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Abstract

Multi-agent pathfinding (MAPF) is an NP-hard problem. As
such, dense maps may be very hard to solve optimally. In
such scenarios, compilation-based approaches, via Boolean
satisfiability (SAT) and answer set programming (ASP), have
proven to be most effective. In this paper, we propose a new
encoding for MAPF, which we implement and solve using
both ASP and MaxSAT solvers. Our encoding builds on a
recent ASP encoding for MAPF but changes the way agent
moves are encoded. This allows to represent swap and follow
conflicts with binary clauses, which are known to work well
along with conflict-based clause learning. For MaxSAT, we
study different ways in which we may combine the MSU3
and LSU algorithms for maximum performance. Our results,
over grid and warehouse maps, show that the ASP solver
scales better when the number of agents is increased on grids
with few obstacles, while the MaxSAT solver performs better
in scenarios with more obstacles and fewer agents.

Introduction
Given a graph G and K agents, each of which is associated
with a start and a goal vertex of G, multi-agent pathfinding
(MAPF) is the problem of finding k non-conflicting paths
π1, . . . , πK , such that πi connects the start and goal vertex
associated with agent i. MAPF has many applications. It is
key for the implementation of automated warehouses, multi-
agent videogames (Wang and Botea 2008), and has become
increasingly relevant in other important applications such as
airport ground control (e.g., Li et al. 2019b).

Optimal MAPF solving is NP-hard (Surynek 2010; Yu
and LaValle 2013; Nebel 2020). Not surprisingly, optimal
solvers have scalability issues. Consequently, solving dense
MAPF instances, that is, instances with a high proportion of
space occupied by either agents or obstacles, can be chal-
lenging even when maps are relatively small.

Most MAPF solvers can be classified as either search-
or compilation-based or hybridized. While the former (e.g.,
Sharon et al. 2012; Felner et al. 2018; Li et al. 2019a) can
scale to large maps, they do not perform very well in rel-
atively small, dense maps. Compilation-based techniques,
instead, translate the MAPF instance to an instance of an-
other problem, for example Boolean satisfiability (SAT)
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(e.g., Surynek et al. 2016; Barták et al. 2017; Barták and
Svancara 2019), answer set programming (ASP) (e.g., Er-
dem et al. 2013; Gebser et al. 2018; Nguyen et al. 2017;
Gómez, Hernández, and Baier 2021), or Mixed-Integer Pro-
gramming (MIP) (e.g., Barták et al. 2017). They do perform
better than search-based solvers in dense, rather small maps,
but do not scale to large maps. Hybridized methods (e.g.,
Lam et al. 2019) incorpporate elements of both.

The efficiency of compilation-based approaches depends
on a number of factors, including the base SAT/ASP/MIP
solver, but also on the encoding used. Recently, Gómez,
Hernández, and Baier (2021) showed that focusing on gen-
erating a smaller encoding, linear on the number of agents
rather than quadratic, yielded significant benefits in practice.

In this paper, we propose a new Boolean encoding for
sum-of-costs MAPF. The encoding shares common aspects
with the recent encoding introduced in ASP-MAPF (Gómez,
Hernández, and Baier 2021), but encodes the action deci-
sions in a different way, allowing to represent swap and fol-
low conflicts using binary clauses involving two decision
variables. We design our encoding with a focus on MaxSAT
solvers and show briefly how to adapt it for ASP.

Furthermore, this paper presents the first study and eval-
uation of MAPF encoding using MaxSAT technology. For
this reason, even though the encoding can be represented in
ASP, our presentation and experimental section focuses pri-
marily on MaxSAT solving. As such we investigate the ef-
fectiveness of using different optimization algorithms (e.g.,
MSU3/LSU), and a number of encodings for cardinality
constraints, and report the configurations that work best in
practice. In addition, we investigate the benefits of includ-
ing redundant clauses, which allow the MaxSAT solver to
reduce the search space, resulting in better scaling.

In our experimental evaluation, we compare our MaxSAT
and our ASP MAPF solvers with ASP-MAPF, MDD-SAT
(Surynek et al. 2016), a SAT-based MAPF solver, and CBS-
H2 (Li et al. 2019a), a state-of-the-art search-based solver.
We use a number of grid and warehouse benchmarks. We
observe that our ASP solver scales better when the number
of agents is increased on grids with few obstacles, while our
MaxSAT solver performs better in scenarios with more ob-
stacles and fewer agents. Our results support the fact that our
encoding is superior to previous ones, independently of the
technology used.
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Background
We start off with background on MAPF, following Stern
et al. (2019) rather closely. Then we present background on
MaxSAT and MAPF compilations relevant for our work.

