that disadvantage.

To evaluate plan-cost minimization over time without
guidance of a heuristic function, we create a version of
JSHOP that continues search after the first plan is found.
Comparing MCTS against this system, we find that MCTS
is more effective at improving plan cost over time. This is es-
pecially the case on benchmarks aimed at featuring variance
in action costs, including a number of Minecraft benchmark
studies that we design for lifted planning.

The paper is organized as follows. Section 2 gives the re-
quired background in HTN planning, MCTS, and THTS.
Section 3 describes our THTS implementation in Panda,
which we empirically evaluate in Section 4. Section 5 de-
scribes our adaptation of MCTS in JSHOP, Section 6 gives
its evaluation. Section 7 concludes the paper.

2 Background

In this section we give a brief introduction to HTN planning
and Monte-Carlo Tree Search search.

HTN Planning

In Hierarchical Task Network (HTN) planning (see e.g.
Ghallab, Nau, and Traverso, 2004, Chapter 11, or Bercher,
Alford, and Höller, 2019), there are two types of tasks, ab-
stract tasks and primitive tasks (also called actions). Like in
classical planning, actions are directly applicable to the en-
vironment and cause state transition. In its most basic defi-
nition, the environment is described using a finite set of state
features, but there are also systems supporting numbers (see
e.g. Nau et al., 2003) and time (e.g. Bit-Monnot, Smith, and
Do, 2016). Tasks are maintained in task networks, which are
partially ordered multisets of tasks.

Abstract tasks are not directly executable, but are decom-
posed into other tasks (that may be primitive or abstract)
using decomposition methods. A method definition includes
the task it is applicable to and a task network that defines
its subtasks. Usually, there is more than one method for a
given abstract task, resulting in the combinatorial problem
of choosing the right method to apply to a given task. When
a method is applied to a task c in a task network tn, c is
deleted, the method’s subtasks are inserted and inherit the
same ordering constraints to other tasks in the network tn
that have been present for c. The process of decomposition
is similar to the derivation of words in formal grammars
(though the tasks are partially ordered).

out relying on a grounded task representation (Ridder and Fox
2014; Röger, Sievers, and Katz 2018). But this research is still in
its infancy, and none of it is directly applicable to HTN planning.

The problem definition contains an initial task network
tnI and an initial state s0. Some task network is a solution if
and only if it can be derived from tnI via the decomposition
process as described before, it contains only primitive tasks,
and there is a (totally ordered) sequence of the tasks in line
with its ordering definition that is executable in s0. There are
two points that we want to emphasize:

• A planner is not allowed to insert additional actions apart
from those included due to decomposition.

• Usually, there is no state-based goal definition given, the
objective of the problem is defined in terms of the tasks
contained in tnI .

There are several restrictions that define subclasses of the
given HTN definition (Bercher, Alford, and Höller 2019),
mostly on the ordering definitions in methods or on recur-
sion allowed in decomposition. The two systems we build
on differ in terms of the HTN variants they deal with. Panda
allows for recursive, partially ordered models. The version
of SHOP we build on allows for recursion but is restricted to
totally ordered models, i. e. models where all task networks
in method definitions and the initial task network are totally
ordered.

Monte-Carlo Tree Search (MCTS)

Monte-Carlo tree search (MCTS) is a family of algo-
rithms (Browne et al. 2012) that have been very success-
ful in Games and probabilistic planning on MDPs settings.
Many variants of MCTS, or algorithms containing elements
thereof, have been proposed. Generally, MCTS considers a
search tree. This is initialized with a root node, then itera-
tively expanded, performing four operations at each step:

• Selection: Traverse the tree from the root to a leaf, select-
ing actions according to a strategy that balances explo-
ration (visit nodes that have been explored less often) and
exploitation (visit more promising nodes more often). The
UCT algorithm defines a popular selection strategy tak-
ing inspiration from multi-armed bandit problems (Kocsis
and Szepesvári 2006).

• Expansion: Generate the successors of the selected leaf
node.

• Evaluation: Estimate the solution cost (reward/quality) of
a newly generated node. This is done by roll-outs, sim-
ulations following a random action policy, until a termi-
nal state is reached. (But a link to heuristic search can be
made here, see below.)

