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Abstract

Recent machine-learning approaches to deterministic search
and domain-independent planning employ policy learning to
speed up search. Unfortunately, when attempting to solve a
search problem by successively applying a policy, no guaran-
tees can be given on solution quality. The problem of how to
effectively use a learned policy within a bounded-suboptimal
search algorithm remains largely as an open question. In this
paper, we propose various ways in which such policies can
be integrated into Focal Search, assuming that the policy is
a neural network classifier. Furthermore, we provide mathe-
matical foundations for some of the resulting algorithms. To
evaluate the resulting algorithms over a number of policies
with varying accuracy, we use synthetic policies which can
be generated for a target accuracy for problems where the
search space can be held in memory. We evaluate our focal
search variants over three benchmark domains using our syn-
thetic approach, and on the 15-puzzle using a neural network
learned using 1.5 million examples. We observe that Discrep-
ancy Focal Search, which we show expands the node which
maximizes an approximation of the probability that its corre-
sponding path is a prefix of an optimal path, obtains, in gen-
eral, the best results in terms of runtime and solution quality.

Introduction
In the past few years, machine learning (ML) approaches
have been proposed to enhance the performance of AI search
and domain-independent planning. A number of these ap-
proaches could be classified as learning a heuristic estimate
(e.g., Yoon, Fern, and Givan 2006; Arfaee, Zilles, and Holte
2011; Thayer, Dionne, and Ruml 2011; Ferber, Helmert, and
Hoffmann 2020), a policy (e.g., Groshev et al. 2018; Muñoz
et al. 2018; Toyer et al. 2020), or a combination of both (e.g.,
McAleer et al. 2019).

Heuristic search, which was designed to exploit cost-to-
go heuristics, can accommodate learned heuristics naturally.
However, it is not immediately obvious how policies can
be exploited in heuristic search. This is especially relevant
when we seek for bounded-suboptimal solutions, rather than
satisficing solutions. As an illustration, unrolling a policy
may produce very poor quality solutions even if the policy
is very accurate. For example a 95%-accurate policy for the
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15-puzzle would produce a 50-action, optimal solution only
with a 0.077 probability.

In this paper we investigate various ways in which may
integrate learned policies within Focal Search (FS) (Pearl
and Kim 1982), a bounded-suboptimal algorithm that allows
using heuristic functions which may not be cost-to-go esti-
mates. We assume that policies are neural network classifiers
which, in their output layer, use a softmax activation.

We propose two families of policy-based heuristics for
FS: score-based, and discrepancy-based. Both types of
heuristics have been used previously. Score-based heuristics
have been used along with beam search for language gen-
eration (Wu et al. 2016) and discrepancy-based heuristics
have been used in policy-enhanced planning (Yoon, Fern,
and Givan 2007). But none of these approaches nor others
that combine search with policies (e.g., Shen et al. 2019;
Agostinelli et al. 2021; Orseau and Lelis 2021; Orseau et al.
2018) provide suboptimality guarantees. Rather than devis-
ing new heuristics, the main contribution we make when in-
tegrating these heuristics into FS, is to provide a mathemat-
ical interpretation of the resulting algorithms. For example,
for discrepancy-based FS, we establish a relation between
discrepancy and maximization of the probability of expand-
ing a prefix of an optimal path.

An objective of our empirical evaluation was to under-
stand how FS would perform as the accuracy of the policy
varied. Since training policies for a given target heuristic
may be very time-consuming, we propose an approach to
create synthetic policies, which only works for small search
problems, but it allows to carry out fine-grained studies, fo-
cused on search rather than on learning. Specifically, we use
this approach with 3 domains: the 8-puzzle, blocksworld,
and pancake sorting. To see whether our not our results ex-
tend to larger domains, we evaluated our FS heuristics using
an 87.5%-accurate policy for the 15-puzzle, which we ob-
tained by training on 1.5 million examples.

Our results show that discrepancy-based FS yields the
best results in terms of runtime and expansions, while score-
based approaches find better-quality solutions. FS, used
with policies, outperforms the bounded-suboptimal algo-
rithm Weighted A* (WA*) (Pohl 1970), both in terms of ex-
pansions and in terms of solution quality when the accuracy
of the policy is greater than 80%, though in blocksworld we
observed that WA* was outperformed even when using poli-
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cies whose accuracy is as low as 70%. An important con-
clusion is that learned policies can improve the efficiency
of bounded-suboptimal search, and that its effectiveness de-
pends on the accuracy of the (admissible) heuristic at hand.

