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Abstract

Heuristic search remains a leading approach to difficult com-
binatorial optimization problems. Search algorithms can uti-
lize pruning based on comparing a target score with an ad-
missible (optimistic) estimate of the best score that can be
achieved from a given state. If the former is larger they prune
the state. However, when the target score is too high the
search can fail by exhausting the space without finding a so-
lution. In this paper we show that such failed searches can
still be valuable. Specifically, best partial solutions encoun-
tered in such failed searches can often bear a high similarity
to the corresponding part of a full high-quality or even opti-
mal solution. Thus, a new search for a full solution, with a
lower target score, can start with a best known partial solu-
tion, rather than starting from scratch. We demonstrate our
ideas in a constraint optimization problem modelled on the
Romanian Crosswords Competition, a challenging problem
where humans perform much better than computers. Utiliz-
ing partial solutions produced by a failed search cuts down
the running time of an existing state-of-the-art system by or-
ders of magnitude on competition-level crosswords puzzle in-
stances and allows to solve more instances.

Introduction
Search remains a powerful approach to difficult combinato-
rial tasks including NP-hard problems. Many search prob-
lems also allow for solutions of varying quality thereby re-
quiring a solver not only to find a solution but a solution of a
higher quality. Such search problems can be framed as opti-
mization problems with solution quality (also called a score)
being the objective function.

In this paper we present a two-stage approach to improve
search for a high-score solution. In the first stage we use
heuristic search to generate a partial solution which ideally
bears a high similarity to a yet undiscovered high-score full
solution. In the second stage we use this partial solution as
an initial search state to search for a full solution.

Our two-stage approach can be used on top of any search
algorithm that takes a target score as a parameter and uses
it during the search to prune search states whose heuristics
values are below the target score. Thus a higher target score
induces more pruning.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Such a baseline search algorithm is used in both stages of
our approach as follows. In the first stage, the target score
is set to a value significantly higher than an actually achiev-
able score. The resulting search is thus called an overesti-
mation search. It exhausts the search space quickly due to
the aggressive pruning but does not find a solution. How-
ever, the best partial solution encountered in an overestima-
tion search is frequently similar to the corresponding part of
a high-quality or even optimal full solution. Several over-
estimation searches can be performed, each with a different
target score, until an acceptable partial solution is found.

In the second stage we set the target score to an achievable
value and start the search with the partial solution found in
the first stage. Then the second-stage search effectively com-
pletes the partial solution to a high-score full solution. If an
achievable score value is not known a priori then we can run
the second-stage search multiple times, starting with an up-
per bound on the optimal score and progressively reducing
it until a solution is found.

Despite having two stages of heuristic search, their com-
bined effort can be orders of magnitude smaller than the
effort to search for a full solution starting with an empty
solution. Intuitively, the first-stage search is fast due to ag-
gressive pruning while the second-stage search is fast due to
seeding it with a relevant partial solution.

To demonstrate the viability of the two-stage approach we
apply it to the Romanian Crosswords Competition, a prob-
lem that has spurred over five decades of annual national-
level competitions. This is a challenging problem where hu-
man creativity allows them to defeat the current state of the
art in Artificial Intelligence.

The task is to construct a 13 × 13 grid adding both black
cells and letters. Every cell needs to be filled with either a
letter or a black cell. Word slots of length 3 or higher need
to be filled with a valid word from one or several dictionaries
(list of words) given as input. Slots of length one can be filled
with any letter, and slots of length two can be filled with any
two-letter combination. A small fraction of the valid words,
called thematic words, have a score corresponding to their
number of letters. The score of a full grid is the sum of the
lengths of all thematic words.

In this paper we assume that the black cells are given as an
input and focus on filling up the grid with words with the ob-
jective of maximizing the puzzle score. We call crosswords
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grid generation the task of finding a valid way to fill a grid
with words from a list, given a configuration of black cells.
As such, we address an optimization variant of crosswords
grid generation, in line with the national annual competition.
This is in contrast to the typical textbook framing of cross-
words grid generation as a constraint-satisfaction problem,
without attempting to maximize a score.