• Backpropagation (backup): Update the cost estimates of
the nodes traversed by the selection strategy, backwards
from the leaf to the root. The most common strategy is to
define a node’s cost via the average cost of its children.

Trial-based Heuristic Tree Search (THTS)

As indicated, node evaluation can be linked to heuristic
search. Instead of roll-outs, one can use a heuristic function
– if available – to estimate node cost. This is an important
feature of, e. g., the AlphaGo/Zero system series (Silver et
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al. 2016; 2018). The relation to heuristic search was system-
atized by Keller and Helmert (2013) in trial-based heuris-
tic tree search (THTS), an algorithm framework that merges
MCTS with heuristic search.

THTS was originally proposed in the context of finite-
horizon MDPs (Keller and Helmert 2013), and later ap-
plied in classical planning as well (Schulte and Keller 2014).
Apart from replacing roll-outs with calls to a heuristic func-
tion, THTS defines a space of algorithm configurations,
which includes traditional heuristic search algorithms. This
pertains, foremost, to the choice of backup function, in-
cluding in particular minimization which corresponds to the
choice of open nodes in algorithms like A*. THTS further-
more distinguishes parameters governing exploration and
greediness; we will give details in the next section when dis-
cussing our Panda implementation. Finally, drawing inspi-
ration from earlier work (Bonet and Geffner 2003), THTS
also features solved-labeling, avoiding exploration beneath
nodes whose cost value is known to have converged.

3 MCTS in Panda

To enable the direct comparison of MCTS-based HTN
planning with heuristic search, we implemented the THTS
framework in Panda. Specifically, we build on THTS for
classical planning as presented by Schulte and Keller (2014).

To adapt THTS to the HTN setting, nodes in our search
tree have the current task network as additional element.
That is, they are defined as n = 〈s, tn,N, f, v, l〉, contain-
ing the current state s, the current task network tn, the set of
successor nodes N , a value estimate f , the number of visits
v, and a label l storing whether the node is solved (should
not be searched anymore).

Given this data structure, THTS applies mostly straight-
forwardly, as we shall spell out below. A key change though
pertains to node initialization, due to the different nature of
forward search in classical planning vs. HTN: whereas in
the former there is a single successor for each (applicable)
action, in the latter the successor function is more complex
due to the more complex structure of task networks.

1 procedure INITIALIZENODE(node n)
2 SN ← SUCCESSORS(n)
3 for (s′, tn′) ∈ SN do
4 n′ ← 〈s′, tn′, ∅, w·h(s′, tn′), 1, goal(s ′, tn ′)〉

5 if n′ is no dead end then
6 N(n) ← N(n) ∪ {n′}
7 if n′ is goal node then
8 terminate // for agile setting

Algorithm 1: Initialization function

Consider Algorithm 1. Our SUCCESSORS(n) function
(line 2) generates the successor nodes that the HTN pro-
gression search of Panda would generate: as usual in HTN
progression search, only tasks without predecessor in the
ordering definition of the task network are processed (so-
called unconstrained tasks). If there is at least a single un-
constrained abstract task left, one is picked (without branch-

ing) that is further processed. Since there will (usually) be
more than one method applicable to that abstract task, pro-
cessing a single abstract task might result in more than one
successor node in the tree, one for each method applicable to
it. The resulting combinations of state and task network are
inserted in the set of successor nodes SN . When no uncon-
strained abstract tasks are left, the algorithm branches over
all unconstrained (applicable) primitive tasks, i. e. one suc-
cessor is generated and added to SN for each such task.

As heuristic function (line 4), we use the Relaxed Com-
position (RC) heuristic, which relaxes the HTN model to a
classical model capturing the state of the HTN as well as
relaxed hierarchy information. This relaxed model is used
for heuristic calculation (Höller et al. 2018; 2019), and can
be combined with several heuristics from classical planning.
Here we use hFF (Hoffmann and Nebel 2001), which per-
formed best in the experiments of Höller et al. (2019). The
parameter w (line 4) sets the weight of the heuristic relative
to path cost, as in Weighted A*. Since we are primarily in-
terested in an agile setting (finding any solution as quickly
as possible) we move the goal test to node generation.

Being in the setting of classical planning, Schulte and
Keller proposed to use loop detection. In our partially or-
dered HTN setting, this is not easily possible (see Behnke,
Höller, and Biundo, 2015), so we have not integrated it.