Background
Search Tasks and Policies
A search graph is a tuple G = (S,E,A, λ, c), where S is a
set of statesE ⊆ S×S, is a finite set of edges, c : E → R≥0
is a cost function associating a non-negative cost with every
edge, A is a set of actions and λ : E → A is a labeling
function that associates each arc of the graph with an action.
Function λ is such that all edges that emerge from a given
state are labeled with a different action; that is, for every
s ∈ S, if λ(s, s′) = λ(s, s′′), then s′ = s′′. We say that
action a is applicable in state s iff λ(s, s′) = a, for some
(s, s′) ∈ E; otherwise, it is inapplicable. If a is applicable in
s, we define Succ(a, s) as the state s′ such that λ(s, s′) = a.
Moreover, Succ(s) denotes the set {s′ | (s, s′) ∈ E}.

A path over a search graph G is a sequence of states
s1, s2, . . . , sn, such that (si, si+1) ∈ S, for every i ∈
{1, . . . , n − 1}. A path σ is a path from s to t if and only
if sequence σ starts with s and ends with t. The cost of a
path σ = s1, s2, . . . , sn is c(σ) =

∑n−1
i=1 c(si, si+1). A path

σ from s to t is optimal if no other path from s to t has a cost
less than c(σ). For any state s ∈ S, we denote the cost of an
optimal path from s to sgoal by h∗(s).

A search task is a tuple P = (G, sstart, sgoal), where
G = (S,E,A, λ, c) is a search graph, sstart ∈ S is the start
state, and sgoal ∈ S is the goal state. A solution (resp. op-
timal solution) to a search task is a path (resp. optimal path)
connecting nstart and ngoal. A solution σ is w-suboptimal,
where w ≥ 1, when its cost does not exceed the cost of an
optimal solution multiplied by w.

A stochastic policy is a function π : A,S → [0, 1] that
maps each state-action pair to a probability, and therefore
π(a, s) is such that

∑
a∈A π(a, s) = 1, for every state s.

Stochastic policy π is well-defined if and only if π(a, s) = 0
for every action a that is inapplicable in s. By unrolling a
stochastic policy k times from a given state s we mean re-
peating the following two steps k times: (1) choose an action
a ∈ A using the probability distribution π(·, s) (2) assign s
as Succ(a, s), failing if Succ(a, s) is undefined.

A deterministic policy can always be defined from a
stochastic policy π by returning, in each state s, an action
with maximum probability. If π is a stochastic policy we de-
fine the deterministic policy δπ(s) = argmaxa∈A π(a, s),
and we omit the subscipt when π is clear from the context.

Let opt(s) denote the set of actions that may start an op-
timal path from s to sgoal, that is, the set that contains the
actions that are such that s, Succ(a, s) is the prefix of an
optimal path from s to sgoal. The accuracy of a stochastic
policy π is defined as:

accπ =
1

|S|
∑
s∈S

[δπ(s) ∈ opt(s)], (1)

where expression [B], if B is a boolean condition, evaluates
to 1 if B is true, and is 0 otherwise. In words, accπ corre-

sponds to the percentage of states in which an action that
leads to an optimal path would be chosen by the determin-
istic policy associated with π. Note that it is not feasible in
general to compute the accuracy as defined by (1), thus we
use estimates of the accuracy using a sample of states in S.

Given a search task, a heuristic function h : V → R≥0
is such that h(s) estimates the cost of a path connecting s
with sgoal. Heuristic function h is admissible if and only if
h(s) ≤ h∗(s), for every s ∈ S.

We assume the reader is familiar with the Weighted A*
(WA*) (Pohl 1970), a generalization of the A* (Hart, Nils-
son, and Raphael 1968). In particular, with the fact that WA*
maintains a search frontier, called OPEN, in which nodes are
ordered using a function f(s) = g(s) + wh(s), where g(s)
is the cost of a path from the start state to s, h is a heuris-
tic function, and w is a real parameter not smaller than 1.
WA* is guaranteed to return w-suboptimal solutions when h
is admissible.

