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Abstract

Finding a shortest path in a graph is at the core of many com-
binatorial search problems. A closely related problem refers
to counting the number of shortest paths between two nodes.
Such problems are solvable in polynomial time in the size
of the graph. However, more realistic problem formulations
could additionally specify constraints to satisfy. We study the
problem of counting the shortest paths that are vertex disjoint
and can satisfy additional constraints. Specifically, we look at
the problems of counting vertex-disjoint shortest paths in edge-
colored graphs, counting vertex-disjoint shortest paths with
directional constraints, and counting vertex-disjoint shortest
paths between multiple source-target pairs. We give a detailed
theoretical analysis, and show formally that all of these three
counting problems are NP-complete in general.

Introduction
The shortest path problem is perhaps one of the most studied
combinatorial optimization problems. It has a wide range of
applications in areas such as artificial intelligence, operations
research, bioinformatics, navigation or vehicle routing. A
closely related problem is counting the number of shortest
paths between two nodes in a graph. The latter, which is
also known to be solvable in polynomial time, is relevant to
problems such as sensitivity analysis and strategic planning
(Byers and Waterman 1984; Cormen et al. 2009).

However, in many real-world scenarios it is important to
consider shortest paths that satisfy additional properties. For
example, in a logistics scenario, in order to minimize the risk
of failure, it may be relevant to compute a set of shortest
routes between a source and a destination in a road network
with the additional property that they do not have common
points of failure (i.e., do not share common nodes1 or road
segments) (Ahuja, Magnati, and Orlin 1993; Bast et al. 2016).
Constraints on the paths can arise, for instance, from the
fact that, at certain intersections, the possible directions to
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Intelligence (www.aaai.org). All rights reserved.

1We say that two or more paths are vertex disjoint if they have
no common vertices, other than the start and the end points.

continue depend on the incoming route. This can be due to
the physical configuration of the road, or the presence of
traffic signs (e.g., right turn only). These are examples of
directional constraints.

Similar requirements can be present in evacuations scenar-
ios in case of natural disasters. To minimize road congestion
during the actual evacuation, it could be relevant to compute
a set of diverse shortest paths from a particular source to
multiple destinations, such that the paths share no common
points or road segments (Even, Pillac, and Hentenryck 2015;
Kumar, Romanski, and Van Hentenryck 2016).

In network flows problems, counting the paths between
a source and a destination, under the condition that paths
satisfy additional constraints, can be used to compute the
strength of a relation between the two vertices in the graph
(Edmonds and Karp 1972; Ahuja, Magnati, and Orlin 1993).

Social networks and, more generally, knowledge graphs
allow to consider heterogeneous types of edges, to describe
multiple types of relations between entities. For example, in
a social network, “friend” and “colleague” can represent two
types of edges. Graphs with edges labelled with a type are
also called edge-colored graphs. Vertex-disjoint paths with
coloring constraints are relevant in problems such as social
network analysis (Wu 2012).

Thus, vertex-disjoint paths with and without constraints
are relevant in multiple domains. In this paper, we focus
on counting shortest vertex-disjoint paths with and without
constraints. More specifically, we consider the following
three related problems: (1) counting vertex disjoint shortest
paths in edge-colored graphs; (2) counting vertex-disjoint
shortest paths with ordering constraints; and (3) counting
vertex-disjoint shortest paths for multiple source–target pairs.
We show formally that, unlike the classical counting shortest
paths problem, these counting problems are all NP-hard.

The paper is organized as follows. Next we present related
work, followed by the technical background with definitions
and notations used in our analysis. Then we give the main
hardness results regarding the counting problems considered.
The last section provides concluding remarks and outlines
some directions of future research.
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Related Work
Finding disjoint paths in a graph has been studied exten-
sively in the literature. As summarized in this section, some
variants of disjoint path-finding are proven to be solvable in
polynomial time, while others are proven to be NP-hard. It is
therefore non-trivial to analyze the computational complexity
of our new variants.

