
Fast Bounded Suboptimal Probabilistic Planning with Clear Preferences on
Missing Information

Ishani Chatterjee, Tushar Kusnur, Maxim Likhachev
The Robotics Institute, Carnegie Mellon University
{ichatter, tkusnur, mlikhach}@andrew.cmu.edu

Abstract

In the real-world, robots must often plan despite the envi-
ronment being partially known. This frequently necessitates
planning under uncertainty over missing information about
the environment. Unfortunately, the computational expense
of such planning often precludes its scalability to real-world
problems. The Probabilistic Planning with Clear Preferences
(PPCP) framework focuses on a specific subset of such plan-
ning problems wherein there exist clear preferences over the
actual values of missing information (Likhachev and Stenz
2009). PPCP exploits the existence and knowledge of these
preferences to perform provably optimal planning via a se-
ries of deterministic A*-like searches over particular instanti-
ations of the environment. Such decomposition leads to much
better scalability with respect to both the size of a problem
and the amount of missing information in it. The run-time of
PPCP however is a function of the number of searches it has
to run until convergence. In this paper, we make a key ob-
servation that the number of searches PPCP has to run can
be dramatically decreased if each search computes a plan that
minimizes the amount of missing information it relies upon.
To that end, we introduce FAST-PPCP, a novel planning al-
gorithm that computes a provably bounded suboptimal pol-
icy using significantly lesser number of searches than that
required to find an optimal policy. We present FAST-PPCP
with its theoretical analysis, compare with common alterna-
tive approaches to planning under uncertainty over missing
information, and experimentally show that FAST-PPCP pro-
vides substantial gain in runtime over other approaches while
incurring little loss in solution quality.

Introduction
In many real-world planning problems, AI agents oper-
ate in partially known environments. One approach for the
agent to plan in such environments is by taking a deter-
ministic approach, i,e., planning by assuming some instan-
tiation of the variables that represent missing information
about the environment (unknown variables), executing few
actions of the plan, and replanning in response to sensing.
While computationally efficient, this approach may lead to
highly suboptimal behavior. In contrast, planning under un-
certainty allows an agent to be much more robust with re-
spect to missing information but also becomes computa-

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

tionally dramatically more expensive as it is a special class
of planning for Partially Observable Markov Decision Pro-
cesses (POMDPs) (Kaelbling, Littman, and Cassandra 1998;
Kochenderfer 2015).

As noted in (Likhachev and Stentz 2009), real-world plan-
ning problems often possess the property of clear prefer-
ences (CP), wherein one can identify beforehand clearly
preferred values for unknown variables in the environment.
For example, consider a robot navigating in a partially
known environment: it will clearly prefer for any unknown
region to be traversable rather than not. Another example is
the air traffic management problem, with unknown weather
conditions at certain locations: it is clearly preferred to have
weather suitable for flying than not.

Likhachev and Stentz showed that the property of clear
preferences, when combined with an assumption of per-
fect sensing—an assumption that there is no noise in sens-
ing and any sensing operation returns the true state of the
variable being sensed—can be utilized to compute optimal
policies in an efficient and scalable way. Specifically, they
introduced Probabilistic Planning with Clear Preferences
(PPCP) that scales to large problems by running a series of
fast, deterministic, A*-like searches to construct and refine
a policy, guaranteeing optimality under certain conditions
(Likhachev and Stentz 2009).

However, we often prefer feasible, marginally subopti-
mal policies over optimal ones if the former can be com-
puted significantly faster. Our key insight is that marginally
suboptimal policies can be found much faster if, when run-
ning a series of A*-like searches, a plan tries to minimize
the number of unknown variables it makes assumptions
about to reach its goal. To that end, we introduce FAST-
PPCP, a novel planning algorithm that computes a prov-
ably bounded-suboptimal policy using much lesser number
of searches than that required to compute an optimal policy,
for problems that exhibit clear preferences and assume per-
fect sensing (CP-PS problems); The paper presents theoreti-
cal analysis of FAST-PPCP and shows its significant benefits
in runtime on several domains.

Related Work
Planning for CP-PS problems is a special class of POMDP
planning. As such a multitude of POMDP solvers are appli-
cable. We summarize three main groups.

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

37

Point-based Methods. Point-based methods use a vec-
tor set of sampled points to represent the value function
and restrict value function updates to a subset of the be-
lief space (Shani, Pineau, and Kaplow 2013). PBVI oper-
ates only on reachable beliefs (Pineau et al. 2003); HSVI
and HSVI2 utilize a heuristic strategy to focus on regions
with high uncertainty (Smith and Simmons 2012); SAR-
SOP uses heuristic exploration to converge the to a subset
of points optimally reachable from the start, often outper-
forming HSVI2 (Kurniawati, Hsu, and Lee 2008).

Heuristic-search Based Methods. RTDP (Barto,
Bradtke, and Singh 1995) performs a series of trials that
consist of real-time lookahead searches leading to value
backups on greedy paths to the goal in MDPs; the ex-
tension RTDP-BEL operates in the belief space (Bonet
1998). LAO* generalizes heuristic search to solving belief
MDPs (Hansen and Zilberstein 2001). PO-PRP (Muise,
Belle, and McIlraith 2014) and ProbPRP (Camacho, Muise,
and McIlraith 2016) use a series of calls to classical planners
to iteratively construct and refine a policy for planning in
a partially observable environment. However, these two
methods neither exploit clear preferences nor aim to provide
any guarantee on the value of the computed policy.