Focal Search
Focal Search (FS) (Pearl and Kim 1982) is a well-known
bounded-suboptimal search algorithm. In addition to an ad-
missible heuristic h, it is capable of exploiting additional in-
formation for guiding search. It uses two priority queues: (1)
OPEN, which is the search frontier sorted in ascending order
by f = g + h, where g and h are defined like in WA*, and
(2) FOCAL, which is sorted in ascending order by hFOCAL, a
function which may or may not be a cost-to-go estimate and
which should help guide search.

Like WA*, FS receives a parameter w which controls the
suboptimality of the returned solution. Its FOCAL list con-
tains every state s in OPEN such that f(s) ≤ wfmin, where
fmin is the minimum f -value of a node in OPEN.

The pseudocode of FS is presented in Algorithm 1. In
each iteration, a node s is extracted from FOCAL; s is also
removed from OPEN. If s is the goal state, then it is returned.
Otherwise, s is expanded (Lines 13–21): for each successor
of s′ of s that is such that the newly found path through s has
lower g-value than any previously found path to s′, we insert
it to OPEN, and also to FOCAL if f(s) ≤ wfmin. Since the
value of fmin may increase during execution, and thus nodes
that previously were added to OPEN but not to FOCAL, may
have to be moved to FOCAL (Line 23). This is accomplished
by procedure updateLowerBound.

Policies and Synthetic Policies
Recall that our motivation is that current ML techniques al-
low training policies for search problems. In this section we
specify the requirements that such learned policies should
satisfy. Furthermore, since our objective is to evaluate our
heuristics for as many accuracy configurations as possible,
we describe a simple approach to creating synthetic policies
with a given target accuracy.

Requirements for Learned Policies
We assume our policies are constructed using a neural net-
work with an output layer of dimension |A|. Intuitively,
given a search state s, the network returns number between
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Algorithm 1: FOCAL SEARCH

Input: A search task P = (G, sstart, sgoal), an admissible
heuristic h, a suboptimality bound w, a function
hFOCAL

Output: A goal node reachable from nstart

1 foreach s ∈ S do
2 g(n)←∞
3 g(sstart)← 0
4 parent(sstart)← null
5 f(sstart)← h(sstart)
6 Insert nstart to OPEN and FOCAL
7 while FOCAL is not empty do
8 fmin ← f -value of node at the top of OPEN
9 Extract s from FOCAL which maximizes hFOCAL

10 Remove s from OPEN
11 if n = ngoal then
12 return n

13 foreach t ∈ Succ(s) do
14 costt ← g(s) + c(s, t)
15 if costt < g(t) then
16 parent(t)← n
17 g(t)← costt
18 f(t)← g(t) + h(t)
19 Insert t into OPEN
20 if f(t) ≤ wfmin then
21 Insert t into FOCAL

22 top← state at the top of OPEN
23 if fmin < f(top) then
24 updateLowerBound(wfmin, wf(top))

25 return “no solution found”
26

27 procedure updateLowerBound(old bound, new bound)
28 foreach s ∈ OPEN do
29 if old bound < f(n) ≤ new bound then
30 Insert n into FOCAL

0 and 1, for every action in A. We do not impose any re-
strictions on the way we encode a search state into an input
vector but we do assume that the features of the last hidden
layer is given by an |A|-dimensional vector h, defined by:

h = f(xs;θ), (2)

where xs is an input vector representation of a search state
s, θ are the parameters of the net, and f encodes the way
in which θ operates over x. Finally, the output layer is an
|A|-dimensional vector y, whose components are defined in
terms of the softmax function, as follows:

yi =
exp(hi)∑|A|
j=1 exp(hj)

. (3)

Given that softmax is that used for the output layer, the sum
of the components of y is 1, and thus may be interpreted as
probabilities (Bridle 1989). Now we assume that actions in
A can be indexed, by associating each action with a unique
identifier between 1 and |A|, using function index : A →
{1, . . . , |A|}. From the network, we can define a stochastic

policy as follows:
π(a, s) = yindex(a) (4)

We do not require that π be well-defined.

Generating Synthetic Policies
To train a policy satisfying the requirements above, one
needs to define an adequate representation of the input and
an architecture. Then, we choose a method to train the pol-
icy. For example, if we use imitation learning (Ross, Gordon,
and Bagnell 2011), we generate a number of examples con-
taining elements of the form (s, a), where s is a search state
and a is an action in opt(s). After training the policy—a
time-consuming process—we can estimate the policy’s ac-
curacy using the test set. Such an accuracy, however, de-
pends on a number of factors, including the representation
for the input, the architecture, and the number of examples.