To balance exploration and exploitation, THTS combines
traditional heuristic search with UCT. First, the action se-
lection function minimizes costs, instead of averaging. Let
N(n) be the successors of a node in the tree and c(n,n ′)
the cost of the operator applied to transform the search node
n into n′. Then action selection is defined by

argmin
n′∈N(n):¬l(n′)

f̄(n′)− C ·
√

logv(n)

v(n ′)
(1)

Here, f̄(n′) is the sum of the child’s f value and the path
costs k× c(n, n′), where k is a parameter weighing the path
costs. The sum is normalized to a value in [0, 1]. C is a pa-
rameter trading off exploration vs. exploitation.

Second, while MCTS traditionally uses a backup operator
defining the value of a node as the average over its children,
THTS for deterministic planning allows to define a node’s
value via the minimum-value child instead. Specifically, the
traditional backup function uses∑

n′∈N(n)(v(n′)·(f(n′)+k·c(n,n′)))∑
n′∈N(n) v(n

′)
(2)

while the alternative backup uses

min
n′∈N(n)

f(n′) + k · c(n, n′) (3)

Following Schulte and Keller, we instantiate the frame-
work parameters with the following value combinations,
yielding the algorithm configurations used in our evaluation:

Name Backup k w
UCT� Eq. 3 (min.) 1 1
UCT2� Eq. 3 (min.) 1 2
GreedyUCT� Eq. 3 (min.) 0 1
UCT Eq. 2 (avg.) 1 1
UCT2 Eq. 2 (avg.) 1 2
GreedyUCT Eq. 2 (avg.) 0 1
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Figure 1: Coverage for different C values.

4 Experiments with Panda

We evaluate our system on a benchmark set used in several
recent papers on HTN planning (e.g. in (Höller et al. 2018;
2019; Behnke, Höller, and Biundo 2019b)). It includes 144
problem instances in 8 domains. Experiments ran on Xeon
E5-2660 CPUs with 2.60 GHz base frequency and 10 min.
time limit.

Figure 1 shows the coverage of our configurations. The
number of solved instances (on the y-axis) is given for dif-
ferent weights of the exploration term (the C value, given on
the x-axis). Configurations using the classical UCT backup
(calculating the average of the children) are given in red,
those using the minimum in blue. Like in the experiments
of Schulte and Keller, the latter perform slightly better. The
configuration weighting the heuristic with 2 and incorpo-
rating path costs performs best. It is similar to a Weighted
A∗ search, so the result is in line with results for heuristic
search-based HTN planning (see e. g. Höller et al., 2018).

When setting the C value to 0, the system behaves similar
to a priority queue-based search. However, the tree, i. e. the
data structure storing the search nodes, is not optimized to
this special case (there is e.g. some data left in the tree when
a node has already been processed; the tree is not balanced
in any way; etc.). When we compare this configuration to
the original Panda, we lose 5 instances of coverage. Inter-
estingly, the system benefits from a higher C value, having
its highest coverage for a C value of at least 1.7. This value
is close to

√
2, the weight proposed in the original paper

(however there are even configurations with higher C value
and the same coverage). To see whether a similar behavior
can be reached by adapting the weight in the Weighted A∗
search of the original Panda system we tested it with dif-
ferent weights. The results are given in Figure 2. Like in
previous experiments with the Panda system, a weight of 2
reaches the highest coverage. So the exploration term adds a
novel means to control the search.

Over all configurations using Eq. 3 (min.) as backup func-
tion, the results in the ENTERTAINMENT domain suffer from
increasing the exploration factor, while for the transport do-
main the UCT� and GreedyUCT� configurations solve more
instances (leading to a drop in the middle of the curves).