Offline and Online Solvers. Typical POMDP solvers
compute a policy prior to execution. They take signifi-
cant time (sometimes hours) to terminate, and changes in
environment dynamics require recomputing policies from
scratch. In contrast, online solvers compute a finite horizon
(partial) policy for the current state of an agent, thereby in-
terleaving planning and execution (Ross et al. 2008). How-
ever, since these solvers have a finite, receding horizon, they
are subject to getting stuck in local minima. Popular Monte
Carlo simulation based online solvers include POMCP (Sil-
ver and Veness 2010) and DESPOT (Somani et al. 2013).

PPCP is a solver that is specifically designed for CP-PS
problems. It outperforms optimal solvers such as RTDP-
BEL, LAO*, PAO* (Ferguson, Stentz, and Thrun 2004),
and HSVI2 when applied to CP-PS problems. FAST-PPCP
also focuses on CP-PS problems but runs much faster than
PPCP—as we show experimentally— while guaranteeing
the value of the policy to be within a user-specified factor
of the optimal value (bounded suboptimality).

Problem Definition, Assumptions and
Background

Example Domain. We use the problem of robot naviga-
tion in partially known environments as a running example.
Consider in Fig. 1 a robot that has to navigate from start cell
(11, 48) to goal cell (51, 57) in the environment represented
by the 60× 60 grid (dark grey cells indicate blocked space).
We refer to this example as [Ex.]. The robot can occupy a
free grid-cell (light grey) and has eight move actions to move
in the cardinal and inter-cardinal directions by one cell. The
status of some states in the environment is unknown or hid-
den at the time of planning, which affects the outcomes of
some actions [Ex. The status (free/blocked) of the four cells
h1-h4 (2D coordinates shown) is unknown]. The robot can
also take a stochastic action sense-and-move, that senses an

Figure 1: Robot navigation between rooms with doors whose
status (open/closed) is unknown.

adjacent cell and moves the robot to it only if it is free, else
stays put. The cost of a move action is equal to the Euclidean
distance between two adjacent cells (1.4 for diagonal, 1 for
others). The cost of a sense-and-move action is follows the
cost of a move action if the hidden cell is free, else is 2.

Problem Definition and Assumptions. PPCP and
FAST-PPCP formulate a belief state as a vector of discrete
variables split into two components, X = [S(X);H(X)].
The deterministic component, S(X), is a set of variables
whose status is fully observable [Ex. robot’s 2D location].
The hidden component, H(X), is a set of variables repre-
senting the statuses of all unknown/hidden states. We denote
the ith unknown variable inH(X) by hi(X). hi(X) = u in-
dicates that hi(X) is unknown. [Ex. Cells h1-h4 are each
represented by an unknown variable of the same name;
hi = 0/1/u indicates the cell hi is free/blocked/unknown.
Xst = [(11, 48);h1 = u, h2 = u, h3 = u, h4 = u] repre-
sents the start belief-stateXst; the values of all the unknown
variables are unknown before planning starts].

We denote the set of actions applicable at a belief state
X by A(S(X)). Action a ∈ A(S(X)) is applicable at any
belief state Y where S(Y) = S(X). However, the outcome
of an action a depends on an unknown variable, and we de-
note the unknown variable inH(X) affecting its outcome by
hS(X),a. An action is deterministic [Ex. move actions] if its
outcome is unaffected by any unknown variable (hS(X),a =
NULL), and so it has only one outcome because the under-
lying environment is deterministic. An action is stochastic
[Ex. sense-and-move actions] if it can have multiple possi-
ble outcomes depending on the status of an unknown vari-
able. We assume that the assumptions A1-5 in Tab. 1 hold;
FAST-PPCP can be applied to any domain where they hold.

We denote the set of possible outcomes of action a taken
at a belief-stateX ′ by succ(X ′, a) in the belief-space and by
succ(S(X ′), a) in the underlying deterministic space [Ex.
2D grid]. We refer to X ′ as the predecessor of X . Note
that H(X) = H(X ′) for a deterministic action, whereas
for a stochastic action, H(X) is the same as H(X ′) ex-
cept for hS(X),a, which becomes known if it was unknown.
The probability distribution of transitions P (X|X ′, a) is
the same as that of the unknown variable hS(X′),a. Given

38

A1 The environment is deterministic, i.e., if the environment
were fully known at the time of planning, there would be
no uncertainty in the outcome of an action.

A2 The agent has a probability distribution or belief over the
status of the unknown variables.

A3 The true status of an unknown variable becomes known
immediately (perfect sensing assumption).

A4 Only one unknown variable can affect the outcome of
an action a taken at S(X). However, the same unknown
variable is allowed to affect outcome of another action
taken at another state.

A5 The variables in H are independent of each other and
therefore P (H) =

∏|H|
i=1 P (hi).

Table 1: Assumptions

assumption A5, X concisely represents a probability dis-
tribution over all possible states. [Ex. h1 in Fig. 1 repre-
sents the status of the unknown cell (15, 35) and affects the
outcome of the action sense-and-move taken on the adja-
cent cell (14, 36). Let X ′ = [(14, 36);u, u, u, u] be a be-
lief state. When taken on X ′, sense-and-move produces two
belief-state outcomes: X1 = [(15, 35);h1 = 0, u, u, u] and
X2 = [(14, 36);h1 = 1, u, u, u] both with a probability of
0.5]. If Xb, Xnp are the preferred and non-preferred out-
come of (X ′, a), then the cost C(X ′, a,Xb) of the edge
(X ′, a,Xb) in the belief-space = C(S(X ′), a, S(Xb)), the
cost of the corresponding edge in the deterministic space,
and C(X ′, a,Xnp) = C(S(X ′), a, S(Xnp)).