Since in our empirical evaluation we aim at evaluating the
heuristics, but not the learning approach, we use a simple
method to generate synthetic stochastic policies. A synthetic
stochastic policy is a function π : A,S → [0, 1] satisfying
all the constraints of a stochastic policy, but that is not ob-
tained by training. An advantage of this approach is that it
receives a target accuracy as input. A disadvantage is that
it can only be implemented for search tasks whose search
space fits in memory.

Given a target accuracy acc, we generate a synthetic pol-
icy in two steps. In the first step, we build a table OPT
with one pair (aopt, s) for every state s in the search space
S, where a ∈ opt(s). To do this we run Dijkstra’s algo-
rithm from the goal state. Using the softmax function ap-
plied over a set of |A| random numbers, we generate a
list y1, y2, . . . , y|A| of scores sorted in descending order.
In the second step, for each pair (aopt, s) in OPT , we
define π(aopt, s) = y1 with probability acc; and we as-
sign π(aopt, s) = yj , for some j ≥ 2 with probabil-
ity (1 − acc)yj/

∑|A|
k=2 yk. For the rest of the actions in

A \ {aopt}, we assign one of the unused scores randomly.
Note that this way of generating the policy guarantees that
the optimal action gets the highest score with probability
acc. But it also is such that when the optimal action does not
get the highest score, then it is most likely that it will get the
second-largest score. In general the probability that it gets
the j-th largest score decreases as j increases. This is con-
sistent with what in practice happens with a learned policy,
in which one would expect that if a mistake is made, then
still the correct action gets assigned a score that is higher
relative to other (wrong) actions.

Policies and Focal Search
In this section we present a number of ways a stochas-
tic policy π can be integrated into FS. As we mentioned
above, some of our heuristics have been used previously in
search literature. Thus, the value of this section lies mainly
on the mathematical interpretation of the resulting algo-
rithms. For the two types of heuristics we propose—score-
and discrepancy-based—we start off defining in what order
we would like our FS’s expansions to be carried out, and
then derive the heuristic that materializes such an order.
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Score-Based hFOCAL
Assume state s has just been generated and that it is about
to be inserted into FOCAL. Assume further that the path—
given by the parent relation—from sstart to s is σ(s) =
s1, s2, . . . , sn, with s1 = sstart and sn = s. The likelihood
that σ(s) is generated by unrolling π from the initial state is
given by the following expression:

Lπ(σ(s)) =
n−1∏
i=1

π(λ(si, si+1), si) (5)

Our first way of exploiting π is using the following heuristic
as hFOCAL:

hpath
L (s) = −Lπ(σ(s)), (Score-1)

where the negative sign is used because FOCAL is sorted in
ascending order. Using hpath

L (s) for FOCAL results in an al-
gorithm that expands first those nodes maximizing the like-
lihood that path σ(s) is generated by π.

A potential caveat of hpath
L is that longer paths are at disad-

vantage with respect to shorter paths, as the likelihood tends
to decrease with path length. To account for this, we define
the following score-based heuristic:

hpath
L/f (s) =

hpath
L (s)

f(s)
. (Score-2)

Observe here that by dividing by f(s), we make the heuristic
larger, and thus s more preferred, when f(s) is small (and
vice-versa when f(s) is large). As such hpath

L/f (s) incorpo-
rates a preference for nodes with low f -value. This kind of
normalization had also been considered in beam-search ap-
proaches (e.g., Wu et al. 2016) with score-based heuristics.

An alternative to evaluate a state that has just been gener-
ated from its parent is by simply focusing on the last edge
of the path σ(s), namely (sn−1, sn), and consider the like-
lihood that the stochastic policy generates sn from its par-
ent, sn−1. With this in mind, we propose the following two
heuristics:

hlast
L (s) = π(λ(sn−1, sn), sn−1), (Score-3)

hlast
L/f (s) =

hlast
L (s)

f(s)
. (Score-4)

These two heuristics can be viewed as ignoring the “influ-
ence of the past” over s, except for the action that immedi-
ately produced s.

Discrepancy-Based hFOCAL
Assume s has been generated via path σ(s) = s1, s2, . . . sn,
with s0 = sstart and sn = s, and that it is about to be in-
serted into FOCAL. Now, consider the probability that σ(s)
is the prefix of an optimal path, and let us denote this prob-
ability by pprefix(s). If we could use pprefix to “sort” FOCAL,
we would obtain an algorithm that prefers paths are most
likely to be advancing optimally towards the goal state.