To apply our approach to this optimization problem we
take an existing competitive puzzle generator based on
heuristic search. As it prunes search states using a target
score it is amenable to the two-stage approach outlined
above. We empirically evaluate the approach on instances
from the human competition, using black cell configura-
tions from top-level human-designed crosswords puzzles.
The two-stage approach improves the performance of the
baseline system by orders of magnitude which, in turn, re-
sults in significantly more instances being solved.

We make the following contributions. First we introduce
a simple but promising approach to significantly improving
the performance of a baseline heuristic search based system
for optimization problems. Second, we empirically demon-
strate the potential of this approach by reporting an orders-
of-magnitude improvement over a state-of-the-art heuristic
search system. Finally, we introduce the long-running Ro-
manian Crosswords Competition to the search community,
calling for its use as a challenging problem for heuristic
search research. Achieving and exceeding human perfor-
mance in games have been major drivers in Artificial Intelli-
gence research for decades (Schaeffer et al. 1996; Schaeffer
2008; Campbell, Hoane, and Hsu 2002; Buro 1997, 1999;
Silver et al. 2017). We hope that using this problem will lead
to interesting advances in heuristic search eventually netting
another victory for Artificial Intelligence over humans. To
get started we can make our code and data available.

Related Work
Existing work in crosswords grid generation focuses
more on the constraint-satisfaction variant ignoring the
score-optimization aspect. Early work is due to Ma-
zlack (1976), with a letter-by-letter filling approach. Gins-
berg et al. (1990) adopt a word-by-word filling strategy.
Meehan and Gray (1997) perform a comparison of these
two strategies and conclude that a word-by-word approach
is more effective. COMBUS is a more modern solver (Botea
2007; Anbulagan and Botea 2008). Part of the functionality
offered in COMBUS is reused in the baseline search algo-
rithm used in our work.

Botea and Anbulagan (2009) analyse the crosswords grid
generation problem in terms of phase transition and easy-
hard-easy behaviors. Such phenomena are observed when
varying parameters such as the size of a dictionary and the
percentage of black cells. Their work is limited to the stan-
dard problem, with no optimization component.

A simplified version of The Romanian Crosswords Com-
petition problem has been posed in the 2018 XCSP Com-
petition (Lecoutre and Roussel 2019). 13 instances are fea-
tured in the competition, with grid sizes ranging within
3 × 3, 4 × 4, . . . , 15 × 15. Eight instances remained un-
solved (Lecoutre and Roussel 2019). Audemard, Lecoutre,

and Maamar (2020) use the same representation as a testbed
for using segmented tables to encode constraints. The relax-
ation used in such work allows word repetition and isolating
parts of the grid from each other with black cells. While we
avoid such relaxations, we use a different simplification, re-
quiring a configuration of black cells as input.

Search algorithms often perform pruning based on upper
bounds on the solution cost. Branch and bound (Land and
Doig 1960) is a prominent example where lower and upper
bounds are explicitly used for pruning, as part of a search
for a full solution. We do not limit our approach to prun-
ing based on upper bounds. We additionally run dedicated
searches with target score upper bounds to obtain a partial
initial state for a subsequent search for a full solution.

Problem Definition
Our ideas apply to combinatorial search problems where
states are characterized by a score function, and the task is
to compute a solution with a high score. However, for clar-
ity, we apply our ideas to a specific such problem, namely
an optimization variant of a constraint satisfaction problem.

Definition 1. A constraint satisfaction problem (CSP) is a
tuple P = 〈X,D,C〉, where:

• X = {X1, . . . , Xn} is a set of variables;
• D = {D1, . . . , Dn} is a set of finite domains, with Di

corresponding to variable Xi;
• C = {C1, . . . , Cm} is a set of constraints. Each constraint
Cj is a pair 〈tj , Rj〉, where tj ⊂ X is a subset of p vari-
ables, andRj is a p-ary relation on the corresponding sub-
set of domains.