Clear Preferences: We assume that every unknown vari-
able’s clearly preferred value is known beforehand. [Ex. we
prefer that a hidden cell is free rather than blocked]. For any
X , let V ∗(X) be the expected cost of executing an optimal
policy (that minimizes expected cost to goal) from X . We
define clear preferences (Likhachev and Stentz 2009) as fol-
lows: For any given stateX ′ and stochastic action a such that
hS(X′),a is unknown, there exists a successor state Xb such
that hS(X),a(Xb) = b (we denote the clearly preferred value
using the variable b) [Ex. b = 0 representing free] and Xb =
arg minX∈succ(X′,a)

{
c(S(X ′), a, S(X)) + V ∗(X)

}
.

The planning problem is to compute a policy (defined in
Tab. 2) from Xst.

PPCP Overview and Motivation for FAST-PPCP. The
overall approach of PPCP is to compute an optimal policy
in the belief-space by running a series of A* (Hart, Nils-
son, and Raphael 1968)-like searches in the underlying de-
terministic environment instead of the exponentially larger
belief space. This approach turns out to be orders of mag-
nitude faster than solving the full problem at once since
the memory requirements are much lower. PPCP iteratively
constructs and refines a partial policy (defined in tab. 2) from
Xst, while updating V -values of the states reachable by fol-
lowing the partial policy. We make an observation that each
non-preferred outcome on the partial policy leads to an ad-
ditional PPCP iteration needed to define a policy from it.
Also, whenever the V -value of a non-preferred outcome is
updated, its predecessor on the policy gets a negative Bell-
man error. This gets accumulated up along the policy till the
outcome of a stochastic action (or Xst, whichever comes

Term Definition

Full Policy from
belief state X

Tree rooted at X s.t every branch reaches a
belief state Xg s.t S(Xg) = Sg for a given
goal Sg .

Partial Policy
from X

Policy rooted at belief state X that has at least
one belief state without a defined action.

Unexplored
belief state

Non-preferred outcome on a partial policy
from which a path has not been searched yet

Policy-devoid
belief state

Non-preferred outcome on a partial policy
without an action defined from it (Unexplored
belief states and belief states from which pol-
icy growth failed)

Table 2: Definitions

first) is encountered, at which point PPCP starts another it-
eration from this outcome (or Xst). To conclude, the num-
ber of iterations increases with an increase in the number of
stochastic actions in each branch of the partial policy.

Since PPCP continues to iterate until every outcome in
the policy has an action defined and has no Bellman error,
the number of PPCP iterations can be really high for en-
vironments with a large number of unknown variables, es-
pecially if stochastic actions lie lower (closer to a leaf node)
on the policy. [Ex. PPCP requires 159 iterations and 1.3 sec-
onds to find the optimal policy in this environment that has
only 4 unknown variables]. However, there exists a policy
in [Ex.] with expected cost of 93.8 that is only 1.04 times
higher than that of the optimal policy (90.1). FAST-PPCP
computes this policy with 3 search iterations in just 34 mil-
liseconds (ms), which is 40 times faster than PPCP.

This is because a FAST-PPCP search operates very dif-
ferently compared to PPCP search, in order to meet the fol-
lowing search objective: to compute a path that explicitly
minimizes the number of stochastic transitions in it, while
ensuring that including this path in the partial policy can re-
sult in a provably bounded suboptimal full policy πf from
Xst, when construction of the policy is completed. Also, it
has a novel policy growth strategy such that the first time the
search terminates, the policy is guaranteed to be bounded
suboptimal which leads to significant speedup. It also has
a novel strategy for scheduling the searches to ensure com-
pleteness.

Fast Bounded Suboptimal PPCP
Operation and Intuition in a Nutshell
In Fig. 2, we present a block diagram of the FAST-PPCP al-
gorithm showing how its algorithmic components/blocks in-
teract. FAST-PPCP iteratively develops partial policies into
a full policy πf rooted at Xst (definitions of partial and full
policy are in Tab. 2). It aims to find a πf that satisfies the
following: V πf (Xst) ≤ αV ∗(Xst), where V πf (Xst) is the
V -value (expected cost-to-goal) of following the full pol-
icy πf from Xst, α > 1 is a user-defined constant, and
αV ∗(Xst) , B∗ is the desired suboptimality bound. We
refer to such a full policy as a B∗-bounded policy. How-
ever, V ∗(Xst) is not known. Hence, before FAST-PPCP
begins, it computes V ∗L (Xst), a lower bound on V ∗(Xst)

39

Figure 2: FAST-PPCP block diagram of Main function
(Complete pseudocode in Appendix A in (Chatterjee 2021))

(Block 1.) which we describe at the end of this section.
FAST-PPCP ensures that the full policy it computes satis-
fies V πf (Xst) ≤ αV ∗L (Xst) , BL. We refer to such a policy
as a BL-bounded policy.

In an iteration i, FAST-PPCP either performs (1) Policy
Growth: adds a new branch to the current partial policy π̂i,
or (2) Policy Correction: replaces existing branches in π̂i.
FAST-PPCP terminates as soon as the partial policy it main-
tains becomes a full policy. If the combination of Policy
Growth and Policy Correction fails to find πf , FAST-PPCP
performs (3) Improvement of BL. Throughout its operation,
for every belief stateX in π̂i, FAST-PPCP maintains and up-
dates V -value estimates V̂ (X). For every policy-devoid be-
lief state X in π̂i specifically, it maintains V ∗u (X), an under-
estimate of V ∗(X), which is initially set to a known under-
estimate before FAST-PPCP begins. For any partial policy
π̂ from a belief state X , we define its expected cost V̂ π̂(X),
which is the same as the expected cost of a full policy except
that the V̂ -value of each policy-devoid belief state X in π̂ is
set to its corresponding underestimate V ∗u (X). For a partial
policy π̂i from Xst, FAST-PPCP maintains V̂ π̂i(Xst).