Multi-Agent Pathfinding
A MAPF instance is defined by a tuple (G,K, start, goal),
where G = (V,E) is a directed graph, K is the num-
ber of agents, and start : {1, . . . ,K} → V and goal :
{1, . . . ,K} → V specify the start and goal vertex for each
of the agents. In addition, E contains the edge (u, u), for
every u ∈ V . This constraint is important, since it allows
agents to ‘wait’ at their current location.

A path over graph G is a sequence of edges π =
(u0, u1)(u1, u2) . . . (un−1, un), for every i ∈ {0, . . . , n −
1}. Given a path π = (u0, u1) . . . (un−1, un), we denote the
vertex reached by traversing the first t edges of π by π[t];
formally π[t] = ut, where 0 ≤ t ≤ |π|. If π[t] = v we
say that the path visits vertex v at time step t. In this paper,
like in most of the literature on MAPF (Stern et al. 2019),
we consider that agents stay at their target after reaching it.
Thus, for any t > |π|, we define π[t] = π[|π|]. A path π con-
nects u with v iff π[0] = u and π[|π|] = v. Given two nodes
u, v ∈ V we denote by d(u, v) the length of the shortest path
connecting u and v.

A solution to a MAPF instance (G,K, start, goal) is a
tuple of K paths over G, Π = (π1, π2, . . . , πK), where:

1. The last element of πk is not of the form (u, u), for every
k ∈ {1, . . . ,K}.

2. πk connects start(k) with goal(k), for every k ∈
{1, . . . ,K}.

3. Π is conflict-free.

Intuitively, Π has a conflict if the paths of two or more agents
interfere with each other. A relevant observation is that con-
dition 1 is necessary for the definition of the cost of a path,
which we introduce below. A non-solution that satisfies con-
ditions 2 and 3 but not 1 can always be transformed into a
solution by removing the largest suffix of wait actions from
every path.

Different types of conflicts have been considered in the
MAPF literature. Those relevant to this paper follow.

• Vertex Conflicts. Π has a vertex conflict if two paths
πi, πj in Π, where i 6= j, are such that πi[t] = πj [t],
for some t ≥ 0. Intuitively, a vertex conflict occurs when
two agents visit the same vertex at the same time step.

• Swap Conflicts. Π has an swap conflict if two paths πi, πj
in Π, where i 6= j, are such that (πi[t], πi[t + 1]) =
(πj [t + 1], πj [t]), for some t ≥ 0. Intuitively, a vertex
conflict occurs when two agents traverse the same edge in
opposite direction at the same time instant.

• Follow Conflicts. Π has a follow conflict if two paths
πi, πj in Π, where i 6= j, are such that πi[t] = πj [t + 1],
for some t ≥ 0. Intuitively, a follow conflict occurs when
at time t+ 1 an agent occupies the position another agent
had at time step t.

Most literature on MAPF (e.g., Sharon et al. 2012) has fo-
cused on solvers for solutions free of vertex and swap con-
flict. The most relevant compilation-based solvers that we
consider in this paper (Surynek et al. 2016; Surynek 2019),
compute solutions free of vertex, swap, and follow conflicts.

The sum-of-costs (SOC) of a solution Π =

(π1, π2, . . . , πK) is c(Π) =
∑K

i=1 |πi|, whereas its
makespan is makespan(Π) = maxi∈{1,...,K} |πi|. A solu-
tion Π to an instance of MAPF is SOC-optimal iff the SOC
of every other solution is equal to or greater than c(Π). A
solution Π to an instance of MAPF is makespan-optimal iff
the makespan of every other solution is equal to or greater
than makespan(Π).

Maximum Boolean Satisfiability
Given a set X of variables, ` is a literal over X iff ` = x
or ` = ¬x, for some x ∈ X . A clause over X is a set of
literals over X . Given a literal ` over X , its complement `
is defined as x if ` = ¬x, and as ¬x if ` = x, for some
variable x. A boolean assignment for X is a function σ :
X → {true, false}. An assignment satisfies Y iff σ |= Y ,
where the binary relation |= is such that σ |= x iff σ(x) =
true , and σ |= ¬x iff σ(x) 6|= x, for every x ∈ X . If C is
a clause σ |= C iff σ |= `, for some ` ∈ C. If S is a set of
clauses σ |= S iff σ |= C, for every C ∈ S.

Given a set of clauses S over variables X , the boolean
satisfiability problem (SAT) consists of computing an as-
signment σ over X such that σ |= S. Given a pair of two
sets of clauses (H,S), where H corresponds to a set of hard
clauses, and S is a set of soft clauses, the (partial) maximum
boolean satisfiability problem (MaxSAT), consists of finding
an assignment σ that satisfies H and maximizes the number
of clauses of S which it satisfies.