Schulte and Keller did their evaluation of C values for
Greedy Best First search, because this is the configuration
performing best in their evaluation. Here, their peek was be-
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ENTERTAINMENT 12 9 8 11 12 9 11 5 5
PCP 17 14 14 14 12 8 8 3 0
SATELLITE 25 25 25 25 25 24 21 23 22
SMARTPHONE 7 5 5 5 7 6 5 6 4
UM-TRANSLOG 22 22 22 22 22 22 22 19 22
WOODWORKING 11 10 10 10 11 8 10 5 8
ROVER 20 5 4 4 10 4 6 5 3
TRANSPORT 30 15 10 15 22 1 1 19 0
total 144 105 98 106 121 82 84 85 64

Table 1: Coverage of different HTN planning systems.

tween 0.6 and 0.9, i. e. lower than ours.
When using the UCT backup function, Greedy search per-

forms best. This is uncommon in HTN planning (though
quite common in classical planning). The peek is somewhere
between 0.3 and 0.6, i. e. close to the one of Schulte and
Keller. However, the difference between the best performing
configurations of the two update functions is mainly caused
by a single domain (TRANSPORT, see Table 1).

When we compare our search to other HTN planning
systems (Table 1), we see that it is competitive with other
search-based systems in terms of coverage, but (like in other
evaluations) the translation to propositional logic (Behnke,
Höller, and Biundo 2019a) performs best. The best search-
based system is the original Panda progression search, fol-
lowed by ours, the translation to classical planning by Alford
et al. (2016) in combination with JASPER (Xie, Müller, and
Holte 2014) and the plan space-based search of Panda with
its TDG heuristics (Bercher et al. 2017). We further included
the JSHOP2 (Nau et al. 2003) system. Note that this is not
the same system we based our system in Section 5 on, but the
one that can deal with partially ordered planning tasks. How-
ever, JSHOP2 can only be seen as a baseline, since it has
been made to be used with hand-tailored planning problems
and is used on problems intended for domain-independent
systems.

Figure 3 shows how the number of solved instances
evolves over time. It can be seen that our new search behaves
similar to the Weighted A∗ search of the Panda system.
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Figure 3: Accumulated number of solved instances (on the
y-axis) over time (on the x-axis, be aware of the log scale).

It is known from previous evaluations that the cost struc-
ture of this benchmark set does not lead to a high variation
in solution costs (see Behnke, Höller, and Biundo, 2019b).
Therefore we do not present plots on solution costs here.

5 MCTS in JSHOP

We now consider SHOP (Nau et al. 1999; 2003), a lifted
planner which allows to address planning tasks whose
grounded representations would be infeasible to build. There
are several variants and implementations of SHOP. We build
on the Java JSHOP version for implementation reasons, and
specifically on the first version of JSHOP, as the second ver-
sion focuses on generation of instance-specific planners (Il-
ghami and Nau 2003) and it is harder to build on.

We use traditional MCTS, denoted by M, evaluating
nodes through roll-outs, because the state-of-the-art heuris-
tic functions in planning rely on grounded encodings. A roll-
out in our context means to perform a random sequence of
task decomposition steps, until terminating either in a goal
node, or in a dead-end node where no more decomposition
steps are possible.

A few words are in order regarding what to expect from
roll-outs in HTN planning. In general, random roll-outs are
not well suited for scenarios where meaningful experiences
are sparse and hard to find. Classical planning is a prime ex-
ample for this, as MCTS will not learn anything about plan
cost until it finds a plan, which with random action choices
is typically exceedingly unlikely (Trunda and Barták 2013).

This problem, however, is arguably less daunting in HTN
planning, where the task hierarchy can effectively be used to
introduce domain control knowledge guiding the search to-
wards valid plans – as evidenced by the fact that SHOP is a
highly successful planner based on blind depth-first search.
In this sense, MCTS and HTN planning seem to be made
for each other. We see this as a highly promising combina-
tion to address challenging planning problems too large to
ground, where the hierarchy provides enough guidance to

find solutions easily and MCTS is used as a tool for plan-
cost minimization.

Our primary target are thus HTN planning scenarios
where the user can provide good-quality guidance towards
solutions in the model, but where finding low-cost plans is
a challenge. Minecraft instruction planning is one such sce-
nario (Wichlacz, Torralba, and Hoffmann 2019), and we will
run experiments with several benchmarks from that scenario
in the next section.

That said, even within such scenarios, some algorithmic
optimizations are required to obtain good performance in
lifted MCTS HTN Planning. These are explained in the fol-
lowing.