Policy Growth. In Policy Growth mode, FAST-PPCP
first picks any belief state Xp on π̂i without an action de-
fined from it. Initially, π̂i is empty and Xp = Xst (Block
2.). FAST-PPCP attempts to grow π̂i from Xp. Specifically,
it searches for a path ρbs from S(Xp) in the underlying de-
terministic space instead of the exponentially larger belief
space. This deterministic space is constructed assuming ev-
ery unknown variable in Xp is set to its preferred value,
and every observed/known variable in Xp—that was ini-
tially unknown when planning began—is set to its observed
value. [Ex. It searches in the 2D grid assuming every un-
known cell in Xp is set to free, and every hidden cell whose

status is observed in H(Xp) is set to the observed value
(free/blocked)]. The path ρbs maps to a corresponding path
in the belief space, ρbelbs , that consists of transitions that only
correspond to either deterministic actions, or stochastic ac-
tions with clearly preferred outcomes. We refer to this as the
primary branch corresponding to ρbs from Xp to goal. If ρbs
is found, FAST-PPCP then updates π̂i by adding ρbelbs to π̂i.
Next, we explain the objective and constraint used by COM-
PUTEBSPATH, the FAST-PPCP search to find ρbs.

COMPUTEBSPATH (Block 3.): In order to minimize the
number of stochastic transitions as its search objective,
FAST-PPCP ensures that the search computes the path with
the least number of stochastic transitions first as a candi-
date, ρc, for ρbs. Adding the primary branch ρbelc to π̂i will
result in the updated partial policy π̂c

i . To meet the bounded
suboptimality aim, FAST-PPCP additionally checks if π̂c

i

is NOT invalid—one that cannot be developed into an BL-
bounded policy no matter which unexplored belief state on
it is explored in the future. To do this, FAST-PPCP com-
putes V̂ ρ

bel
c (Xp), the expected cost of the partial policy that

corresponds to the primary branch ρbelc .

V̂ ρ
bel
c (Xp) is a lower bound on the V -value of any pol-

icy containing ρbelc that can be developed in future iter-
ations. This is because the V̂ -value of any policy-devoid
belief state X is maintained to be V ∗u (X), and we show
that any non-preferred outcome of a stochastic transition in
ρbelc can only be policy-devoid. FAST-PPCP then computes
V̂ π̂

c
i(Xst), the expected cost of π̂c

i , which consequently is
also a lower bound on the V -value of any policy contain-
ing π̂c

i . If V̂ π̂
c
i(Xst) > BL (rejection condition), no full BL-

bounded policy πf containing π̂c
i can be developed there-

after. Candidate ρc is then rejected: ρbelc is not added to
π̂i. In this way, FAST-PPCP sequentially computes candi-
date paths from S(Xp) in increasing order of the number of
stochastic transitions on them, and rejects them until a can-
didate path ρc is found, such that V̂ π̂

c
i(Xst) ≤ BL (formally

stated later in Theorem 1). We refer to ρc that meets this con-
straint as ρbs and the corresponding V̂ π̂

c
i(Xst) as V̂ π̂

bs
i (Xst).

UPDATEMDP (Block 5.): If ρbs is found (Block 4. Out-
come Y), ρbelbs is added to π̂i from Xp to get the updated
partial policy π̂bs

i , and V̂ (Xp) is updated to be the lower
bound V̂ ρ

bel
bs(Xp) computed during the search. FAST-PPCP

also updates the V̂ -values of belief states on ρbelbs .
UPDATEMDPREVERSE (Block 6.): Starting from Xp, it

backs up V̂ -values of every belief state on the branch in π̂i
from Xp up till Xst to remove their respective Bellman er-
rors. As a result, V̂ of (Xst) gets updated to V̂ π̂

bs
i (Xst).

COMPUTEPOLICYDEVOIDX (Block 7.): FAST-PPCP
then finds a policy-devoid non-preferred outcome in π̂bs

i . It
starts the next iteration of Policy Growth from this outcome.

When the final primary branch gets added to the main-
tained partial policy and it has no more policy-devoid out-
comes, a full policy πf has been found and FAST-PPCP ter-
minates (Block 8. evaluation fails). Since πf is no longer a
partial policy, V̂ πf (Xst) in this iteration is no longer a lower

40

bound but is the actual V -value of πf . Since V̂ πf (Xst) ≤ BL

has been ensured in Policy Growth, πf is BL-bounded, and
also B∗-bounded (formally stated later in Theorem 3).

Policy Correction. In Policy Growth, it is possible that
every candidate path ρc from S(Xp) is rejected by COM-
PUTEBSPATH (Block 4. evaluation fails) and Xp is not
Xst (Block 9. evaluation fails) because adding any of them
to π̂i results in an invalid updated partial policy π̂c

i with
V̂ π̂

c
i(Xst) > BL. While computing a ρc, FAST-PPCP main-

tains min V̂ ρ
bel
c (Xp), the minimum value of V̂ ρ

bel
c (Xp) over

all ρc computed so far. In this case, since every possible
path has been visited, min V̂ ρ

bel
c (Xp) is a lower bound on

V ∗(Xp). FAST-PPCP updates V ∗u (Xp) to min V̂ ρ
bel
c (Xp)

(Block 10.). Even if no branch is added to π̂i fromXp, back-
ups are still done as described from Xp up until Xst (Block
11.) to get the updated V̂ π̂i(Xst) which now exceeds BL.
FAST-PPCP then corrects π̂i by removing a safe primary
branch in it and trying to replace it with one that results
in an updated partial policy π̂cs

i with V̂ π̂
cs
i (Xst) ≤ BL. A

primary branch is safe if removing it does not discard any
BL-bounded policy if one exists. This guarantees that FAST-
PPCP finds a BL-bounded policy if one exists, or, is BL-
complete (formally stated later in Theorem 2).