Given a graph and k pairs of vertices
(s0, t0), (s1, t1), . . . , (sk−1, tk−1), the k vertex-disjoint
paths problem is to find k pairwise vertex-disjoint paths
connecting the pairs (si, ti), with i = 0, 1, 2, . . . , k − 1.
Karp (1975) proved that this problem is NP-complete when k
is a variable part of the input. The problem remains NP-hard
even if the graph is constrained to be planar (Lynch 1975;
Middendorf and Pfeiffer 1993). If k is a fixed number, k
pairwise vertex-disjoint paths can be found in polynomial
time in directed planar graphs (Schrijver 1994) as well as
in directed acyclic graphs (Fortune, Hopcroft, and Wyllie
1980), whereas the problem in general directed graphs is
NP-hard even if k = 2 (Fortune, Hopcroft, and Wyllie 1980).
Polynomial time algorithms have been found for undirected
graphs when k is fixed (Robertson and Seymour 1995;
Kawarabayashi, Kobayashi, and Reed 2012).

Optimization versions of the problem focus on short
vertex-disjoint paths. In the min-max k vertex-disjoint
paths problem, given a graph where each edge has
a non-negative integer length, and k pairs of vertices
(s0, t0), (s1, t1), . . . , (sk−1, tk−1), the task is to find k pair-
wise vertex-disjoint paths P0, P1, . . . , Pk−1 such that for
each i with 0 ≤ i ≤ k − 1, Pi is a path from si to ti and the
maximum length of the paths is minimized. Li, McCormick,
and Simchi-Levi (1990) proved that this problem is strongly
NP-complete for both directed and undirected graphs even
when k = 2. Moreover, the problem is strongly NP-hard
for general directed graphs when s0, s1, t0 and t1 are distinct
(Itai, Perl, and Shiloach 1982). In the min-sum k disjoint paths
problem the task is to minimize the total length (minimum
sum) of the paths. The problem is NP-hard in general (Karp
1975; Fortune, Hopcroft, and Wyllie 1980), with a few known
cases that are solvable in polynomial time (Scheffler 1994;
Kobayashi and Sommer 2010; Verdière and Schrijver 2011).

The length-bounded k vertex-disjoint paths problem
is defined as follows. Given a graph in which each
edge has a non-negative integer length, k pairs of ver-
tices (s0, t0), (s1, t1), . . . , (sk−1, tk−1), and k length upper
bounds b0, b1, . . . , bk−1, find k pairwise vertex-disjoint paths
P0, P1, . . . , Pk−1 such that for each i, 0 ≤ i ≤ k − 1, Pi

is a path from si to ti and the length of Pi is at most bi.
For directed graphs the problem is NP-complete even when
k = 2 and the graph is a directed acyclic graph (Itai, Perl,
and Shiloach 1982). For undirected graphs the problem is
NP-complete even when k = 2 (Li, McCormick, and Simchi-
Levi 1990). Moreover, on an undirected planar graph, the
problem is strongly NP-hard for non-fixed k and is NP-
hard for k = 2 (van der Holst and de Pina 2002). Cai and
Ye (2016) presented fixed-parameter tractable algorithms for
this problem when parameterized by the length constraints bi
on (si, ti)-paths Pi for i = 0, 1.

In the max-disjoint-l-bounded-paths problem the task is

to find the maximum number of disjoint paths between two
distinct vertices s and t of length at most l. Itai, Perl, and
Shiloach (1982) and Bley (2003) showed that the problem
is solvable in polynomial time for both edge-disjoint paths
and vertex-disjoint paths, when l ≤ 3 and l ≤ 4, respectively,
and it is APX-complete for both types of paths when l ≥ 5.
When restricted to disjoint paths of a shortest possible length,
the problem admits a polynomial time solution (Tragoudas
and Varol 1997). Moreover, fixing the number k of paths
instead of the length l the problem is still NP-complete even
when k = 2 (Itai, Perl, and Shiloach 1982). Golovach and
Thilikos (2011) studied the parameterized complexity of the
problem and presented fixed-parameter tractable algorithms
parameterized in both k and l.

Eilam-Tzoreff (1998) introduced the k disjoint short-
est paths (kDSP) problem. Given a graph and k pairs
of distinct vertices (s0, t0), (s1, t1), . . . , (sk−1, tk−1), find
whether there exist k pairwise disjoint shortest paths Pi, be-
tween si and ti for each i, with 0 ≤ i ≤ k − 1. It can be
defined on directed or undirected graphs and the paths can
be vertex disjoint or edge disjoint. These four problems are
NP-complete when k is part of the input, even for planar
graphs (Eilam-Tzoreff 1998). In the same paper, polynomial
time algorithms are also presented for the undirected 2DSP
problem for both vertex disjoint and edge disjoint paths.