We defineD as an extension ofD that also contains a spe-
cial symbol ⊥ in each domain, to represent variables with
no actual value assigned yet. In other words, D allows rep-
resenting partial assignments.

Definition 2. An optimization CSP is a tuple 〈P , f〉, where
P is a CSP and f : D → R+ is a score function.

We say that a partial assignment s ∈ D is consistent if it
violates no constraint. A full assignment that is consistent is
called a solution. A solution is optimal if no other solution
has a larger score.

Romanian Crosswords Competition
The Romanian Crosswords Competition is an annual con-
test, started in 1965. Participants submit crosswords grids
with a score defined as the sum of the lengths of all words
in the grid coming from a special list of words called the
thematic list (dictionary). The competition is organized by
Rebus, a crosswords-dedicated Romanian publication. This
includes publishing the thematic list and the rules at the be-
ginning, and the results at the end, including the top 12 grids
in that year.

More specifically, the task is to construct a 13 × 13 grid
filled with valid words and no more than 26 black cells. In
a solution, every cell needs to be filled with either a letter
or a black cell. Words from two lists (dictionaries) can be
used to fill the grid. One is a generic Romanian dictionary,
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Figure 1: Semiclosure example on a toy grid. Adding one
more black cell, at position 1, would partition the grid into
two disjoint areas, each having more than one white cell.

with about 135 thousand words, which we call the regular
dictionary. Using words from the regular dictionary gives no
points. The second list, namely the thematic dictionary, is
much smaller. It changes every year, and the size is a few
hundred words. For example, in the nine-year dataset that
we use in our study in this work, the thematic dictionary
varies from 278 to 481 words, with the median size being
387. Using a word from the thematic dictionary gives a point
for every letter. Thus, every cell in the grid can give at most
two points, when it lies at the intersection of two thematic
words.

Given a configuration of black cells, we call a word slot
a set of contiguous white cells, on the same row or column,
where each end of the slot is adjacent to either the border of
the grid or a black cell.

Slots need to be filled with words from the two dictio-
naries, as said earlier. Furthermore, length-two slots can be
filled with any combination of two letters. Length-one slots
can be filled with any letter. Words cannot be repeated in
the grid, and neither can two-letter combinations. No solu-
tion can contain two or more words from the same so-called
family of words (e.g., WORK and WORKER).1 In a full so-
lution, every cell needs to contain a letter or a black cell.

Two black cells cannot share a common edge. Black cells
cannot partition the grid into disjoint areas. Furthermore,
semiclosures are forbidden. A semiclosure is a pattern of
black cells with the property that adding one more cell
would partition the grid into disjoint parts, and each disjoint
part would have two or more white cells. Figure 1 shows an
example.

The thematic dictionary that applies to a given year is re-
leased when the competition starts. Participants have around
three months to submit their entries.

Constructing a competition grid requires both adding
black cells and words. In this paper we assume that the
configuration of black cells is given as input. We focus on
adding the words, aiming at maximizing the score.

Standard crosswords grid generation, with no optimiza-
tion component, is a textbook example of a CSP. Thus, not

1In this work, we do not impose the family-of-words constraint,
as no mapping of words into their families was available. However,
a post-mortem analysis confirms that solutions obtained in the em-
pirical evaluation actually do respect this constraint.

Algorithm 1: OVEREST

Input: Instance: optimization CSP
Overestimation max target threshold Θ
Overestimation min threshold θ
Decrement step `
Max target for full-solution searches T
Min number of instantiated variables k
Output: Best full solution found if any

1 s0 ← ε
/* Overestimation searches */

2 t← Θ
3 while t ≥ θ do
4 bps← SEARCH(ε, t)
5 if bps has at least k instantiated variables then
6 s0 ← TRIM(bps)
7 break
8 t← t− `
/* Search for a full solution */

9 for t← T downto 1 do
10 s← SEARCH(s0, t)
11 if s is full solution then
12 return s

13 return failure

surprisingly, with the black points predefined, the Romanian
Crosswords Competition problem can be formalized as an
Optimization CSP as follows. Each slot defines a variable
whose initial domain has all words of the corresponding
length. Constraints impose that two intersecting slots agree
on the letter at their intersecting cell, and that no word or
two-letter group repeats on the grid. The score function for
a partially instantiated state is the sum of the lengths of all
words from the thematic list placed on the grid.