COMPUTESAFEX (Block 12.): To find a safe primary
branch, FAST-PPCP looks for a non-preferred outcome
Xsafe in π̂i with a primary branch from it such that V̂ (Xsafe)
is a lower bound on V -value of any policy containing this
primary branch. FAST-PPCP can guarantee this is the case
only if: (1) this primary branch has deterministic transitions
only, or (2) every non-preferred outcomeXnp of a stochastic
transition on this primary branch is policy-devoid, and there-
fore has V̂ (Xnp) set to an underestimate of V ∗(Xnp). In this
case, keeping this primary branch in π̂i and performing Pol-
icy Growth via any such Xnp to obtain an updated partial
policy π̂+x will surely have V̂ π̂

+x

(Xst) ≥ V̂ π̂i(Xst) > BL

(i.e., no BL-bounded policy can develop from ρbelsafe with the
rest of π̂i unchanged). Hence, this primary branch can be re-
moved without missing a BL policy. FAST-PPCP resumes
Policy Growth from Xsafe in the next iteration. If Policy
Growth fails again, it continues Policy Correction to further
change π̂i by removing another safe branch.

Computation/Improvement of BL. Before it be-
gins, FAST-PPCP computes V ∗L (Xst), a lower bound on
V ∗(Xst), by running one iteration of PPCP (Block 1.). For
a very small α or V ∗L (Xst), it may be the case that no BL-
bounded policy from Xst exists. This is the case when ev-
ery candidate path is rejected by COMPUTEBSPATH (Block
4. evaluation fails) when attempting to grow the policy
from Xst (Block 9. evaluation succeeds). However, there
may exist full policies that are not BL-bounded but are B∗-
bounded, i.e., BL < V π(Xst) ≤ B∗ where V π(Xst) is the
V -value of the full policy π. To ensure completeness and
find these policies, FAST-PPCP performs Improvement of
BL: It increases BL by running PPCP iterations till V ∗L (Xst)
increases (Block 13.), and restarts afresh from Xst (Block
2.) using this increased (looser) value for BL. Increase in
V ∗L (Xst) is guaranteed in (Likhachev and Stentz 2009).

Implementation Details of Some Functions
We refer to Xp, the belief state from which FAST-PPCP
starts an iteration, as a pivot. 1 We assume familiarity with
A∗ search, g-, f - and h-values.

COMPUTEBSPATH Implementation. Pseudocode of
Procedure COMPUTEBSPATH is shown in Pseudocode 1. At
iteration i starting from pivot Xp, FAST-PPCP aims to find
a path from S(Xp) in a deterministic graph Gi = {Si, Ei}
where Si, Ei are the states and edges representing feasi-
ble transitions in the deterministic space. In order to en-
sure that the primary branch computed from Xp is feasi-
ble, the status of the hidden variables observed (known) ac-
cording to H(Xp) is used while determining Si, Ei: state
s is the clearly preferred/non-preferred outcome in Gi of
action a executed at s′ if hs

′,a is known to have clearly
preferred/non-preferred value inH(Xp). The unknown vari-
ables in H(Xp) are assumed to have their clearly preferred
value while determining Si, Ei: state s is the clearly pre-
ferred outcome in Gi of action a executed at s′ if hs

′,a is
unknown in H(Xp).

However, in order to meet the search objective and con-
straint explained in Policy Growth—which is to compute a
path ρbs from S(Xp) in Gi that minimizes the total number
of stochastic transitions on it such that V̂ π̂

bs
i (Xst) ≤ BL—

COMPUTEBSPATH is a backward A∗-like search run on
an augmented deterministic graph Gisto = {Sisto, Ei}. The
search is backward in order to allow the computation of
V̂ π̂

bs
i (Xst) by back-propagating values from the goal that

has its V̂ -value = 0. A search state n ∈ Sisto is defined as
n = [s, V̂ ρ(s)], where s is a state in Si, ρ is a path from s to
goal Sg in Gi. Ei is the same set of edges as in Gi. We first
describe the edge-costs in Gisto, then explain V̂ ρ(s).

Edge-costs in Gisto: We derive the edge-costs (Lemma
1-3, Appendix B in (Chatterjee 2021)) with the following
aims: (1) In Gisto, ordering paths according to their modified
cost is the same as ordering them according to their num-
ber of stochastic transitions. To ensure the path with mini-
mum number of stochastic transitions is the least cost path,
we need to make sure that the largest purely deterministic
path (consisting of deterministic transitions only) is strictly
less than the smallest path with a single stochastic transition
(which is a one-edge path with only one stochastic edge). To
satisfy this, we set the costs of deterministic and stochastic
transitions as β and |E|β respectively, where |E| is the total
number of edges in Gi. (2) Assume that a non-zero consis-
tent heuristic function hc(S(Xp), s) is known for the orig-
inal cost function in Gi [Ex. Euclidean distance is consis-
tent heuristic given edge-costs are Euclidean distance]. We
want to use the same heuristic in COMPUTEBSPATH. To do
this, we need to ensure that csto(n, a, n′) ≥ c(s, a, s′) for all
edges (s, a, s′) in Gi. Setting min csto(n, a, n

′) = cmax =
max∀(s,a,s′)∈Gi(c(s, a, s

′)) ensures this. Accordingly,

csto(n, a, n
′) =

{
|E|cmax a is stochastic
cmax a is deterministic

1Complete pseudocode in Appendix A in (Chatterjee 2021)

41

Pseudocode 1
1: procedure COMPUTEBSPATH(Xp, α, V ∗L (Xst), P (Xp|Xst, π̂i))
2: ng = [Sg, 0]; besta(ng) = NULL;
3: gsto(ng) = 0;
4: V ∗u (Xp) =∞;OPEN = ∅
5: Insert ng in ∆dom(Sg)