To compute pprefix, let us assume that a1 . . . an−1 are the
actions associated with path σ(s) (i.e., λ(si, si+1) = ai, for

every i ∈ {0, . . . , n − 1}). The value of pprefix(s) is given
by the product p1 · p2 · · · pn, where pi is the probability that
ai initiates a path from si to the goal state. Formally, pi =
P (ai ∈ opt(si)), which can be rewritten in this way:

P (ai ∈ opt(si)) =
P (ai ∈ opt(si) | δ(s) ∈ opt(si)) · P (δ(s) ∈ opt(si))+
P (ai ∈ opt(si) | δ(s) 6∈ opt(si)) · P (δ(s) 6∈ opt(si)),

(6)
Recall that δ(s) is the deterministic policy that is obtained
from our stochastic policy π, which returns the action as-
sociated with highest probability in s. Thus the expression
above is conditioning on the fact that the policy may have
been right or wrong each time a decision was made. For the
rest of the calculation, to simplify the resulting expression,
we make the assumption that |opt(si)| = 1, for every i. We
have two cases for pi:

1. ai = δ(si); that is ai is the action returned by the policy
at state si. Then,

P (ai ∈ opt(si) | δ(s) ∈ opt(si)) = 1, (7)
P (ai ∈ opt(si) | δ(s) 6∈ opt(si)) = 0. (8)

Indeed, (7) holds since we condition on the fact that δ(si)
does return an optimal action in si. Equation (8) holds
because we assume the policy does not return an optimal
action in si.

2. ai 6= δ(si); that is ai is not the action returned by the
policy at state si. Then,

P (ai ∈ opt(si) | δ(s) ∈ opt(si)) = 0, (9)
P (ai ∈ opt(si) | δ(s) 6∈ opt(si)) = 1/α (10)

Equation (9) holds because of our assumption that
|opt(si)| = 1, and that we condition on the fact that
the policy does return the (only) optimal action in si. For
Equation (10), observe that we condition on the fact that
the policy does not return an optimal action and assume
that ai is not returned by the policy. We assume, then, that
all remaining actions have the same probability of being
optimal and define α = |A| − 1

Summing up, pi is as follows:

pi =

{
accπ if ai = δ(si),
1−accπ

α otherwise.
(11)

Now we defineNpref(σ(s)) as the number of times along the
path σ(s) in which the action preferred by δ was taken (i.e.,
Npref(σ(s)) =

∑n−1
i=1 [ai = δ(si)]), and Nnonpref(s) is the

number of times an action not preferred by δ was taken.

pprefix(s) = acc
Npref(σ(s))
π (1− accπ)Nnonpref(σ(s)), (12)

Now we define hprefix by taking the logarithm of pprefix and
dividing by log( 1−accπα ):

hprefix(s) =
log(accπ)

log( 1−accπα )
Npref(σ(s)) +Nnonpref(σ(s))

(Disc-1)
Note that even though we take the logarithm of a value be-
tween 0 and 1, by dividing by the constant negative number
log(1 − accπ) we restore the original order; that is, hprefix
grows exactly when pprefix grows.
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From Probability to Discrepancy Note that the ratio
log(accπ)

log( 1−accπ
α )

in (Disc-1) approaches 0 as the accuracy of the
policy accπ approaches 1. For example, if our problem has
branching factor 4, and policy π has an accuracy of 90%, the
ratio equals to 0.02. Furthermore the ratio also decreases as
the branching factor increases. If we assume that our policy
is very accurate or, alternatively, that the branching factor
is high, we can remove the first term of hprefix to produce a
much simpler expression:

hdisc(s) = Nnonpref(σ(s)). (Disc-2)

An algorithm that uses hdisc to sort FOCAL, therefore, is one
that prefers for expansion a state s that maximizes an ap-
proximation, which assumes π is accurate, of the probability
that the path to s is a prefix of an optimal solution.
hdisc(s) is an analogue of the notion of discrepancy of the

Limited Discrepancy Search algorithm (Harvey and Gins-
berg 1995). As originally conceived by Harvey and Gins-
berg, the notion of discrepancy is defined for a path of states
σ = s1, . . . , sn. To compute σ’s discrepancy we initialize
our discrepancy counter to zero, iterate an index i from 2
to n, and increment the counter when there is a successor
of si−1, different from si, which has an h-value lower than
h(si). Instead of using a heuristic function to count discrep-
ancies, hdisc(s) uses the policy π.