Wu (2012) presented a variant of the problem called the
maximum disjoint paths problem on edge-colored graphs
(MaxCDP). It arose from social network analysis (SNA)
where different kinds of relations are considered. Given a
graph, and two terminals s and t, the goal is to find the max-
imum number of vertex-disjoint paths consisting of edges
of the same color (also called uni-color paths) connecting s
to t. MaxCDP is polynomial time solvable when the input
graph contains exactly one color, while it is NP-hard when
the edges of the input graph are associated with at least two
colors (Wu 2012). The length-bounded version of the prob-
lem (l-LCDP) is proven to be NP-hard when l ≥ 4, while it
is polynomial time solvable for l < 4 (Wu 2012).

Notation and Definitions
Let G = (V,E) be an undirected graph with V being the
set of vertices and E being the set of edges. Two vertices
vi, vj ∈ V are adjacent if they are incident to an edge ei,j
in E, i.e., ei,j = (vi, vj) ∈ E. A path in G is a sequence
of vertices π = (vi1 , . . . , vin) such that vij is adjacent with
vij+1

for 1 ≤ j < n. Given a non-negative real-valued weight
function f : E → R+, the cost of a path π = (vi1 , . . . , vin)

is defined as
∑n−1

j=1 f(eij ,ij+1
). A shortest path from s to t

is a path with a mimimum cost among all paths from s to
t. When each edge in the graph has weight 1, i.e., f is a
constant function f : E → {1}, a shortest path minimizes
the number of edges. The problem is also called the single-
pair shortest path problem. Other variations of this problem
include the all-pairs shortest path problem and single-source
or single-destination shortest path problems.

Given a graph G together with the source and destination
vertices s and t, respectively, there could be more than one
shortest paths between s and t. Clearly, these paths can have
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common vertices and/or edges. Computing the number of
shortest paths between s and t can be done in polynomial
time (Ahuja, Magnati, and Orlin 1993; Yen 1971; Eppstein
1998).

However, here we consider vertex-disjoint paths, which in
addition can feature constraints such as the following.
Definition 1 (Directional constraints). Given a graph G =
(V,E) and a vertex vb ∈ V , a directional constraint C on vb
is a function Ei that assigns to each edge ei,b = (vi, vb) ∈ E
incident to vb a set of edges Ei(ei,b) different from ei,b. A
path π in G satisfies the directional constraint C at vb if and
only if π includes an edge from Ei(ei,b) as an outgoing edge
from vb whenever ei,b is the incoming edge at vb in the path.

Definition 2 (Forced-sequence directional constraints). A
forced-sequence directional constraint C on a vertex vb is
a directional constraint where |Ei(ei,b)| = 1 for each edge
ei,b = (vi, vb) ∈ E adjacent to vb.

For example, at an intersection on a road map, it may be
forbidden to turn to the left or to the right, in which case
going straight is the only way to continue.
Definition 3 (Uni-color path constraints). A c-edge-colored
graph is defined as G = (V, ξ), where V denotes the set of
vertices of G and ξ = {E1, E2, ..., Ec} is a collection of c
edge sets. For 1 ≤ i ≤ c, Ei ⊆ V ×V is the edge set of color
i. A path π in G is called a uni-color path if all the edges of
π have the same color, that is they belong to the same set Ei,
1 ≤ i ≤ c.

In a heterogeneous graph representing various types of re-
lations between entities, some types of pathways representing
indirect relations between entities could be considered rele-
vant, whereas other types of pathways could be considered ir-
relevant. For example, consider two types of edges in a social
network, having the types FRIEND and COLLEAGUE. A two-
step pathway of the type FRIEND–FRIEND could be consid-
ered relevant, and so would be COLLEAGUE–COLLEAGUE.
However, FRIEND–COLLEAGUE might be considered irrele-
vant in our example.

Observe that the types of constraints presented in this
section are not necessarily mutually exclusive. For example,
as the name suggests, forced-sequence directional constraints
are a particular type of a directional constraint.
Definition 4 (Constrained paths). Given a graph G and a set
of constraints C, a constrained path relative to C is a path in
G that satisfies those constraints. When C is clear from the
context, we simply say a constrained path, with no explicit
reference to C.