6: Insert Sg inOPEN with priority gsto(Sg) + hc(S(Xp), Sg);
7: while 1 do
8: ifOPEN is empty then . Policy Growth failed
9: V̂ (Xp)← V ∗u (Xp) updated during this search, π̂i(Xp) = NULL

10: and return FALSE

11: Remove search-state n with the smallest gsto(n)+hc(S(Xp), s(n))

12: inOPEN
13: if s(n) = S(Xp) then

14: V̂ ρ
bel
c (Xp)← V̂ ρc (S(Xp)), V̂ component of n =

15: [S(Xp), V̂ ρc (S(Xp))]

16: Update V ∗u (Xp)← V̂ ρ
bel
c (Xp)) if V̂ ρ

bel
c (Xp)) < V ∗u (Xp)

17: Update V̂ π̂
c
i (Xst) by replacing old V̂ (Xp) with V̂ ρ

bel
c (Xp), as

18: in Eq. 2
19: if V̂ π̂

c
i (Xst) ≤ αV ∗L (Xst) then . Policy growth is successful

20: V̂ π̂
bs
i (Xst)← V̂ π̂

c
i (Xst)

21: V̂ (Xp)← V̂ ρ
bel
c (Xp)

22: return TRUE

23: s← s(n)

24: for each action a∈A(s′) and predecessor s′ s.t s= S(succ(X′, a)b)

whereX′ = [s′, H(Xp)]

25: compute V̂ ρ
′
(s′) using Eq. 1 withX′ = [s′, H(Xp)]

26: search-predecessor n′ = [s′, V̂ ρ
′
(s′)]

27: if a is a stochastic action then
28: gsto(n′) = gsto(n) + |E|.cmax;
29: else
30: gsto(n′) = gsto(n) + cmax;

31: if n′ not visited before or ¬ISDOMINATED(n′) then
32: Insert n′ in ∆dom(s′)

33: Insert n′ inOPEN with priority gsto(n′) + hc(S(Xp), s′)

34: and besta as a;

35: procedure ISDOMINATED(n′)
36: return (gsto(n) ≥ gsto(n′) and V̂ (n) ≥ V̂ (n′)) for any
37: n ∈ ∆dom(s(n′)) . returns true if n′ is dominated by an n ∈ list of
38: ∆dom(s(n′)) undominated search-states of s(n′)

However, the cost csto of a path ρc from S(Xp) to goal in
Gi has no notion of the V -value of a policy from S(Xp)

containing ρbelc . Maintaining the second component V̂ ρ(s)
in state n serves this purpose.
V̂ ρ(s) computation: V̂ ρ(s) is computed as follows: Let

ρ′ be a path in Gi from s′ to goal. Let s be the outcome of
(s′, a) for an action a in ρ′. Let ρ′bel be the corresponding
primary branch of ρ′ from a belief state X ′ = [s′, H(X ′)].
LetXb = succ(X ′, a)b be the preferred outcome of action a
taken on beliefX ′. Since ρ′ maps to ρ′bel, which is a primary
branch, S(Xb) = s. Let ρ be the subpath from s to Sg and
ρbel be its corresponding primary branch from Xb. FAST-
PPCP recursively defines V̂ ρ

′
(s′) which can be computed

by backing up from Sg with V̂ (Sg) = 0 as follows:

V̂ ρ
′
(s′)=

∑
Y∈succ(X′,a)\Xb P (Y |X′,a)(c(s′,a,S(Y))+V̂ (Y))

+P (Xb|X′,a)(c(s′,a,s)+V̂ ρ(s)) (1)

V̂ ρ(s) is the same as V̂ ρ
bel

(Xb) which is lower bound on the

V -value of any policy from Xb containing ρbel (Lemma 6,
Appendix B in (Chatterjee 2021)).

Predecessor generation: Note that COMPUTEBSPATH
while searching does not keep track of H(·) part of the
belief states: while computing the predecessor of s which
corresponds to computing predecessor of Xb, FAST-PPCP
has the predecessor X ′ defined as X ′ = [s′, H(Xp)] (line
26). This implements the assumption that the hidden vari-
able hs

′,a sensed by executing a on s′, if it was unknown in
H(Xp), remains unknown in the primary branch fromXp to
X ′ and is sensed for the first time when Xb is generated as
outcome. More generally, it can only find a primary branch
from Xp that satisfies the condition C1: The primary branch
does not have two belief states X1 and X2 with actions a1

and a2 respectively that sense the same hidden variable in
H(Xp), i.e, hS(X1),a1 6= hS(X2),a2 (Formally stated in The-
orem 2). Since Ei is the same set of edges as in Gi, while
generating a predecessor n′ from n, COMPUTEBSPATH as-
sumes that each action a has only one outcome if , i.e., s(n)
is an outcome of action a executed at s(n′) (which is s′) if
and only if s = S(succ(X ′, a)b).

With search states and edge-costs as described, COM-
PUTEBSPATH searches backwards from [Sg, 0], expand-
ing states from the OPEN list in non-decreasing order of
gsto(n) + hc(n, S(Xp)) (Line 12), where hc is a consistent
heuristic and gsto(n) is the cost of the path ρ from s to goal
that corresponds to the state n = [s, V̂ ρ(s)] (Lines 3, 27-30).
V̂ π̂

c
i(Xst) computation: The first time a search state s =

[S(Xp), V̂ ρc(S(Xp))] is expanded, COMPUTEBSPATH has
found a path ρc from S(Xp) with the minimum number of
stochastic transitions in Gi, and the lower bound V̂ ρ

bel
c (Xp)(

= V̂ ρc(S(Xp))) of its corresponding primary branch ρbelc
from Xp. COMPUTEBSPATH then computes V̂ π̂

c
i(Xst), a

lower bound on any policy that can develop from the updated
partial policy π̂c

i , if ρbelc is added to π̂i. To compute this, it
replaces the old V̂ (Xp) with the current estimate V̂ ρ

bel
c (Xp)

to get V̂ π̂
c
i (Xst) as (Line 18):