Given a set of literals L = {`1, . . . , `n},
∧
L stands for

`1 ∧ . . . ∧ `n,
∨
L stands for `1 ∨ . . . ∨ `n, and C stands

for {`1, . . . , `n}. A clause C logically corresponds to the
disjunction

∨
C, which in turn is logically equivalent to the

implication
∧
B →

∨
T , where B and T are disjoint and

such that C = B ∪ T .
For our experimental evaluation, it is relevant to review

the state-of-the-art approaches to MaxSAT. The following
are approaches that have been used by solvers participating
in recent MaxSAT competitions (e.g., Bacchus et al. 2020).
SAT-based These algorithms iteratively call an underlying
SAT solver where each iteration imposes a stronger bound
for the number of unsatisfied clauses in S. Between consec-
utive calls, the bound is incremented by 1. The the first call
that returns UNSAT yields a MaxSAT assignment. The most
used SAT-based algorithm is known as LSU (Biere, Heule,
and van Maaren 2009). Although not usually competitive in
the MaxSAT competitions, a strength of this approach is its
anytime property which allows it to output a sequence of
assignments of increasing quality.
UNSAT-based Also an iterative approach. In the first it-
eration all clauses are treated as hard. In subsequent iter-
ations, depending on the reasoning of the algorithm, some
or all original soft clauses are relaxed by adding cardinal-
ity constraints imposing that at most a certain number of
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soft clauses may be unsatisfied. Bounds imposed on the
relaxation are sound, which guarantees that the first SAT
call returns an optimal assignment. MSU3 (Morgado, Liffi-
ton, and Marques-Silva 2012), RC2 (Ignatiev, Morgado, and
Marques-Silva 2019) and EvalMaxSAT (Avellaneda 2020)
are examples of UNSAT-based solvers.
SAT-UNSAT-based Algorithms belonging to this cat-
egory mix the two strategies from above. Pacose (Pax-
ian, Reimer, and Becker 2019), QMaxSAT (Koshimura
et al. 2012), UWrMaxSAT (Piotrów 2019), are examples of
solvers based on this paradigm.
Hitting-set-based The solvers belonging to this category
separate the problem in two: core extraction, performed by a
SAT solver and optimisation, performed by an Integer Lin-
ear Programming (ILP) solver. By doing so, this kind of
solvers avoid increasing the complexity of the SAT problem,
but instead they use the ILP optimizer for doing the numer-
ical reasoning. The main representative of this paradigm is
MaxHS (Berg, Bacchus, and Poole 2020).

Existing Compilation-Based Approaches
We briefly review relevant aspects of the two most re-
lated compilation-based approaches: MDD-SAT (Surynek
et al. 2016) and ASP-MAPF (Gómez, Hernández, and Baier
2021). Both approaches encode the problem using proposi-
tional variables relative to a certain time instant. For exam-
ple, MDD-SAT uses variable X t

j (ai) to express that agent ai
is at vertex vj at time t, and variable Etj,k(ai) to express the
fact that agent ai moves from vertex vj to vertex vk at time
t. The way variables are chosen is relevant since this deter-
mines the way constraints are written. For example, to en-
code follow and swap conflicts simultaneously, MDD-SAT
uses the constraint:

Ej,k →
∧

a`∈A,a` 6=ai,u
t+1
k ∈V`

¬X t+1
k (a`),

which expands to a number of clauses that is quadratic on
the number of agents, and linear on the number of edges of
the graph. The following table shows the number of clauses
needed by MDD-SAT and ASP-MAPF to encode the dif-
ferent types of conflicts, where T is the time bound of the
encoding, and whether or not the full encoding is redundant.

MDD-SAT ASP-MAPF
vertex conflicts O(K2 · |V | · T ) O(K · |V | · T )
follow conflicts O(K2 · |E| · T ) N/A
swap conflicts O(K2 · |E| · T ) O(K · |E| · T )
redundant? non-redundant non-redundant

MAPF to MaxSAT
We follow the same principle of previous compilation-based
approaches to MAPF, encoding the position of the agents
using propositional variables, for different time steps in
{0, . . . , T}. As previous approaches (e.g., Surynek et al.
2016; Gómez, Hernández, and Baier 2021), we optimize the
number of variables by, in practice, removing those variables
that would encode an agent a being at a vertex v that is not
reachable by a given the constraints imposed by the bound

T . To that end, we define Feasible(a, t) as the set of ver-
tices that can be feasibly reached by a. An agent can feasibly
reach a vertex v at time t if it can reach v in t steps or less
and the goal is reachable from v by time step T . Formally,

Feasible(a, t) =

{u ∈ V : d(start(a), u) ≤ t, d(u, goal(a)) ≤ T − t}.

To compute set Feasible(a, t) efficiently, before encoding
our problem we run Dijkstra’s algorithm to compute the d
function, for each start and goal state as a source.