Combining Overestimation Search with a
Search for a Full Solution

In this section we present our main algorithmic contribution,
a two-stage approach to speed up the search for a solution.
The idea is simple to understand and easy to implement. In
the first stage, we run overestimation searches. The objective
is to obtain a partial state that could be used as an initial state
in the searches in the second stage. Searches in the second
stage aim at finding a full solution. Algorithm 1 shows our
two-stage approach in pseudocode.

As we will show in the empirical evaluation, often, the
combined search effort is much smaller than running stan-
dard searches, for the following two reasons. First off, over-
estimation searches benefit from an aggressive pruning. Sec-
ondly, second-stage searches benefit from starting from a
partially instantiated initial state, rather than starting from
scratch. See more details later in this section.

A key factor that enables the effectiveness of the approach
is the observation that, often, the best partial solution found
in an overestimation search can be the basis for a high-
quality full solution. We illustrate this in Figure 2, and we
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discuss in more detail in the section focused on trimming a
partial solution. The empirical evaluation presented in this
paper further shows that best partial solutions greatly over-
lap (on the subset of instantiated variables) with the best
known solutions.

OVEREST invokes a search algorithm at lines 4 and 10.
We require that such an algorithm implements pruning based
on a given target score. For example, take the sum of the
score of a given partial state, and an admissible (optimistic)
estimation of the best score that could be achieved in the rest
of the state. If this sum is below the current target, prune the
state at hand.

The parameters to method SEARCH shown in the pseu-
docode are the initial state of a search and the target score.
We denote an empty initial state (i.e., a state with no vari-
ables instantiated) by ε. We assume that the range of scores
is discretized. For simplicity, in this paper we assume that
the score takes positive integer values.

Overestimation Search
As seen in Algorithm 1, overestimation searches are just
standard searches. However, we set the target score to a
larger value than an achievable score. An overestimation
search can exhaust the search space relatively fast, as a large
target score can result in aggressive pruning. We start from
a target score t set to a maximum threshold Θ, and each
new iteration (i.e., new overestimation search) uses a t value
smaller by ` than the previous. The iterations at lines 3–8
in Algorithm 1 stop when one of the following two con-
ditions holds: either i) an overestimation search has found
a best partial solution with at least k instantiated variables
(line 5); or t reaches a minimum threshold θ (line 3). As
explained later in this section and in the experimental setup
section, imposing a threshold k for the number of instanti-
ated variables will ensure in turn that the partial initial state
used when searching for a full solution satisfies some min-
imum size condition. Otherwise, a very small partial initial
state would have a much more reduced impact on scalability.
See the experimental setup section for a discussion on how
parameters mentioned in this section are set in the experi-
ments.

Partial Solution Trimming
After validating (accepting) a best partial solution (line 5 in
Algorithm 1), the best partial solution is trimmed (line 6), to
obtain the state s0 that will be used as an initial state in the
second-stage searches.

The use of trimming is illustrated in Figure 2. The best
partial solution discovered in the overestimation search (left)
has a good but not perfect overlap with a full high-quality
solution. Trimming is an attempt to improve the overlap. In
the example shown, trimming achieves a perfect overlap (the
middle grid in the figure).

Intuitively, we want to trim away words that are less cou-
pled (interleaved) with the rest of the words in the partial
grid. The less coupled with other words the more likely that
a given word could be irrelevant. Take, for instance, word
ALOR in the grid in Figure 2 on the left. Ignoring, for sim-
plicity, any constraints on this word slot due to constraint

propagation, it is coupled with the rest of the grid through
only one letter. Several other 4-letter words with L on their
second position could potentially match in there.