Discrepancies were originally proposed for binary trees.
Some researchers (e.g., Karoui et al. 2007) have considered
counting discrepancies according to their successor rank in
non-binary trees. In our experimental section we evaluate a
variant of hdisc, defined as follows:

hrank(s) = rank(σ(s)) (Disc-3)

where rank(σ(s)) computes the rank of the action used to
produce s from its predecessor, sn−1, in the stochastic policy
π(·, sn−1). The rank of the first action is 0.

Empirical Evaluation
Our empirical evaluation had two objectives. The first was
to evaluate the performance of the proposed heuristics over
different domains, using them along with policies of vary-
ing accuracy. The second objective was to see whether or
not the conclusions obtained with small domains may ap-
ply to larger ones. Hence, we divide this section into two
parts. First, we exhaustively evaluate the performance of
our heuristics under various accuracy settings, using our ap-
proach to compute synthetic policies, over three domains.
Second, we evaluate the 15-puzzle with a learned policy.

In the evaluation we include two other algorithms:
Weighted A* (WA*) (Pohl 1970), and A* with preferred op-
erators (PrefA*), a variant of Fast-Downward’s search algo-
rithm (Helmert 2006), where, intuitively, the action selected
by the policy is a preferred operator. Specifically, PrefA*
uses two open lists: preferred open and regular open, and
adds the successor of s generated via action δπ(s) to pre-
ferred, while all other successors are added to regular. For
expansion, it prefers to extract a node from preferred always,
unless this list is empty (we tried alternation, like in the orig-
inal algorithm, and found that no alternation led to a faster

algorithm). Note that preferred may get empty when the pol-
icy leads to state revisiting. Both open lists are ranked by
f = g + h. PrefA* is not a bounded-suboptimal algorithm;
it is included for reference since it allows us to estimate the
quality of the solutions that would be obtained by unrolling
the policy while still remaining complete.

The experiments with synthetic policies were run on an
Intel i5 8250U PC with 8GB RAM. The trained policy ex-
periments were run on an Intel Xeon E5-2630 machine with
128GB RAM, using a single CPU core and no GPU. We use
labels Score-1..4 and Disc-1..3 to identify our 4 score-based
heuristics and 3 discrepancy-based heuristics, respectively.

Synthetic Policies
According to the methodology presented, in which for each
domain we select a single goal state, and solve the entire
search space, we generate synthetic policies with target ac-
curacy in {70%, 80%, 90%, 95%, 100%}. The domains we
use and the results are described below.

8-Puzzle This is the 3 × 3 version of the classic sliding-
tile puzzle (e.g. Korf 1985). Our experiments use the Linear
Conflicts heuristic (Hansson, Mayer, and Yung 1992).

The first two rows of Figure 1 show the runtime, expan-
sions, and suboptimality (computed as the ratio between the
cost of the returned solutions and the optimal cost), using
two different suboptimality bounds: 1.2 and 1.5. WA* is dis-
played as a horizontal line because its performance is policy-
independent. Heuristics Score-3 and Score-4 seem to be less
competitive than other algorithms, while Disc-2 and Disc-3,
are superior to other configurations both in the number ex-
pansions and solution quality. WA* is competitive when the
suboptimality bound is 1.2. PrefA* is the fastest but returns
solutions not that exceed the suboptimality bound.

Pancake Sorting The problem consists of an array that
must be sorted. Each action corresponds to flipping the ar-
ray from a certain position. Our experiments were conducted
using 9 pancakes, yielding a total of 9! (362, 880) reach-
able states. We use the gap heuristic (Helmert 2010). The
third and fourth rows of Figure 1 show the results (runtime,
expansions, and suboptimality) that were obtained. In this
domain, Score-3 and Score-4 outperform other algorithms
on low accuracy policies, but Disc-1 and Disc-2 outperform
other algorithms as accuracy improves. Nevertheless, in this
domain, we could observe that WA* is faster than other algo-
rithms, even though it perfoms more expansions. This is due
to an inherent disadvantage of FS over WA*, which needs
to maintain two open lists. PrefA* is the fastest but returns
solutions not that exceed the suboptimality bound.