Below we use A to abbreviate {1, . . . ,K}. The variables
we use in our encoding are as follows.

Variables
1. ata,u,t: agent a is at vertex u at time step t, where a ∈ A,
u ∈ Feasible(a, t), and t ∈ {0, . . . , T}.

2. shiftu,v,t: vertex u shifts towards v at time step t, where
(u, v) ∈ E, and t ∈ {0, . . . , T − 1}. Specifically, this
means that if an agent is at u, then it should move towards
v. Vertices shift regardless of whether or not there is an
agent at them.

3. finalStatea,t: agent a is at its goal vertex, goal(a), at time
t, and will not move in the future. This variable is defined
for every a ∈ A, and every t ∈ {0, . . . , T}. These vari-
ables allow us to define our optimization function, are in-
spired by ASP-MAPF and defined in an analogous way.

It is important to note here that the use of the shiftu,v,t,
which is a variable that does not refer to the agent, is an im-
portant difference with the encoding of MDD-SAT and of
ASP-MAPF. Indeed, both of these approaches use variables
that involve the agents for action decisions. As mentioned
above, MDD-SAT uses a variable Etj,k(ai), to express that
agent ai moves from vertex j to vertex k at time t, while
ASP-MAPF uses a variable exec(A,M,T) to express that
agent A performs move M at time T. As we see later in our
experimental section, this rather simple change yields im-
portant speedups experimentally.

The Encoding

A constraint on shift variables We start off by expressing
that every vertex u shifts to exactly one of its neighbors at
every time interval, by including the cardinality constraint:∑

v:(u,v)∈E

shiftu,v,t = 1, (C1)

for every u ∈ V , and every t ∈ {0, . . . , T − 1}.
Encoding the Agents’ locations Now we define the rela-
tionship between the at variables and the shift variables. If
one understands the at variable actually as a fluent, as one
may do when understanding our model as a theory of action
(e.g., Reiter 2001), we would generate a so-called successor
state axiom, which, in the context of (C1) is as follows:

ata,v,t+1 ↔
∨

u:(u,v)∈E

ata,u,t ∧ shiftu,v,t, (SSA)
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for every v ∈ V . However, translating (SSA) results in many
clauses; indeed, it results on average in Θ(K · |V | · 2n)
clauses, where n is the average number of successors for
a node in the graph. Most of such clauses, however, are re-
dundant with each other. Moreover (SSA) does not take into
account that ata,u,t is only defined when u ∈ Feasible(a, t).
Instead of (SSA), we use the clauses corresponding to the
following four families of formulas.

ata,u,t ∧ shiftu,v,t → ata,v,t+1, (H1)

ata,u,t ∧ ata,v,t+1 → shiftu,v,t, (H2)

for every a ∈ A, every u ∈ Feasible(a, t) every v such that
(u, v) ∈ E which is such that v ∈ Feasible(a, t + 1), and
every t ∈ {0, . . . , T − 1},

ata,v,t+1 →
∨

u:(u,v)∈E,u∈Feasible(a,t)

ata,u,t, (H3)

and:

ata,u,t → shiftu,v,t, (H4)

for every u ∈ Feasible(a, t), every t ∈ {0, . . . , T}, and
every v such that (u, v) ∈ E and such that v ∈ V \
Feasible(a, t+ 1).

Formula (H1) can be regarded as a positive effect axiom
(Reiter 1991, 2001), which establishes that when agent a is
at vertex u and a shift from u to v occurs at time t, then a is
at v at time t + 1. Formula (H2) could be viewed as an ex-
planation axiom: if an agent has moved from u to v between
time t and time t + 1, then such a move is explained by a
shift from u to v at time t. Formula (H3) establishes that if
an agent is at a certain vertex u at time t+ 1, then at the pre-
vious time instant, it must have been at one of the predeces-
sors of u. Finally, formula (H4) could be viewed as a special
case of (H1) had (H1) been defined for any (u, v) ∈ E. In
such a case, we would have needed to account for the fact
that ata,v,t+1 is not defined—and thus should be considered
equivalent to false—when v 6∈ Feasible(a, t+ 1). In words,
(H4) says it is not possible to shift an agent to an unfeasible
vertex.

The following result provides a formal account of the cor-
rectness of our approach to encoding the agents’ locations,
by identifying the relationship between formulas (H1)–(H4)
and the successor state axiom of (SSA).

Proposition 1 The conjunction of:
F1. any formula logically equivalent to (C1),
F2. a formula specifying that every agent is in exactly one

location at t = 0, and
F3. clauses of the form ata,u,t, for every a ∈ A, u ∈ V \

Feasible(a, t), and t ∈ {0, . . . , T},
implies that (SSA) is equivalent to the conjunction of (H1)–
(H4).