Our trimming strategy is simple: ignore the last z variable
instantiations in the order they were performed, as the most
recently added words might be less coupled with the rest
of the grid. Selecting an actual z value is discussed in the
experimental setup section. As seen in the empirical eval-
uation this simple trimming works well, leading to a high-
quality solution (e.g., with a best known score) in a majority
of cases.

There is no guarantee that a partial best solution selected
in the first stage is a part of an optimal full solution. In other
words, our combined approach offers no guarantee that it
will return an optimal solution.

Searching for a Full Solution
In the second stage, the target score t starts from an upper
bound on the optimal score. The target score t is decreased
by 1 at each iteration, until a full solution is found. Each
search in the second stage is initialized to s0, rather than
starting from scratch (i.e., from an initial state with no vari-
able initialized). This can be a substantial benefit since a
partial state with m instantiated variables is equivalent to
getting the first m moves in the search for free. The search
explores only the corresponding subtree at depth m with a
size exponentially smaller than the original search tree. In a
sense, starting from a partial state is similar to using open-
ing books in two-player games such as Chess and Checkers
which provide good moves in the early stages of a game with
no search effort.

Baseline Search Algorithm
As shown in the previous section, our approach invokes a
baseline search algorithm at each of its two stages (lines 4
and 10 in Algorithm 1). We use a search algorithm avail-
able in Botea’s WOMBAT system. WOMBAT is a system for
optimization crosswords grid generation that requires a con-
figuration of black points as input. This section gives an
overview of the baseline search algorithm used in our ex-
periments. This is needed because no report on WOMBAT is
available in the literature.

In this paper we call the baseline algorithm WOMBAT-
DFS. It is based on depth-first search (DFS) and implements
several enhancements as follows.

WOMBATDFS treats each word slot of length greater than
2 as a variable. Instantiating a new slot (variable) involves
selecting the slot to fill and generating words that fit into the
slot, given the constraints in the state at hand. In the initial
state WOMBATDFS selects the first slot to instantiate with
a heuristic that quantifies the influence of that slot across
the entire state. For a given slot, its influence is computed
as the sum of the lengths of all intersecting slots of length
greater than 2. The larger the value, the larger the influence.
A highest-influence slot is selected, breaking ties at random.

In non-initial states the slot to instantiate is selected with
a popular heuristic in constraint satisfaction: prefer vari-
ables (slots) with a smaller branching factor. In particular,
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Figure 2: An illustration of similarity scores. On the right is a human-designed full puzzle. The partially filled grid on the left
has 63 letters, 50 of which match the human-designed puzzle. Its similarity score is thus 50/63 ≈ 0.79. The grid in the middle
loses 18 letters including all 13 mismatching letters. Its remaining 45 letters match the human-designed puzzle, yielding the
perfect similarity score of 45/45 = 1.

an empty variable domain shows a dead end, allowing to
prune an exploration path as soon as a dead end is detected.

However, unlike typical constraint satisfaction problems,
where the branching factor is the size of the domain of the
variable selected for instantiation, WOMBATDFS reduces
the branching factor as follows. It leverages the fact that the
domain of a given variable (slot) has two types of values,
namely thematic words and regular words. Thematic words
are relatively few in comparison to regular ones (e.g., in the
competition the regular dictionary is three orders of magni-
tude larger than the thematic dictionary). Instantiating a slot
considers either thematic words only or regular words only.
Specifically, every slot has a boolean flag initialized to true.
Assume that in a given state s the slot v to instantiate has
the flag set to true (never before instantiated), and it has m
thematic words and n regular words in the current domain.
WOMBATDFS generatesm+1 successors, with a significant
reduction in the branching factor relative to the full branch-
ing factor ofm+n. The firstm successors correspond to the
cases when the slot is instantiated with a thematic word. The
last successor does not instantiate the slot, but sets the flag to
false to indicate that thematic words have already been con-
sidered in v. Let s′ be this last successor of state s. When
s′ is instantiated, a slot with a smallest branching factor will
be selected, as for any other state. Given that v’s branching
factor in this new state will be n, which can be large, it is
likely that another slot, with a much smaller branching fac-
tor will be selected for instantiation in s′. Subsequently, in
the subtree rooted at s′, v may eventually need to be instan-
tiated when its branching factor is the smallest. However, by
then, constraint propagation – discussed later in this section
– could reduce v’s branching factor to values much smaller
than n. In effect, using thematic words at first and regular
words later effectively reduces the branching factor.