Selection Strategy As selection strategy, we use the stan-
dard UCT formula:

argmax
n′∈N(n)

R∗

r(n′)
+ C ·

√
logv(n)

v(n ′)
(4)

The reward of each node is inversely proportional to the
average cost of the plans found by roll-outs underneath,
r(n′), normalized between 0 and 1 according to the cost of
the incumbent solution, R∗. This normalization ensures that
the constant C for balancing exploration and exploitation
can be chosen in a domain-independent way, since it does
not depend on the cost of the plans. Nodes for which no plan
has been found are assigned a reward of 0 (i.e., r(n′) = ∞),
so if no incumbent plan has been found yet, all nodes have
the same reward. Note that this ignores any roll-out that ends
in a dead-end. Other strategies could be tried, e.g., by assign-
ing a large penalty for roll-outs that failed to find any solu-
tion. However, this was not a problem in our experiments
where, if a solution is found at all, then the hierarchy guid-
ance towards solutions is good enough so that most of the
roll-outs succeed in finding a solution. Moreover, this can-
not occur if depth-first search roll-outs are used (see below).

Eliminating nodes with a single child Nodes with a sin-
gle successor are very common in totally ordered HTN
benchmarks, since there is no choice of which task to per-
form next and tasks can sometimes be decomposed with
only a single method in the current state. These are not prob-
lematic for other search algorithms like depth-first search
or best-first search where each node is expanded only once,
but MCTS has to traverse the tree at every iteration and up-
date the statistics of every visited node, so nodes without
any branching unnecessarily slow down the algorithm. To
avoid this, we eliminate nodes without multiple siblings dur-
ing search. Whenever a parent node n has a single child n′,
we proceed to generate the children of n′ and so forth, un-
til a node with several children is found. These children are
then set as the children of n, and the intermediate nodes are
dismissed. We denote this configuration as Me.

Node caching On top of eliminating nodes with a single
child, we also store all nodes explored during the roll-outs,
and mark them as fully explored if all their children have

86



been fully explored, as done in the THTS framework. This
helps to avoid redundant work, making it impossible to re-
peat the same simulation, and the memory overhead was not
a limiting factor in our experiments. This combined config-
uration is named Me,c.

Depth-first search roll-outs In many HTN benchmark
domains, there are “shallow” dead-ends, due to method de-
compositions that incorporate a task which cannot be de-
composed into a fully-ground sequence of actions. Such
methods are commonly pruned during grounding, but they
can pose a problem for lifted planners. In MCTS they be-
come a problem whenever a roll-out fails by choosing one
such decomposition. To avoid this, we allow the roll-outs
to backtrack when they reach a dead-end. That is, each roll-
out performs a depth-first search for a solution, guaranteeing
to terminate with either a plan, or a proof that the current
MCTS leaf node is a dead-end and can be pruned. Note that
such a strategy would be completely hopeless in classical
planning or other similar search problems. Yet it turns out to
be quite useful in HTN planning, cf. our discussion above.

Upper-bound pruning Once a first solution has been
found, we have an incumbent solution that can be used for
pruning nodes whose path cost is greater than that of the best
solution found so far. We also forbid the roll-outs to exceed
this cost, backtracking immediately in this case.

6 Experiments with JSHOP

As baseline we run the depth-first search of JSHOP (J )
and its enhanced variant with upper-bound pruning (JP ).
JSHOP supports only totally-ordered HTN problems, so
we use the benchmark sets by Behnke, Höller, and Bi-
undo (2018) and Schreiber et al. (2019). We also add sev-
eral variants of the Minecraft domain (Wichlacz, Torralba,
and Hoffmann 2019), where the task is to instruct a human
user how to construct a high-level object in Minecraft. This
Minecraft domain features two important characteristics: (1)
the world has a huge size, so grounded approaches cannot
deal with it well; and (2) while finding a solution is easy,
finding one with good quality is particularly hard because
it has a complex state-dependent action cost function where
the cost of each instruction approximates how hard it is to
be expressed in natural language and understood by the user
and this may depend on previous instructions.

We consider three variants of the domain that differ on
the high-level object that must be built: a house, a flat bridge
(beam bridge), or an arch bridge. In each scenario, we con-
sider two variants depending on the instructions that are
available to our system: Construction plans may only use
“place block” actions that would result in instructions sim-
ilar to “Place a block at coordinates (3, 5, 4).”, whereas in-
struction plans can additionally use other high-level actions
like “build wall” that would lead to an instruction like “Build
a wall of height 4 and length 3 southwards starting at the co-
ordinates (3, 5, 4)”.