Proof sketch: As a first step of our proof, we prove a lemma
(LEM) that establishes that F1, F2, and (SSA) imply that ev-
ery agent is at single location, for every t ∈ {1, . . . , T}. The
proof is by induction on t. Then, for the⇒ side of the proof,

we obtain (H1) and (H3) directly from (SSA) by syntactic
manipulation. We use LEM to simplify formulas of the form∨

j:(j,v)∈E;j 6=u ata,j,t into ata,u,t. This allows us to gener-
ate (H2). Then we obtain (H4) by simplifying (H2) with F3.
For the ⇐ direction, we use resolution between clauses in
(H2), (H4) and (H3) to obtain clauses, which, conjoined with
(H1)–(H4) result in (SSA). �

Encoding finalState variables We continue defining the
dynamics of the finalState variables. For every a ∈ A and
every t ∈ {d(start(a), goal(a)), . . . , T − 1} we define:

finalStatea,T , (H5)

ata,goal(a),t ∧ finalStatea,t+1 ↔ finalStatea,t. (H6)

The first formula, (H5), expresses that, at time T , agent a is
at its final state. Indeed, as required below by (H8), each
agent should reach its goal at time T . Formula (H6) ex-
presses that in t, a is at its final state if and only if it was
already at its final state at t+ 1 and a is still at its goal loca-
tion at time instant t.
Initial and Goal Conditions To define the start location
of the agents, we add, for every a ∈ A:

ata,start(a),0. (H7)

Note that it is not necessary to explicitly specify that the
agent is not at other locations different from start(a) at
t = 0, since start(a) is the only location that is in
Feasible(a, 0).

For the goal condition, we add, for every a ∈ A:

ata,goal(a),T . (H8)

Vertex Conflicts To make solutions comply with vertex
conflicts, we prohibit two or more agents occupying the
same vertex at a particular time, using the following cardi-
nality constraint: ∑

a:u∈Feasible(a,t)

ata,u,t ≤ 1, (C2)

for every t ∈ {0, . . . , T}.
Swap Conflicts To enforce solutions respect swap con-
flicts, we forbid one edge being used in two different direc-
tions at the same time step, using:

shiftu,v,t → shiftv,u,t, (H9)

for every (u, v) ∈ E, and every t ∈ {0, . . . , T − 1}.
Follow Conflicts To get solutions to respect follow con-
flicts, if there is a shift towards a specific vertex v, we force
that such a vertex to perform a shift towards itself, using the
following formula,

shiftu,v,t → shiftv,v,t. (H10)

Cost Minimization To minimize the sum-of-costs, like
Gómez, Hernández, and Baier (2021), we maximize the
number of time intervals for which each agent has been at
its goal state. To that end, we add the following soft clauses:

finalState(a, t), (S1)
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for each a ∈ A, and each t ∈
{d(start(a), goal(a)), . . . , T}. We associate the same
violation cost, equal to 1, with each clause.
Additional Constraints Up to this point our encoding
does not include redundant clauses. However, as we see
later in our experimental section, the MaxSAT solver bene-
fits from the inclusion of redundant clauses. This is because
these may trigger propagations that are helpful for the solver.
Below, we consider two redundant constraints, the first of
which is given by the following formula:

ata,u,t →
∨

v:(u,v)∈E,v∈Feasible(a,t)

ata,v,t+1, (H11)

for every a ∈ A, every u ∈ Feasible(a, t) and every t ∈
{0, . . . , T−1}, establishes that if an agent is at certain vertex
u at time t, then at time t+ 1 it will be at a neighbor v of u.
The second constraint establishes that each agent is at some
vertex of the graph at any given time. For every a ∈ A and
t ∈ {0, . . . , T}: ∑

u∈Feasible(a,t)

ata,u,t = 1 (C3)

The following results show in what sense these constraints
are redundant with the rest of the encoding.

Proposition 2 Formula (H11) is implied by the conjunction
of (H1) and any formula logically equivalent to (C1).

Proof: (C1) implies
∨

v:(u,v)∈E shiftu,v,t, for every u ∈ V ,
which together with (H1) implies (H11). �

Proposition 3 The conjunction of (H1)–(H4), and (H7) and
any formula logically equivalent to (C1) entails any formula
logically equivalent to (C3).

Proof sketch: By induction on the total number of time steps
of the encoding. In the base case (t = 0) (C3) holds by
definition. For the induction, if the property holds at t, using
(SSA) and (C1) we prove that, in t+ 1, (C3) holds. �

Another observation that is important to make at this point
is that the inclusion of (C3) in the encoding allows us to re-
move (H3), resulting in a more compact encoding. Indeed,
this is because the number of clauses produced by (H3) is
O(K · |E| · T ), whereas the number of clauses produced by
(C3) is O(S · |V | · T ), where S is a function that depends
on the way we encode cardinality constraints. Thus, substi-
tuting H3 may actually generate a more compact encoding.
Such a substitution is justified by the following result.