WOMBATDFS performs constraint propagation in the
fashion implemented in the COMBUS system (Botea 2007).
Every time a slot (variable) is instantiated with a word, con-
straint propagation shrinks the domains of other variables in
the problem, iteratively, until a fixed point is reached. See

Botea’s work (2007) for a detailed example of the constraint
propagation technique that is reused in WOMBATDFS.

Our two-stage approach presented in the previous sec-
tion requires that the baseline search algorithm implements
a pruning technique based on the target score. The higher the
target score, the more aggressive the pruning. In WOMBAT-
DFS score pruning works as follows. Given a partial state s,
its partial score g(s) is the sum of the lengths of all thematic
words in the partially filled grid. In addition, the method im-
plements an admissible (optimistic) heuristic h(s) for the
score that could be achieved in the rest of the grid. The
heuristic is computed as follows: for each slot that is not
fully instantiated, check if its current domain (after con-
straint propagation is applied) contains at least one thematic
word. If so then add the length of that slot to h(s). Now,
given a target score t, state s is pruned when g(s)+h(s) < t.

Experimental Setup
We run experiments on instances obtained from the Ro-
manian Crosswords Competition. Every year, the best top
12 solutions (grids with black cells and words) are pub-
lished by Rebus, the competition organizers. We have col-
lected human-designed solutions from nine years: 2007,
2008, 2011, 2013, 2014, 2016, 2017, 2018, and 2019. We
then created a testbed with 9× 12 = 108 instances. A given
instance takes a human-designed crosswords puzzle and dis-
cards all letters, replacing them with blanks. The black cell
configuration is preserved. The result is used as a starting
point for an AI crosswords puzzle generator such as the
methods described in this paper.

We compare our approach OVEREST to a baseline sys-
tem BASEITER. The latter performs standard searches for a
full solution, with initial state set to ε (grid with black cells
but no letters). Similarly to OVEREST, BASEITER iteratively
runs baseline searches, with decreasing target scores, until a
solution if found. See Algorithm 2 for the pseudocode.

Experiments are run in the Compute Canada2 environ-

2https://www.computecanada.ca/
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Algorithm 2: BASEITER

Input: Instance with black cell configuration but no
letters

Output: Best full solution found, or failure
/* Search for a full solution */

1 for t← T downto 1 do
2 s← SEARCH(ε, t)
3 if s is full solution then
4 return s

5 return failure

ment. Each solving process is a serial run on a CPU at
2.10GHz. Each baseline search had a timeout of 3 hours.
Solving an instance via iteration of the baseline search had
a timeout of 100 hours.

Algorithms 1 and 2 have a number of parameters to set.
We set Θ = 240, θ = 180, ` = 5, T = 215. That is, target
scores in overestimation searches start from 240, decrease
by 5 at a time and go down to 180, unless a partial solution
is returned earlier (which is typically the case). Searches for
a full solution start from a target score of 215, after which it
iteratively decreases by 1 at a time. These values are based
on the observation that, depending on the year, good scores
can start at around 170 and exceed 210. For example, best
known scores in our dataset range from 173 to 215.

Setting Θ above 215 (i.e., Θ = 240) allows overestima-
tion searches to build a partial solution. Setting Θ to values
above 240 does not add a significant overhead. The higher
the target score, the more aggressive the pruning. Thus, the
highest target scores induce the smallest search overhead.