Definition 5 (Constrained shortest paths). Given a graph G
and set of constraints C, a constrained shortest path is a path
in G that satisfies the constraints, and that has a smallest
cost among all paths in G that satisfy the constraints.

Definition 6 (Vertex disjoint paths). Given a graph G =
(V,E) and two vertices s, t ∈ G, we say that two or more
paths from s to t in G are vertex disjoint if they have no other
vertices in common except for s and t, respectively.

We will show next that, unlike counting shortest paths,
which can be done in polynomial time (Ahuja, Magnati, and

Orlin 1993; Yen 1971; Eppstein 1998), counting constrained
shortest paths that are also vertex disjoint is actually hard.

Counting Disjoint Uni-Colored Shortest Paths
in Edge-Colored Graphs

We consider counting shortest paths in graphs with col-
ored edges, which are also called edge-colored graphs or
c-edge-colored graphs when colors are taken from a set
[c] = {1, 2, . . . , c}. We are interested in counting uni-colored
shortest paths.

Definition 7. The NVD-USP2 problem is defined as follows.
Input: a edge-colored graph G = (V, ξ), a pair of vertices
(s, t), and an integer N . Let c∗ be the apriori unknown (i.e.,
not given as input) cost of a shortest uni-color path from s
to t. Question: Are there at least N vertex-disjoint shortest
uni-color paths (i.e., uni-color paths of cost c∗) from s to t?

Lemma 1. Given a colored graph G with z distinct edge
colors, the cost of a shortest uni-color path from a node s to
a node t can be computed in polynomial time.

Proof. It is sufficient to observe that we can consider z copies
of the graph, one limited to edges of the corresponding color,
compute the cost of a shortest path in each graph in polyno-
mial time, and take their minimum value.

Note that the proof idea to the previous lemma does not
imply that NVD-USP can be solved in polynomial time. In
other words, separately counting shortest uni-color paths, in
separate copies of the graph, does not give a solution to NVD-
USP. The reason is that, in NVD-USP, all paths considered
need to be vertex disjoint, a property that is not observed if
uni-color paths are considered separately from each other,
with one copy of the graph for each color. In fact, rather than
being solvable in polynomial time, we claim and prove below
that NVD-USP is hard. Specifically:

Theorem 1. NVD-USP is NP-complete.

Proof. Using Lemma 1, we can see that the problem is within
NP, as a solution can be verified in polynomial time.

We prove the hardness with a reduction from the set cover
problem (SCP), an NP-hard problem (Karp 1972). The SCP
problem definition includes a set of elements (universe) U =
{1, 2, . . . , n}, and a collectionE = {A1, A2, . . . , Am} ofm
subsets of U , with the property that the union of all subsets
is U . A sub-collection C of E is a cover if the union of all
subsets in C is equal to U . Given an integer k, the task is to
answer whether a cover of size no larger than k exists.

Given an arbitrary SCP instance, we build a NVD-USP
instance. We use a toy SCP problem as a running example. In
the example, U = {1, 2, 3, 4, 5}, E = {A1, A2, A3}, A1 =
{1, 2, 3}, A2 = {2, 3} and A3 = {4, 5}. Figure 1 illustrates
how to build the graph of the NVD-USP instance.

For each element in i ∈ U , we define a vertex Oi. In the
running example, there are five such vertices. For each subset
Aj , we define |Aj | vertices. Each such a vertex represents

2The acronym stands for Number of Vertex-Disjoint Uni-Color
Shortest Paths.
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Figure 1: Building the graph of the NVD-USP instance for
the running example.

the corresponding element in Aj . We denote these vertices as
Ci,j , where i is the index of the corresponding element in U .

For each subset Aj , we further define two vertices Fj and
Hj . Figure 1 shows this only for subset A3, to avoid clutter.

We define two more vertices, denoted as S and T .
There are two types of edges (colors), solid and dashed.

There is a solid edge from S to each vertex Oi. Furthermore,
we have solid edges from Oi to vertices Ci,j , for all j for
which Ci,j is defined. There is a solid edge from each vertex
Ci,j to T as well.