Proposition 4 The conjunction of (H1), (H2), (H4), (H7),
and (C1) implies (H3).

Proof sketch: We prove that the conjunction of (H1), (H2),
(H4), (H7), and the negation of (H3) implies the negation
of (C1), since it require agents to be at certain location in
t + 1 which is not a neighbor of a location in t, effectively
‘duplicating’ agents on the graph. �

Size of the Encoding
Any encoding constructed using the formulas above is at
least linear in the size of the graph, number of agents, and
time bound T , but the final size of the encoding depends on
the particular way we encode cardinality constraints:

Proposition 5 Let (ALL) denote the set that results from
taking the union of the clauses generated by (H1)–(H11) and
(C1)–(C3). The size of (ALL) isO(K · |E| ·T )+O(S ·(|V |+
|E|) · T ), where S is the size of the encoding for the cardi-
nality constraints.

Proof sketch: To prove the result, we observe that the num-
ber of clauses for (H1)-(H11) is bounded from above by the
number of edges of the graph, |E|, similarly, the number of
constraints of the form (C1). The number of constraints of
the form (C2) and (C3), however, are bounded from above
by |V |. �

SOC-optimal MAPF via MaxSAT
With the encoding in hand, now we describe how we find
SOC-optimal solutions to MAPF. A standard approach to
find a plan in SAT-based planning (e.g., Kautz and Selman
1992) is to iteratively increase the time bound of the encod-
ing until a solution is found. If one aims at cost optimal-
ity, this approach does not necessarily guarantees finding a
SOC-optimal solution since SOC-optimal solutions are not
necessarily makespan-minimal.

We follow a two-phase approach similar to the one
described by Barták and Svancara (2019) and Gómez,
Hernández, and Baier (2021). Phase 1 finds a Makespan-
minimal with minimum cost. Let such a solution be Πmin,
and its makespan be Tmin. To compute it, we iteratively in-
crement the bound of the encoding until a solution is found.
The lower bound of the iteration is set to the makespan of a
relaxed solution Πrel, in which no conflicts are considered,
and which is efficiently computed using Dijkstra’s algo-
rithm. In phase 2, we call the MaxSAT solver with an encod-
ing whose time bound is set to Tmin+c(Πmin)−c(Πrel)−1,
which provably (Surynek et al. 2016; Gómez, Hernández,
and Baier 2021) allows finding a SOC-optimal solution.

In our experimental evaluation we exploit the following
two observations, which despite their simplicity have not
been exploited by previous compilation-based approaches to
MAPF. First, there is no need to run the same solver config-
uration on both phases. Second, the solution found on the
first phase is a feasible (possibly non-optimal) solution for
the second phase call. This allows us to pass such solution
together with the input encoding to the MaxSAT call of the
second phase. As a result, the solver may perform better, es-
pecially when using LSU as the optimization algorithm.

An ASP Encoding
For space restrictions, we do not provide a complete back-
ground of ASP. Instead, here we show how we can incor-
porate our new encoding into the encoding of ASP-MAPF
(Gómez, Hernández, and Baier 2021). As we have explained
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above, the main difference between our encoding and ASP-
MAPF’s is that our decision variable. This implies that in-
stead of writing:
at(A,X,Y,T) :- exec(A,M,T-1),

at(A,X’,Y’,T-1),
delta(M,X’,Y’,X,Y).

we write:
at(R,X,Y,T) :- shift(X’,Y’,A,T-1),

at(R,X’,Y’,T-1),
delta(A,X’,Y’,X,Y).

To express only one action can be performed at each ver-
tex we use the cardinality constraint:
1 {shift(X,Y,A,T-1) : action(A)} 1 :-

free(X,Y), time(T).

Swap conflicts are encoded with the two restrictions, anal-
ogous to (H9):
:- shift(X,Y,east,T),shift(X+1,Y,west,T).
:- shift(X,Y,north,T),shift(X,Y+1,south,T).

Follow conflicts are expressed by translating (H10) di-
rectly. The resulting encoding is O(K · |V | · T ).

Experimental Evaluation
Our empirical evaluation had the following objectives.

1. Our encoding includes redundant constraints. We wanted
to evaluate whether or not redundancy provides any prac-
tical benefit.

2. As pointed out above, MaxSAT solvers can be run in
many configurations (e.g., LSU, MSU3, etc.). We wanted
to determine the best configuration.

3. Our encoding includes cardinality constraints, which can
be encoded in different ways. We wanted to evaluate the
relative performance of the resulting encodings.

4. We wanted to evaluate our encoding using ASP solvers
and compare to compilation- and search-based state-of-
the-art solvers.