Experiments ran on Xeon E5-2650 CPUs with 2.30 GHz
and a time limit of 30 minutes and a memory limit of 4 GB.

Domain J M Me Me,c Me,c,dfs

Blocksworld (20) 20 9 10 10 20
Childsnack (20) 18 0 0 0 17

Depots (20) 20 9 9 9 20
Entertainment (12) 3 1 1 1 3

Gripper(20) 20 20 20 20 20
Rover (40) 35 16 16 16 36

Satellite (36) 26 5 5 5 23
SmartPhone (7) 7 6 6 6 7

Transport (30) 0 0 0 0 0
UM-Translog (22) 21 21 21 21 21
Woodworking (11) 6 5 5 5 6

Total (238) 182 109 112 126 180

M-Bridge-const (20) 20 20 20 20 20
M-Bridge-inst (20) 20 20 20 20 20

M-Bridge-stairs-const (20) 19 17 18 20 20
M-Bridge-stairs-inst (20) 20 18 17 20 20

M-House-const (20) 13 13 13 20 20
M-House-inst (20) 12 12 12 20 20

Total Minecraft (120) 104 100 100 120 120

Total (358) 286 209 212 246 300

Table 2: Coverage on standard HTN benchmarks (above)
and the Minecraft domain (below).

Coverage Analysis

Table 2 shows coverage results of the different algorithms.
A vanilla MCTS implementation is not competitive with
JSHOP depth-first search in all domains except Gripper and
UM-Translog. The reason is that, in those domains, random
roll-outs are not very likely to find any solution due to shal-
low dead-ends that can easily be avoided by the backtrack-
ing that depth-first search performs. Eliminating states with
only a single child improves the coverage slightly, since this
speeds up the traversal of the MCTS tree, but grants no ad-
ditional information to guide the search. By also saving the
states generated during the random roll-outs, and thereby
pruning the fully explored parts of the state space much ear-
lier, improves our coverage more significantly. The best re-
sults with regards to coverage are achieved when incorpo-
rating the backtracking also performed by depth-first search
into the roll-outs, which is important to avoid the shallow
dead-ends. The results of upper-bound pruning do not affect
the coverage, as it only takes effect after the first solution
is found. In the Minecraft variants, all method decomposi-
tions and primitive actions that can be generated lead to a
valid plan, so it is trivially solved by depth-first search. The
difference in coverage is due to an implementation detail
that keeps all the relevant information about the states and
task networks on the stack for JSHOP, M and Me while
the other configurations keep this information on the heap.
For the larger instances of the Minecraft domains, the depth
of the search tree grows so large that this leads to a stack
overflow.
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Figure 4: Comparison of the best plan found after 30 minutes by MCTS (MC=1.41
e,c,dfs,P ) against depth-first search (JP ), and two

variants of MCTS only doing exploitation (MC=0
e,c,dfs,P ), and only doing exploration (MC=1000

e,c,dfs,P ). The x-axis shows the cost of
the plan found by the baseline, which is representative of the problem size. The y-axis shows the ratio of improvement in plan
cost. Points above the “=” line represent cases where the solution found by MC=1.41

e,c,dfs,P has better quality than the one found by
JP , MC=0

e,c,dfs,P , and MC=1000
e,c,dfs,P , respectively.

Cost Minimization

Next, we analyze the cost of the solutions found by JSHOP
and MCTS. We report results on Blocksworld, Rovers,
Satellite, and the different variants of Minecraft. We omit
other domains where there are no solutions of different qual-
ity and all algorithms always find plans of the same cost.
Figure 4 shows a high-level comparison of the algorithms in
terms of the best solution found after 30 minutes.

The comparison of JP and MC=1.41
e,c,dfs,P shows that MCTS

is indeed able to find better quality plans in general. The rea-
son is that depth-first search strategies commit to decisions
made at the top of the search tree, so any early decision that
leads to plans of higher cost cannot be easily corrected un-
til the entire sub-tree is explored. Nevertheless, depth-first
search finds better solutions in a few instances. MCTS has a
larger advantage in instances of middle-size, large enough so
that depth-first search is not able to cover big portions of the
state space or even exhaust it completely; and small enough
so that MCTS can perform a sufficient number of roll-outs
to allow for informed exploration.