Dashed edges are defined as illustrated in Figure 1 for A3.
For each subset Aj , define a chain of dashed edges going
from S to Fj , then going through each vertex Ci,j defined
for Aj (in some arbitrary but fixed order), then going to Hj

and finally going to T .
In the graph built for the NVD-USP instance, we further

impose that the paths are constructed in such a way that
all solid paths and all dashed paths from S to T have the
same length. On a weighted graph, set the weights of edges
accordingly. On a unit-cost graph, insert additional vertices
along some edges, to obtain the desired property.

We claim that our instance has at least n+m− k disjoint
constrained paths from S to T iff the SCP instance has a
cover of at most k subsets.

Assume that our instance admits a set Z of at least
n +m − k disjoint constrained paths. With no loss of gen-
erality, assume that Z contains n solid paths. If Z contains
fewer than n solid paths, it follows that there exists a vertex
Op not contained in a path in Z. If none of the solid paths
S,Op, Cp,j , T (for all j where Cp,j is defined) is disjoint
from the current set Z, it follows that all vertices Cp,j are
already included in paths of the type S, Fj , . . . ,Hj , T (i.e.,
a dashed path). Remove one of these dashed paths from Z,
and add the solid path containing Op instead. Continue recur-
sively until n solid paths belong to Z. It follows that at least
m− k paths are dashed paths. This further implies that all n
solid paths go through at most k subsets Aj . In other words,

we have a cover set with at most k subsets.
Assume now that a cover set with at most k subsets exist.

Route n solid paths through those subsets, and define one
dashed path for each of the remaining subsets. These add up
to at least n +m − k disjoint constrained shortest paths in
total.

Counting Disjoint Shortest Paths with
Directional Constraints

In this section we consider the problem of counting the num-
ber of vertex-disjoint shortest paths under the assumption that
additional constraints such as directional constraints must be
satisfied. Before giving the hardness result, we start by defin-
ing formally the counting problem.
Definition 8. The NVD-CSP3 problem is defined as follows.
Input: a graph G = (V,E), a pair of vertices (s, t), a set
of directional constraints, and an integer N . Question: Are
there at least N vertex-disjoint constrained shortest paths
from s to t?
Lemma 2. Given a graph G and a set of directional con-
straints, the cost of a constrained shortest path between two
nodes s and t can be computed in polynomial time.

Proof. The cost of a constrained shortest path can be com-
puted, for instance, with a modified version of Dijkstra’s
algorithm (Dijkstra 1959). In this version, we allow defining
in the search several copies of a node v ∈ V , one copy for
each incoming edge into v. When expanding a given copy of
v, consider as successors only the outgoing edges that satisfy
the constraint at hand. (When no constraint is defined for the
pair containg v and the incoming edge at hand, all outgoing
edges are considered as successors). This increases the search
space by a polynomial factor, as the number of the copies of a
given node v is bounded by the number of its incoming edges.
The search considers only paths that satisfy the directional
constraints, and thus it returns a correct result (i.e., the cost
of a constrained shortest path).

Theorem 2. NVD-CSP is NP-complete.

Proof. Lemma 2 allows us to state that a solution can be
verified in polynomial time, and therefore the problem is
within NP.

We prove hardness using a reduction from the 3-
dimensional matching problem (3DM). The 3DM problem
is defined as follows. Let X,Y, Z be three finite and disjoint
sets, and let R ⊆ X × Y × Z be a relation between these
sets. Then M ⊆ R is a 3-dimensional matching if for any
two distinct triples (x1, y1, z1) ∈M and (x2, y2, z2) ∈M it
follows that x1 6= x2, y1 6= y2 and z1 6= z2, respectively.

Given a 3DM instance and an integer k, answering whether
there exists a matching M with |M | ≥ k is known to be an
NP-hard problem (Karp 1972).

Consider now an arbitrary 3DM instance. We build a graph
as shown in Figure 2, where all elements from X , Y and
Z generate one vertex each. For each triple (x, y, z) ∈ R,

3The name stands for Number of Vertex-Disjoint Constrained
Shortest Paths.
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Figure 2: A graph built from a toy 3DM problem.