V̂ π̂
c
i (Xst)←V̂ π̂i (Xst)+P (Xp|Xst,π̂i)(−V̂ (Xp)+V̂ ρ

bel
c (Xp)) (2)

where P (Xp|Xst, π̂i) is the probability of reaching Xp fol-
lowing the current partial policy π̂i from Xst. It then checks
if V̂ π̂

c
i (Xst) ≤ BL. If this is false, then ρbelc gets rejected and

COMPUTEBSPATH continues expansions from OPEN.
ComputeBSPath termination: COMPUTEBSPATH termi-

nates in either of the following cases: (1) when for the
first time n = [S(Xp), V̂

ρbelc (Xp)] gets expanded such that
V̂ π̂

c
i (Xst) ≤ BL (Line 19). Upon termination it returns a

path that meets the search objective given the constraint
(Theorem 1). Or, (2) when OPEN list is empty (Line 8) in-
dicating that policy growth failed from Xp. In this case, line
9. implements updating V̂ (Xp) with the minimum value of
V̂ ρ

bel
c (Xp) over all ρc in Gi.
COMPUTEBSPATH performs dominance checks (Line

31) through procedure ISDOMINATED (Pseudocode 1 Line
35). If a search-state n′ is dominated by any previously seen
search state nwith s(n) = s(n′) (Line 36-38), the sub-graph

42

Figure 3: FAST-PPCP operation in [Ex.]. Numbers 1 and 2
near a stochastic transition (solid arrows in a partial policy)
indicate transition costs. Outcomes of deterministic move
actions have been omitted (visualized as dotted lines).

that can be generated from n′ is pruned. This significantly
increases search efficiency.

COMPUTESAFEX Implementation. As mentioned in
Policy Correction, FAST-PPCP looks for a non-preferred
outcome Xsafe in π̂i with a primary branch from it such that:
(1) this primary branch has deterministic transitions only, or
(2) every non-preferred outcome of a stochastic transition on
this primary branch is policy-devoid. To find Xsafe, COM-
PUTESAFEX first considers any arbitrary non-preferred out-
come Xe on π̂i that has an existing primary branch from it.
Starting from Xe, COMPUTESAFEX traverses down the pri-
mary branch from Xe. It sequentially visits each belief state
X in the primary branch and checks if the action π̂i(X) at
X—given by the current partial policy π̂i—is determinis-
tic, or every non-preferred outcome of taking π̂i(X) at X
is policy-devoid. If this is the case, then it moves down (to-
wards the goal belief state Xg) on this primary branch to
the preferred outcome of taking π̂i(X) at X (there is only
one outcome when π̂i(X) is deterministic). If not, then it re-
sets Xe as the non-preferred outcome of π̂i(X) that is not
policy-devoid and has an existing primary branch. It then
restarts the traversal down this primary branch.

Working Example. In Fig. 3 we present a working ex-

ample of FAST-PPCP in [Ex.] with α = 1.485. Before it
begins, FAST-PPCP computes V ∗L (Xst) = 63.4 by running
one PPCP iteration. αV ∗L (Xst) , BL = 94.1.

In its first iteration (i = 0), it starts Policy Growth with
Xst = [(11, 48), u, u, u, u] as the pivot. It attempts to find
a path from start state S(Xst) = (11, 48) in the 2D grid
G0 (3(a)) constructed assuming all the four hidden cells
are set to their clearly preferred value, denoted by 0, since
all of them are unknown in H(Xst). COMPUTEBSPATH
first finds a deterministic path with zero stochastic transi-
tions as the first candidate (when it expands from OPEN
a search-state n with s(n) = (11, 48) for the first time).
However, it gets rejected because its cost exceeds BL. The
second candidate path (3(a)) with one stochastic transi-
tion corresponding to a sense-and-move action at (29, 38)—
that senses the adjacent hidden cell h3 (30, 38)—is found
when n = [(11, 48), V̂ ρbs(S(Xst)) = 71.6] gets expanded.
V̂ ρbs(S(Xst)) is the same as V̂ ρ

bel
bs (Xst), the expected cost

of the partial policy that corresponds to the primary branch
ρbelbs (dotted blue rectangles in 3(b)) that ρbs maps to.

The updated partial policy at the end of first iteration
π̂1 , ρbelbs , and V̂ π̂1(Xst) = V̂ ρ

bel
bs (Xst) = 71.6. UP-

DATEMDP updates V̂ values of belief states along ρbelbs
from Xst(3(b) blue bold V̂ -values). COMPUTEPOLICYDE-
VOIDX searches for a policy-devoid outcome in π̂1 and finds
the non-preferred outcome [(29, 38);u, u, 1, u] (3(b) black
solid line rectangle) of the sense-and-move action at (29, 38)
when (30, 38) is sensed as blocked.