Benchmarks Like other compilation-based approaches,
ours does not scale to large maps. Thus we use the bench-
marks used by Gómez, Hernández, and Baier (2021) which
are medium-scale maps, which are challenging for both
types of solvers.
AG: Instances in this set are 20 × 20 grids with 40 (10%)

randomly placed obstacles with a number of agents that
varies between 20 and 70, randomly distributed. Densest
instances have around 27.5% of their cells occupied. This
benchmark has 260 instances.

OBS: Instances in this are 20×20 with 20 randomly placed
agents. These instances have between 0 and 70 obstacles,
randomly placed on the grid. The densest instances have
around 22.5% of cells occupied. This benchmark has 150
instances.

WH: All the instances in this set correspond to warehouse
layouts of size 9 × 21 with aisles of width 1. These
instances vary in the number of agents, randomly dis-
tributed on the grid, which can be between 4 and 30. The
densest instances on the set have around 63.5% of cells
occupied. This benchmark has 140 instances.

AMO Encoding Clauses Aux. Vars.
Pairwise (naive) (pw) O(n2) 0
Bitwise (Frisch and Peugniez 2001) (bw)O(n log(n))O(log(n))
Cardinality Nets (Ası́n et al. 2011) (cn) O(n) O(n)
Totalizer (Joshi et al. 2015) (to) O(n) O(n)
Km-totalizer (Joshi et al. 2015) (kt) O(n) O(n)
Sequential Counter (Sinz 2005) (sc) O(n) O(n)

Table 1: At-most-one encodings and number of auxiliary
variables and clauses introduced to the encoding.

Our system, MtMS (MAPF through MaxSAT Solving)1,
is coded in C++ and integrated with the OpenWBO solver
(Martins, Manquinho, and Lynce 2014). All experiments
were run on a computer running Linux Mint 19.3 with an
Intel(R) Core(TM) i7-6700HQ CPU @ 2.60GHz and 16
Gbytes of RAM memory.

Algorithm Configuration
In this subsection we focus on the first three experimen-
tal objectives. We use a reduced set of hard instances of
the AG Benchmark set, with 78 out of the 260 original in-
stances, and a time limit of 100 seconds. To find the best-
performing configuration, we followed a fix-all-but-one di-
mension search. Henceforth the name of our solver is fol-
lowed by up to three suffixes. The first suffix abbreviates the
algorithm to encode at-most-one cardinality constraints. We
considered 6 different state-of-the-art algorithms for encod-
ing these. Both the suffix we use and the number of clauses
and auxiliary variables they employ are listed in Table 1.The
second suffix corresponds to the MaxSAT algorithm used in
each phase. Here we considered MSU3 (m) and LSU (l).
Hence, if the suffix is ml, it means we use MSU3 on the
first phase, and LSU on the second phase. OpenWBO im-
plements other algorithms such as Part-MSU3, and OLL.
We do not include them in this evaluation since they showed
poor performance. In particular, Part-MSU3 cannot handle
the size of our encoding. Finally, the third suffix is an op-
tional suffix indicating the encoding used. We describe the
encodings below.

Choosing an Encoding First we consider varying the en-
coding, while fixing the solving algorithm to MSU3 in both
phases and the at-most-one encoding to Km-totalizer. We
considered three encodings for testing:

• Encoding (0): Contains all constraints but (C3).

• Encoding (1): Contains all constraints.

• Encoding (2): A minimal encoding, which uses all con-
straints but (H3) and (H11).

Figure 1 (a) shows the performance of the encodings on
the reduced dataset. Encodings (0) and (1) have a similar
performance, and outperform (2) by a great margin. This
suggests that (H3) and (H11) help the conflict-driven clause
learning (CDCL) procedure of the SAT solver to guide

1Source code and benchmarks available at https://github.com/
robertoasin/MtMF
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Figure 1: Number of MAPF instances solved by MtMS using (a) 3 different MAPF encodings (b) 6 different AMO encodings,
and (c) 4 combinations of MaxSAT algorithms (MSU3:m, LSU:l) on phases 1 and 2.
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Figure 2: Comparison with ASP-MAPF and CBS-H2, without follow conflicts. (AG: left; OBS: center; WH: right.)
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Figure 3: Comparison with MDD-SAT, using follow conflicts. (AG: left; OBS: center; WH: right.)
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search, most likely because they strengthen propagation, re-
sulting in a reduction of the search space. We use the (0)
encoding in all remaining experiments.
At-most-one (AMO) encoding We continue investigating
the impact of encoding the cardinality constraints, leaving
the encoding fixed to (0) and the algorithm configuration as
fixed to “mm”. Figure 1 (b) shows that AMO encodings to,
cn, sc and kt are outperformed by the pairwise and bitwise.
Henceforth we use bitwise to encode cardinality constraints
due to its good performance on this benchmark and its good
scalability properties.
Algorithm for Each Phase Figure 1 (c) shows the perfor-
mance of MSU3 and LSU when used on phases 1 and 2. The
MSU3-MSU3 achieves better results in this reduced dataset;
nevertheless, we keep the MSU3-LSU combination for the
following experiments, since we observed that on harder in-
stances of the extended benchmark set, the latter yielded
better results. We think the reason that explains this is as
follows. When approaching the optimal value, LSU makes
many hard SAT calls. For harder benchmarks, the number of
hard SAT calls would be expected to increase, but by feed-
ing the solution of phase 1 to LSU on phase 2, LSU seems to
skip many hard SAT calls, guiding search more effectively,
outperforming its MSU3 counterpart.