Figure 3: A SAT-variable gadget. In this example, p = 3.

define two edges, (x, y) and (y, z). In a constrained path
S, x, y, z, T , we allow two consecutive edges (x, y) and (y, z)
iff (x, y, z) is a triple. Add two more vertices, S and T . Con-
nect S to all vertices corresponding to Z, and T to all vertices
corresponding to X . Observe that all paths between S and
T have the same length. The graph has at least k disjoint
constrained shortest paths from S to T iff the 3DM instance
admits a matching of size at least k.

Corollary 1. Theorem 2 holds even if the length of the short-
est disjoint paths is as small as 4.

In addition, we also have that:
Theorem 3. NVD-CSP is NP-complete even if the con-
straints are limited to forced-sequence directional constraints
only.

We will prove the hardness using a reduction from SAT.
In the literature, reductions from SAT have been used to
prove the NP-hardness of the decision problem correspond-
ing to multi-agent pathfinding with makespan optimization
(Surynek 2010), and a decision problem corresponding to
quantum circuit compilation (Botea, Kishimoto, and Mari-
nescu 2018). Our proofs in this work use related building

blocks. However, the problems we study are significantly
different, and their hardness proofs end up being significantly
different as well.

We present some auxiliary constructs which will be used in
the proof. Consider a SAT formula where, for each variable
v, the number of its positive literals is equal to the number
of negative literals. For a variable v in the formula, with p
positive literals and p negative literals, a SAT-variable gad-
get corresponding to v is a graph as illustrated in Figure 3.
Specifically, the vertices are structured on four layers. The
top layer has 2p vertices, and each of the remaining layers
has p vertices. Paths through such a graph have to satisfy the
following forced-sequence directional constraint. If a vertex
labelled as B is reached through a red-color edge, the path
must continue with a red4 edge. Likewise, if such a vertex is
achieved through a blue5 edge, the path must continue with a
blue edge.
Lemma 3. Consider a variable v with 2p literals (p positive
and p negative) in a propositional formula in the conjunc-
tive normal form (CNF). The maximum number of disjoint
constrained paths crossing v’s SAT-variable gadget is p. A
maximal set of disjoint constrained paths satisfies one of
the following conditions: they contain all vertices labelled

“True" and ignore all vertices labelled “False"; or they contain
all vertices labelled “False" and ignore all vertices labelled

“True".

Proof. By construction, all the paths going through the SAT-
variable gadget contain a vertex of type B. Since there are
p vertices of type B, the maximum number of disjoint con-
strained paths cannot exceed p. Moreover, due to the forced-
sequence directional constraint a path going through a vertex
labelled as B can either proceed towards a vertex labelled as
True or one labelled as False. Since the disjoint property
prevents two paths to share the same vertex B, it follows that
the maximum number of disjoint paths, i.e. p, is achieved
only when all the paths proceed towards the same type of
labelled vertex (either all the True vertices or all the False
ones).

Lemma 3 states that the corresponding number of paths is
maximized iff the Boolean consistency of the corresponding
variable v is ensured. In other words, either all positive literals
of v are set to true, and the negative literals are set to false;
or all positive literals are set to false, and the negative ones
are set to true. We are now ready to prove Theorem 3.

Proof of Theorem 3. Consider an arbitrary SAT instance in
CNF. We convert it into an equivalent CNF formula where,
for each variable, the number of positive literals is equal to
the number of negative literals. This can be performed as
follows: assume that initially variable v has op occurrences
as a positive literal and on occurrences as a negative literal,
with op 6= on. If on < op, add a clause (v ∨ ¬v ∨ · · · ∨ ¬v),
with op − on +1 copies of ¬v in that clause. If op < on, add
a clause (¬v ∨ v ∨ · · · ∨ v), with on − op + 1 copies of v in
that clause.

4Thick dashed line in black and white print.
5Thick solid line in black and white print.

32



Figure 4: A clause gadget. In this example, the clause (u ∨
¬v ∨ w) has three literals: u,¬v, w.

We build a graph as illustrated in Figure 5. As shown in the
figure, the graph includes two vertices S and T , which will
be the start–target pair of vertices for which we will count
the disjoint constrained shortest paths.

For each variable in the SAT formula, we build a SAT-
variable gadget. In Figure 5, the gadget corresponds to a
variable v with 3 positive literals and 3 negative literals. For
each clause c, we build a sub-graph called a clause gadget.
Figure 4 shows an example for a clause with three literals.
Each literal l in the clause generates a vertex lc, shown at the
top level. There are four more vertices, chaining up from Mc

to Nc, after which Nc is connected to each of the top-level
vertices. Clause gadgets are disjoint from each other.