Blocks World This is the 4-operator blocks world from
IPC-2000. The problem consists of a set of blocks, a table,
and a robotic arm. Each block can be over another block or
the table. The robotic arm can hold one block or be empty.
The goal consists of finding a plan that transforms one con-
figuration of blocks into another. We used instance number
13 of the blocksworld from IPC (probBLOCKS-8-0.pddl),
in which the objective is to build a single 8-block tower. We
use hmax (Bonet and Geffner 2000) as the heuristic.
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The last two rows of Figure 1 show the results (runtime,
expansions, and suboptimality) obtained. We observe that
Disc-2 and Disc-3 outperform all other algorithms in terms
of time and expansions; nevertheless, solutions obtained are
just within the bound. Disc-2 and Score-2, yield higher-
quality solutions. In this domain, the poor performance of
WA* may be due to the fact that the heuristic is not informed
compared to other domains. PrefA* performs poorly when
the policy has a low accuracy. While the policy increases its
accuracy, PrefA* becomes faster, but its solutions exceed the
suboptimality bound.

In summary, in all domains we observe that FS, used with
Disc-2 and Disc-3, yields results that are superior to other al-
gorithms. We observe that in domains in which the heuristic
is more informed (i.e., pancake sorting) WA* is more com-
petitive. We observe that if the policy accuracy is at least
80%, it is worth using FS with the policy rather than WA*.

Our conclusions cannot be extended to the case of a very
low suboptimality bound (i.e., very close to the limitw = 1),
since in those cases WA* is faster than FS. This is because,
to prove suboptimality, both algorithms need to expand a
similar number of nodes, and FS incurs in a greater overhead
by maintaining two priority queues.

15-Puzzle with a Trained Policy
We trained a simple neural network that we generated with
our own data set of 1,510,673 examples extracted from
30,367 optimal traces, obtained by solving randomly gener-
ated problems with IDA* (Korf 1985). The dataset was split
in 90%-10% for the train and test sets, respectively. The ar-
chitecture of the neural network has an input layer with 256
neurons, where each tile in the puzzle is represented in a
one-hot vector; three hidden layers of 160, 80, and 16 neu-
rons, and, finally, a 4-dimension output layer with softmax
as activation function, where each one represents an action.
After training the neural network for 200 epochs, minimiz-
ing the cross-entropy loss (Goodfellow et al. 2016), the pol-
icy’s accuracy was 87.5% on the test set.

To evaluate the algorithms’ performance using the learned
policy, we use Korf’s 100 search tasks (Korf 1985). We run
our algorithm using the Linear Conflicts heuristic (Hansson,
Mayer, and Yung 1992).

Figure 2 shows the results—in terms of runtime, expan-
sions, and accumulated suboptimality—using the learned
policy with the suboptimality bound set to 2.0 and 1.5. To
compute accumulated suboptimality, for each solved task we
compute the ratio of the cost of the returned solution and the
optimal cost and subtract one; then we add this amount for
every solved task given a timeout. For w = 2.0, the results
show that Score-3, Score-4, Disc-2, and Disc-3 outperform
WA* by one order of magnitude with respect to the number
of expansions and half an order of magnitude regarding run-
time. Regarding the accumulated suboptimality, Score-1 and
Score-2 obtain solutions closer to the optimal solution, but
Score-4, Disc-2, and Disc-3 return better-quality solutions
than PrefA* and WA*. For w = 2.0, we observe that Disc-
2, Disc-3, and Score-2 outperform WA* regarding the num-
ber of expansions, although only Disc-2 outperforms WA*
in terms of runtime. This is due to the fact that expansions

are slower when using our trained policy because evaluat-
ing the neural net requires significant computation. Indeed,
on average, an expansion is one order of magnitude slower
using the learned policy.

Finally, PrefA* is that it solves very few problems within
suboptimality bound w = 1.5, showing that simply un-
rolling the policy yields poor quality solutions in general.

In summary, the results show that Disc-2 and Disc-3, the
most straightforward way to include discrepancies in FS,
outperform all other algorithms in terms of runtime and ex-
pansions, making a good trade-off between expansions and
solution quality within the suboptimality bound. Neverthe-
less, Score-3 and Score-4 shows good results when a higher
suboptimality bound is required, decreasing its performance
when the suboptimality bound decrease.