Algorithm 1 further requires setting k, the minimum num-
ber of variables instantiated in a satisfactory best partial
state. We set k = 15. Trimming removes the 40% most re-
cent moves which implies that a partial initial state has at
least 9 variables instantiated.

The data used in experiments is publicly available
at url https://github.com/adibotea/rom-comp-data-wombat.
The source code of the systems used in experiments is avail-
able on request from the authors.

Empirical Evaluation
Figure 3 compares OVEREST (dual-stage search) to the
baseline in terms of CPU time on the subset of instances
where either both systems compute a solution with the same
score or only OVEREST succeeds. There were no cases
where BASEITER succeeded and OVEREST failed. Thus,
all remaining cases (not captured in Figure 3) are instances
where the two systems compute solutions of different scores.
We will address these separately later in this section.

Two main conclusions can be drawn from Figure 3. First,
OVEREST is 7 to 224 times faster on the 19 instances where
both approaches find solutions of equal score. Secondly,
OVEREST finds a solution in many more instances than the
baseline. This is quantified more precisely in Table 1.

Table 1 gives a summary of the solved instances, with and
without achieving the best known score. The best known
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Figure 3: Timings to generate solutions when both systems
find solutions with equal scores, or only OVEREST succeeds.

OVEREST BASEITER

Solved with best known score 58 23
Solved with weaker score 34 5
Total solved 92 28

Table 1: Summary of solutions found, with and without a
best known score. In all but two instances the best known
score coincides with the score submitted in the competition.

score is the maximum among the score submitted in the
competition by the human author of the instance at hand,
and the two values computed by the two systems, when they
find a solution. Remarkably, OVEREST improves the human
score in two instances. One of these new records is also
matched by BASEITER.

Table 1 shows that a majority of OVEREST’s solutions
have a best known score. Compared to human-computed
solutions, OVEREST’s average score degradation is 1.74%.
OVEREST solves 92 instances, compared to 28 by BA-
SEITER.

While OVEREST convincingly outperforms the baseline
approach there are five instances for which the baseline pro-
duces better solutions than OVEREST. This is due to the
fact that the partial initial states found in the overestimation-
search stage are not guaranteed to be a subset of a top-quality
state. Next we analyse partial initial states in more depth.
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Figure 4: Grid similarities to human-designed grids.
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Figure 5: Correlation between the similarity ratio after trim-
ming and the dual-stage search time. ρ is Pearson’s lin-
ear correlation coefficient. The dashed line shows the least-
squares linear fit between similarity and time.

Figure 4 plots the distribution of the similarity ratios be-
tween a best partial state and a best known full solution. Two
variants of such data are plotted, namely with the best partial
state before and after the trimming. Given a (trimmed) best
partial state and a full state, their similarity ratio is defined as
the number of cells where the letter coincides in the partial
state and the full state, divided by the number of letters in
the partial state. For example, a score of 1 indicates that the
partial state is a subset of the full state. In the figure, each
histogram bar corresponds to a bucket representing a score
range of size 0.1 (i.e., from 0 to 0.1, from 0.1 to 0.2, etc.)

Of course, the system has no knowledge of a best known
solution before or during the solving process. The similarity
ratios are computed after the system finishes its computa-
tion. Therefore, they are a metric that we apply in retrospect
to evaluate the quality of the best partial states before and
after trimming.

The similarity ratios of the best partial solutions, before
trimming, are interesting due to the fact that such best par-
tial solutions are the basis to obtaining the trimmed states
(i.e., the initial state in a search for a full solution). If the
quality were poor before trimming, it would be difficult or
even impossible to obtain a high-quality partial state after
trimming. The figure shows that 70.6% of all instances have
a similarity ratio of 0.8 or higher before trimming.

Recall that trimmed best partial states are used to initial-
ize a search for a full solution. A similarity ratio of 1 for a
trimmed state corresponds to the case where the search for
a full solution starts from a subset of the best known solu-
tion. We get a similarity ratio of 1 after trimming in 58.8%
of instances (not explicitly shown in Figure 4 as the figure
groups the data into buckets).