Next we describe the so-called inter-gadget edges. Given
a variable v, there are p clauses that contain v and p clauses
that contain ¬v. We also have p True vertices and p False
vertices in the SAT-variable gadget of v. We (randomly) pick
a one-to-one mapping between the clauses that contain v
and the vertices labelled False. Assume that a given False
vertex is mapped to a given clause d containing v. We add
an edge between that False vertex and the corresponding
vd vertex in the clause d. Likewise, we map True vertices
onto clauses c containing ¬v. Then draw an edge between
the ¬vc vertex of a clause c and the vertex True mapped to c.
In Figure 5, inter-gadget edges are shown with green6 dashed
lines.

Finally, we connect S to all bottom-layer vertices of all
gadgets of both kinds. We also connect all top-layer vertices
of clause gadgets to T .

Observe that there are two types of paths between S and
T , called two-gadget paths and clause-specific paths, respec-
tively. We call a two-gadget path a path going from S into
a SAT-variable gadget, then exiting from the SAT-variable
gadget into a clause gadget via an inter-gadget edge, and
finally exiting the clause gadget and reaching T . We call a
clause-specific path a path going from S to the bottom-level

6Thin dashed line in black and white print.

vertex of a clause gadget, then crossing the clause gadget and
finally reaching T .

We claim that the SAT formula has a valid assignment
(making the formula true) iff our graph has at least l + m
disjoint constrained shortest paths, where l is the total number
of literals in the formula, and m is the number of clauses.

Assume that the SAT formula has a valid assignment. We
build a set of l +m paths. If, in the SAT assignment, a vari-
able v is set to true, add to our set of paths the constrained
paths that go through the SAT-variable gadget of v and con-
tain the True vertices. Otherwise, add the constrained paths
going through False vertices. According to Lemma 3, each
of these two alternatives maximizes the number of disjoint
constrained paths traversing that gadget.

By construction, a path containing a True vertex continues
through an inter-gadget edge to a vertex ¬vc that belongs to
a clause gadget. As such, when a variable v is set to true, no
vertex vd contained in a clause gadget (for some clause d)
belongs to any two-gadget path added to our set. Thus, such
a vertex can be used to construct a clause-specific path (for
clause d) all the way from S to T (likewise, a path through a
False vertex leaves ¬vc vertices available to be included in a
clause-specific path). Since each clause has at least one literal
set to true, it follows that we can construct m clause-specific
paths.

Conversely, consider a set of l +m disjoint constrained
shortest paths. The only way to achieve this number of paths
is to maximize the number of two-gadget paths, and in addi-
tion have m clause-specific paths. It follows that each SAT-
var gadget provides a maximum number of disjoint paths
crossing it (i.e., p paths for a variable v with p positive and
p negative literals). This further implies the Boolean consis-
tency, according to Lemma 3. Since each clause contributes
with one clause-specific path, it follows that each clause has
at least one vertex on the top layer not taken by a two-gadget
path. Set to true the literal corresponding to that vertex. This
results in a valid assignment to the SAT formula. �

Notice that, the proofs of Theorem 2 and Theorem 3 pro-
vide two results with different strengths. The former shows
that counting vertex-disjoint shortest path is NP-hard when a
directional constraint is imposed on a subset of vertices in
the graph (and it holds even if the length of the paths is ≥ 4
as stated in Corollary 1). On the other hand, the latter proof
shows that the problem is still NP-hard when a directional
constraint forces the paths to traverse a specific sequence of
edges.

Corollary 2. Theorems 2 and 3 hold even if the constraints
are limited to only one vertex per disjoint path.

Counting Disjoint Shortest Paths for Multiple
Source-Target Pairs

In the previous sections we focused on counting constrained
disjoint shortest paths for one source-target nodes pair in a
graph. In this section we tackle the problem of counting dis-
joint shortest paths for multiple pairs of source-target nodes,
without imposing any constraint on the paths.
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Figure 5: Building a graph for an NVD-CSP instance as a reduction from SAT.