Since arguably the main advantage of MCTS over depth-
first search is that the latter cannot correct early mistakes in
the search tree, one might consider whether MCTS is bet-
ter than depth-first search with random restarts. To test this,
we evaluate MCTS under different exploration factors, by
choosing different values of C in the UCT formula. As de-
fault, we chose C =

√
2 = 1.41 . . . , which is often consid-

ered a good default value for UCT. The configuration with
C = 0 performs no exploration, exploring each child once
and then always choosing the child who obtained a best plan
in the first iteration. The configuration with C = 1000 per-
forms no exploitation, always choosing to explore one child
among the ones that have been selected the least amount of
times. As shown in Figure 4, MCTS obtains significantly
better solutions when balancing exploration and exploita-
tion.

One advantage of our algorithms is that they have an any-
time behavior, finding an incumbent solution quickly and
improving its quality over time. Figure 5 compares differ-
ent algorithms based on how the solution quality improves
over time. We compare depth-first search with and without
pruning (JP /J ), MCTS without pruning, and MCTS with
pruning and several values of C: 0, 0.6 1, 1.41, 2, and 1000.

The plots show the average cost over all instances of the
domain, reducing the noise caused by randomness of the al-
gorithms. To have meaningful aggregated statistics, we only
report data after all instances have been solved, excluding
those instances whose first incumbent solution is not found
in less than 30 seconds. Plots of individual instances show
that the cost of the first solution is similar for all algorithms,
but MCTS improves the quality of the plans much faster than
the depth-first search configuration of JSHOP.

Pruning based on the cost of the incumbent solution is al-
ways helpful for depth-first search, and it is generally help-
ful for MCTS except on Blocksworld. The plots show that
balancing exploration and exploitation is often necessary to
obtain the best results. The configuration that does not per-
form enough exploration (C = 0) does not do a lot better
than depth-first search, since it also has trouble recovering
from bad decisions near the root of the tree. The configura-
tion performing only exploration (C = 1000) behaves bet-
ter thanks to re-starting the random roll-outs from different
nodes in the tree. However, it does not make use of the in-
formation collected by previous MCTS runs so it generally
takes more time to find solutions of good quality than config-
urations with smaller values of C that successfully balance
exploration and exploitation. The best choice of C depends
on the domain, e.g., slightly larger values of 1.41 and 2 seem
to do well on Blocksworld and Rovers, where as smaller val-
ues (0.6) are preferred in Satellite and Minecraft. However,
the difference is not too large compared against using depth-
first search, or the extreme choices of C (0, 1000), suggest-
ing that the algorithms’ performance is robust with respect
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Figure 5: Improvement of cost over time of JSHOP and MCTS with/without upper bound pruning (above) and MCTS with
pruning with different values for the exploration factor. Cost is the average cost on all instances where all configurations found
an incumbent solution in less than 30 seconds.

to reasonable choices of the C parameter.

7 Conclusion

We have evaluated the performance of MCTS in two dif-
ferent HTN planning settings. In the THTS setting with
focus on balancing exploration and exploitation, the ap-
proach is competitive with the state of the art in heuristic
search planning on a standard benchmark set. However, like
other search-based systems it is outperformed by SAT-based
solvers. Most interestingly, the overall performance benefits
from including a certain amount of exploration (i. e. increas-
ing the C-value) instead of always following the advice pro-
vided by the heuristic function.

In the lifted HTN setting, we can see that an unmodified
version of MCTS is not competitive, but once we include
simple modifications common to HTN planning our cover-

age is on par with the JSHOP planning system. The real ad-
vantage of MCTS can be seen in the cost minimization once
a first plan was found without depending on heuristics (that
would require a grounded representation). Here MCTS in
general outperforms JSHOP in terms of solution cost and is
especially effective in mid-sized problems where many roll-
outs can be performed within the time limit. The choice of
C-value only has a mild impact on the performance of our
algorithm, as long as it is chosen in a reasonable fashion.

All this suggests that MCTS is a reasonable alternative
to other HTN planning methods, especially in lifted HTN
planning, where it can help to find better solutions faster.
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