Discussion
An important limitation of this work is that an important por-
tion of our evaluation is carried out on small problems whose
search space fits in memory. We chose this approach because
it allowed us to be exhaustive with respect to the accuracy of
the policy being used. Nevertheless, approaches for the same
type of analysis over tasks with larger search space do exist.
For example, one could choose different neural network ar-
chitectures, train them over a large number of examples for
a given family of tasks. This would yield different estimated
accuracies over the test set. By carefully tuning the archi-
tecture, policies with different accuracies can be obtained.
While this is an interesting line of work, it requires plenty
of hand tuning, shifting the focus away from the search al-
gorithms, which was the original objective of our research.
Notwithstanding, our results for the 15-puzzle are consis-
tent with those obtained on smaller tasks, suggesting that
our conclusions may extend to other larger domains.

Another limitation of our synthetic approach to the gener-
ation of policies is that we consider the policy’s accuracy to
be distributed homogeneously on the state space. However,
this may not be the case for trained learned policies. For
example, our policy for the 15-puzzle is able to solve opti-
mally Korf’s 10 first problems, but does not produce good-
quality results for the harder tasks. Modifying the synthetic
approach to include a greater proportion of errors for states
that are farther away from the goal is easy to do; in this case,
a question to answer is whether or not there exist heuristics
capable of effectively exploiting this characteristic.

Two pairs of our score-based heuristics obtain similar re-
sults (Score-1 vs. Score-2, and Score-3 vs. Score-4). This is
not surprising since Score-2 is obtained directly from Score-
1, while the same happens with the other pair. We decided
to still include Score-2 and Score-4 in our analysis, since in
previous research it had been shown that score normalization
produced better-quality results (Wu et al. 2016). While es-
tablishing a good tradeoff between scores and solution qual-
ity seems important, it does not seem that our specific ap-
proach is the correct one. This may be due to the fact that
FS already controls suboptimality using the heuristic. Fur-
ther research is necessary to establish a more effective way
to incorporate this tradeoff.
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Figure 1: Results for 8-puzzle, pancake sorting, and blocksworld
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Figure 2: Results using a trained learned policy in 15-puzzle over Korf’s 100 instances. First row shows results with a subopti-
mality bound w = 1.5; and the second row shows results with suboptimality bound of w = 2.0.

Finally, in our experimental comparison, we used WA*
as the main bounded-suboptimal algorithm for comparison,
instead of comparing to more recent bounded-suboptimal
algorithms like Explicit Estimation Search (EES) (Thayer
and Ruml 2011). We do this since our initial focus was
on domains with unitary cost, which are most abundant in
the search literature. EES does not significantly outperform
WA* in these types of domains (Thayer and Ruml 2011). A
study considering non-unitary costs is an interesting line of
future research. Integration and comparison with Improved
Optimistic Search (Chen et al. 2019), an approach to subop-
timal search also based on Focal Search, is also an interest-
ing line of future research.

Conclusions
We presented two families of heuristics applicable to Fo-
cal Search when a (learned) policy is available. Our mathe-
matical interpretation of these families concluded that score-
based heuristics yield a search algorithm that expands a node
which, among all other nodes in FOCAL, is the most likely
to have been generated by unrolling the policy. Discrepancy-
based heuristics, instead, yield an algorithm that expands a
node which, among all other nodes in FOCAL, maximizes
the probability that its path is a prefix of an optimal path.

We evaluated the heuristics over four domains. In three
domains (8-puzzle, blocksworld, pancake) we control the

accuracy of the policy and report the performance of each
of our heuristics. In the fourth domain (15-puzzle) we com-
pare our heuristics using a trained 87.5%-accurate policy
trained over 1.5 million examples. Consistently, we observe
that discrepancy-based heuristics, yield the best results in
terms of expansions and runtime, outperforming Weighted
A* when the weight used is 1.2 or greater. Score-based
heuristics are not fast, but yield the best-quality solutions.

The effectiveness of our approach depends on both the ac-
curacy of the policy and the accuracy of the heuristic. As
the accuracy of the policy increases, we observed an in-
creased benefit of using FS; specifically, in our controlled
experiments, it is always worth to use FS when the policy’s
accuracy is 80% or larger. Exploiting policies yields more
benefits when the heuristics are less informed. Finally, when
the suboptimality bound approaches 1, the effectiveness of
FS relative to WA* decreases, since the number of expan-
sions required by both algorithms becomes similar, and FS
requires maintaining two open lists.
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