The differences between the similarity ratios before and
after trimming further show that trimming works well too,
significantly increasing similarity ratios.

Figure 5 shows the correlation between the search time
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Figure 6: Trimmed best partial solutions (left column) with
lowest similarity ratios to human solutions (right column).

and the similarity ratio after trimming. The larger the sim-
ilarity, the smaller the search effort. This can be explained
as follows. With a higher similarity (e.g., a perfect similarity
ratio of 1), the search is more likely to find a solution with
a higher score. This implies that the method finishes after
fewer iterations over steps 9–12 in Algorithm 1.

Current Shortcomings and Future Work
Figure 4 overall shows good results, but it also points out a
few poor cases that require a closer analysis. Indeed, these
results are obtained with simple techniques to generate best
partial states and to trim these. For example, in an overesti-
mation search, ties among best partial scores are broken at
random. Trimming simply erases a percentage of the most
recent moves.

Figure 6 shows the smallest two similarity ratios after
trimming. In both cases, the low similarity stems from the
fact that the best partial solution is a local optimum (i.e.,
a partial solution with a best possible score for area of the
grid filled with letters in that partial solution, that does not
necessarily expand into an optimal full solution).

At the top of Figure 6, words IOCASTA and CERNICA
in the best partial solution are thematic. Their counterparts
in the full best known solution are NATARAI and BAL-
TATE, both being regular. Thus, the best partial solution
found is a local optimum. The example at the bottom is sim-
ilar. Word VAHTANG in the best partial solution found is
thematic, whereas word NAFRAMA, the counterpart in the
best known full solution, is regular.

A simple way to address such cases in the future is to run
two or more independent overestimation searches, each se-
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lecting a different variable (slot) to instantiate in the initial
state. This could result in partial states with different scores
in each search, allowing to select the best one among them.
As Figure 4 indicates that such poor similarity ratios are
rather exceptional, trying to build several best partial states,
in different areas of the same instance, increases the chances
that at least one partial state will end up being more useful.

Trimming could potenially be improved by introducing a
measure of how tightly or loosely coupled a word is with
the rest of the grid. Then, we can trim away loosely coupled
words. Another idea is to consider ties among best partial
states encountered in an overestimation search. If such tied
best partial states have a high similarity with each other, their
common part could constitute the trimmed partial state.

We further plan to study what properties of the domain
and the test data correlate with the performance of the ap-
proach presented, and how these lessons could be used to ap-
ply our ideas to other combinatorial optimization problems.
Finally, we plan to explore efficient techniques to generating
good configurations of black cells.

Complexity
The decision problem based on standard crosswords grid
generation (i.e., given an instance consisting of a grid size,
a dictionary and a black cell configuration, decide whether
the instance admits a solution) is NP-complete (Garey and
Johnson 1979; Engel et al. 2012).

It immediately follows that the optimization variant (i.e.,
given an instance where some words are thematic, and a
number n, decide whether the problem admits a solution
whose score is at least n) is also NP-complete. Indeed, the
problem is in NP, as solutions can be verified in polynomial
time. The problem is also NP-hard, being a generalization
of the standard one (e.g., if all words are thematic then any
valid solution is optimal).

Conclusions
Heuristic search is a leading approach to solving difficult
combinatorial optimization problems. We have presented an
effective approach to speeding up a baseline search algo-
rithm that can perform pruning based on a target score given
as a parameter. Our dual-stage approach first finds a partial
state, which can then be used to initialize the search for a
full solution. We also presented The Romanian Crosswords
Competition, a challenging problem where human champi-
ons currently outperform AI. We demonstrated our ideas in
instances obtained from the competition top entries, by pre-
serving their black cell configuration and discarding the let-
ters inside. We convincingly speed up a competitive system,
solving more instances, and achieving a speedup that can
exceed two orders of magnitude.
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