Definition 9. The NVD-MPP7 problem is defined as fol-
lows. Input: a graph G = (V,E), a set of pairs of vertices
(s0, t0), . . . , (sR, tR), and a set of integers N0, N1, . . . , NR.
Question: Are there at least Ni shortest paths from si to ti,
for each i, with the property that all paths considered are
disjoint?

At a quick glance, it might seem that our previous results,
such as Theorems 2 and 3, imply the NP-hardness of NVD-
MPP. However, this is not the case. The reason is that, in these
previous results, the problem considered had constraints on
the paths, whereas NVD-MPP imposes no constraints. Thus,
we formulate the following claim.
Theorem 4. NVD-MPP is NP-complete.

Proof. The problem is in NP, as solutions can be verified in
polynomial time. The hardness is shown with a reduction
from the set cover problem (SCP). Given an arbitrary SCP
instance, we build an NVD-MPP instance as follows. We
use a toy SCP problem as a running example. In the exam-
ple, U = {1, 2, 3, 4, 5}, S = {A1, A2, A3}, A1 = {1, 2, 3},
A2 = {2, 3} and A3 = {4, 5}.8

Figure 6 illustrates how to construct the NVD-MPP in-
stance. For each element in i ∈ U , we define a vertex Oi. In
the running example, there are five such vertices. For each
subset Aj , we define |Aj | vertices. Each such vertex rep-
resents the corresponding element in Aj . We denote these

7This stands for Number of Vertex-Disjoint Multiple Source-
Target Pairs Paths.

8The reduction is related to Theorem 3’s proof, but with signifi-
cant technical differences.

vertices as Ci,j , where i is the index of the corresponding
element in U .

For each subset Aj , we further define two vertices Fj and
Hj . Figure 6 shows this for subsetsA1 andA3 only (skipping
A2), to avoid clutter. We define four more vertices, denoted
as S, T, S′, T ′.

Define an edge from S to each vertex Oi. Define an edge
from each Ci,j to T . Define an edge from S′ to each vertex
Fj , and from each vertex Hj to T ′. Define s0 = S, t0 =
T, s1 = S′, t1 = T ′, N0 = n and N1 = m− k.

If needed, we modify the graph to ensure that all paths
from S′ to T ′ and all paths from S to T have the same cost.
This is achieved, for example, by inserting additional nodes
and edges within some of those paths.

We claim that the SCP instance has a cover of size at most
k iff we have at least n shortest paths from S to T and at
least m− k shortest paths from S′ to T ′, with all these paths
disjoint from each other.

Assume that the SCP instance has a cover of size at most
k. It follows that there are n paths from S to T such that each
of these paths crosses some subset Aj contained in the cover.
For the remaining m− k subsets, define a path from S′ to T ′.
All paths mentioned here are disjoint from each other. See
Figure 6 for an illustration.

For the reverse implication, assume that we have at least n
shortest paths from S to T and at least m− k shortest paths
from S′ to T ′, with all these paths disjoint from each other.
Each of the m− k shortest paths from S′ to T ′ correspond
to one subset Aj . It follows that each of the n shortest paths
from S to T must cross one of the remaining k subsets. This
further implies that the remaining k subsets form a cover.
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Figure 6: Building the graph of the NVD-MPP instance for
the running example. The path S′, F2, C2,2, C3,2, H2, T

′ is
not shown, to avoid clutter.

Conclusion
Shortest path problems are perhaps amongst the most studied
combinatorial problems in computer science. Shortest path
problems come in many flavours, and they have many ap-
plications. For example, vertex-disjoint shortest paths that
might additionally satisfy directional constraints or uni-color
constraints have applications in areas such as logistics, evac-
uation scenarios and social network analysis.

In this paper we have focused on counting vertex-disjoint
shortest paths. Specifically, we have presented several vari-
ants of the problem, namely counting vertex-disjoint uni-
color shortest paths in edge-colored graphs, counting vertex-
disjoint shortest paths under directional and forced-sequence
directional constraints, and counting vertex-disjoint shortest
paths between multiple source-target node pairs. We have for-
mally shown that these counting problems are NP-complete.
This result is in contrast with the classical counting short-
est paths problem which is known to be polynomial time
solvable.

In the future, we plan to investigate the existence of
polynomial-time approximation algorithms for all the differ-
ent variants of the counting problem considered. We further
plan to explore efficient heuristics and algorithms for the
problems presented.
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