ASP Encoding and State of the Art Solvers
We implemented our encoding in ASP (ASP-new, below)
and for our comparison with the state-of-the-art solvers, we
chose to compare to ASP-MAPF and MDD-SAT, since they
are both good representatives of compilation-based SOC-
optimal solvers. Moreover, we chose CBS-H2 (Li et al.
2019a) as a reference for search-based approaches. For all
solvers we use versions provided by their authors. ASP-new
uses the same codebase as ASP-MAPF. In addition, we in-
clude the BCP (Lam et al. 2019), an optimal MAPF solver
which is a hybrid solver integrating search-based MAPF
techniques with and integer programming compilation.

Since MDD-SAT produces solutions respecting follow
conflicts, but BCP, ASP-MAPF and CBS-H2 do not, we sep-
arate our experimental comparison in two parts, comparing
only against MDD-SAT with follow conflicts (Figure 3) and
without follow conflicts against BCP, ASP-MAPF and CBS-
H2 (Figure 2). We compare on all three benchmarks, with
the time limit set to 600 seconds per instance. We can make
the observations that follow.
Without Follow Conflicts. Both variants of our MaxSAT
approach: MtMS-bw-ml and MtMS-bw-mm outperform,
and our ASP-new encoding outperform ASP-MAPF and
CBS-H2 in all benchmark sets by a substantial margin
(cf. Table 3). MtMS-bw-ml outperforms BCP. ASP-new
scales better in domains with fewer obstacles and an increas-
ing number of agents, while the MaxSAT approach scales
better in domains with more obstacles.
With Follow Conflicts. For this comparison, we only use
MtMS-bw-ml, since this solver seemed more robust in the
previous setting. Our solver outperforms MDD-SAT by a
substantial margin (cf. Table 2). Like in the previous bench-
mark, ASP-new scales better in domains with fewer obsta-

MtMS MtMS ASP CBS ASP
-bw-ml -bw-mm -original -H2 -new

AG 237 243 186 156 257
OBS 94 91 64 68 91
WH 87 82 65 50 83
Total 418 416 315 274 431

Table 2: # of solved instances at time limit (600 seconds).

MDD-SAT MtMS-bw-ml ASP-new (follow)
AG 109 130 150
OBS 59 69 68
WH 47 61 55
Total 215 260 273

Table 3: # of solved instances using follow conflicts, at time
limit (600 seconds).

cles and an increasing number of agents, while the MaxSAT
approach scales better in domains with more obstacles.

Summary and Future Work
We presented a new Boolean encoding for SOC-optimal
MAPF. We studied extensively how this encoding can be ex-
ploited within MaxSAT solvers. The encoding is compact.
When implemented in ASP, it is linear on the number of
agents, size of the map, and makespan. When implemented
in MaxSAT the size depends on the encoding used for cardi-
nality constraints. Specifically, our encoding for vertex con-
flicts, done via a cardinality constraint, may result in a num-
ber of clauses that may be linear, quadratic or superlinear on
the number of agents, depending on the algorithm used to
encode AMO constraints. Our encoding contains redundant
clauses which, we show, benefit the solving process.

An important advantage of our encoding is that it can be
exploited with the latest state-of-the-art ASP and MaxSAT
technology, which has been designed for optimization. In
our experimental evaluation, we study different solving con-
figurations for MaxSAT, and determine that the bitwise en-
coding for AMO constraints together with a combination of
the MSU3 algorithm for phase 1, plus the LSU algorithm for
phase 2, results in the most effective configuration. Finally,
we show that this configuration is superior to other state-
of-the-art algorithms both search- and compilation-based, in
dense, relatively small benchmarks.

As future work we plan to study the efficacy of other
MaxSAT solvers and configuration. We also want to lever-
age this technology to scale to larger maps. Finally, it is
not hard to extend our approach to the combined target-
assignment and path-finding problem (TAPF). This is a topic
of ongoing and future work.
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