The second iteration grows π̂1 from Xp =
[(29, 38);u, u, 1, u]. This time it finds a path in G1 (3(c))
assuming the unknown hidden variables h1, h2 and h4 are
free but h3 is blocked, because h3 is known to be blocked
(=1) in H(Xp). COMPUTEBSPATH keeps rejecting other
paths until it expands n = [(29, 38), V̂ ρ

bel
bs (Xp) = 45.3]

that corresponds to the path ρbs (3(c)) and the primary
branch ρbelbs (dotted blue rectangles in 3(d)). For this ρbs,
V̂ π̂

bs
1 (Xst), the lower bound on the V -value of any policy

that can develop from the updated partial policy π̂bs
1 if

ρbelbs is added to π̂1, is 79.7 which is within BL. The value
79.7 is computed as in eq.2, using P (Xp|Xst, π̂i) = 0.5,
V̂ (Xp) = 29 which is the initialized Euclidean distance
between S(Xp) = (29, 38) and goal, V̂ π̂1(Xst) = 71.6, and
V̂ ρ

bel
bs (Xp) = 45.3 (3(d) blue bold V̂). In addition to updating

V̂ -values along ρbelbs , UPDATEMDPREVERSE corrects the
Bellman error of V̂ -value of [(29, 38);u, u, u, u] given its
non-preferred outcome [(29, 38);u, u, 1, u] got updated: its
updated V̂ according to the Bellman expectation equation
becomes 42.7 = 0.5 ∗ (1 + 37.2) + 0.5 ∗ (2 + 45.3) (3(d)
pink italics V̂). This Bellman backup is all the way up till
(Xst). The third iteration begins from the policy-devoid
belief state [(29, 45);u, 1, 1, u]. A path with no stochastic
transition qualifies as ρbs (ρbelbs shown in 3(e) blue). Since
no more policy-devoid outcomes exist in the updated partial
policy (3(e)), FAST-PPCP terminates (full policy shown in
3(f) by superimposing paths found in the three iterations).

43

Theoretical Analysis2

Theorem 1. Let P be the set of all paths in Gi (which is
same as the set of paths in Gisto) from S(Xp) to Sg in a Fast-
PPCP iteration i. For a path ρc ∈ P, let V̂ π̂

c
i(Xst) be the V̂

of the updated partial policy π̂c
i from Xst assuming the pri-

mary branch ρbelc gets added to π̂i. Let csto(ρc(S(Xp))) be
the cost of ρc in Gisto. COMPUTEBSPATH upon termination
computes a path ρbs ∈ P that satisfies:

ρbs = arg min
ρc∈P

csto(ρc(S(Xp))) s.t V̂
π̂c
i(Xst) ≤ BL (3)

given ρbs exists.

Theorem 2. (BL-Completeness) Let Πbl be a set of full poli-
cies from Xst in the belief-space, such that every πbl ∈ Πbl

satisfies two conditions: (C1) If there exists a pair of states
X1 ∈ πbl and X2 ∈ πbl, where X2 can be reached with a
non-zero probability from X1 following πbl and whose ac-
tions πbl(X1) and πbl(X2) are affected by the hidden vari-
ables hS(X1),πbl(X1) and hS(X2),πbl(X2), then it holds that
hS(X1),πbl(X1) is not the same as hS(X2),πbl(X2). (C2) The
V -value V πbl(Xst) of πbl from Xst is ≤ BL, where BL is the
lower bound on αV ∗(Xst) in the current iteration. If there
exists a non-empty set Πbl, then FAST-PPCP upon termina-
tion is guaranteed to find a full policy πf ∈ Πbl.

Theorem 3. The full policy πf starting from Xst computed
by FAST-PPCP upon termination satisfies V πf (Xst) ≤
BL ≤ αV ∗(Xst) and thus is bounded suboptimal.

Experiments
All experiments were run on a machine with an Intel®
Core™ i7-5600U CPU @ 2.60GHz × 4, and 15 GB RAM.
All algorithms were implemented in C++11, compiled using
the same optimization flag -03.

Domain 1: Robot Navigation in Partially Known En-
vironment. We compare FAST-PPCP with PPCP and
weighted-RTDP-BEL (WRTDP-BEL)—with a weight on
the admissible heuristic in RTDP-BEL (Bonet and Geffner
2009)—which serves as a suboptimal baseline belief-MDP
planner. We run experiments on 2D grids of size 60 × 60
(small) with 7, 11 and 15 unknown variables and 300× 300
(large) with 309 and 474 unknown variables (corresponding
to 30%, and 50% of the doors being hidden).

Results: Results in Tables 3 (small environments) and
4 (large environments) are averaged over 40 planning in-
stances. In small environments, FAST-PPCP with α = 1.5
computes a policy in 3 iterations on average, with expected
cost ∼ 1.03 times higher than the optimal, while being
∼ 36 times faster in environments with 7 and 15 unknowns,
and 25 times faster with 11 unknowns. However, with
α > 1.6 (we have reported for α = 2), FAST-PPCP chooses
purely deterministic paths over paths with stochastic actions.
WRTDP-BEL with weight 2 is unable to converge within
a timeout of 10 minutes (values reported at timeout). For
large environments with 309 unknowns, FAST-PPCP with
α = 1.5 and 1.7 computes solutions 1.03 higher than PPCP

2Full proofs/proof sketches in Appendix B in (Chatterjee 2021)

Algorithm Time(s) Exp. cost Iterations
un. = 7; α = 1.5
Fast-PPCP 0.03 ± 0.05 83 ± 12 3 ± 3
wRTDP-Bel 600 (timeout) 90 ± 10 237 ± 459
PPCP 1.10 ± 0.60 80 ± 10 139 ± 74
un. = 11; α = 1.5
Fast-PPCP 0.03 ± 0.04 83 ± 11 3 ± 2
wRTDP-Bel 600 (timeout) 90 ± 11 162 ± 305
PPCP 0.75 ± 0.46 79 ± 10 90 ± 56
un. = 15; α = 1.5
Fast-PPCP 0.03 ± 0.06 82 ± 12 3 ± 6
wRTDP-Bel 600 (timeout) 89 ± 11 171 ± 326
PPCP 1.17 ± 0.67 79 ± 10 141 ± 78
un. = 7; α = 2.0
Fast-PPCP 0.01 ± 0.003 85 ± 12 2 ± 0
wRTDP-Bel 600 (timeout) 94 ± 5 71 ± 65
PPCP 1.10 ± 0.60 80 ± 10 139 ± 74
un. = 11; α = 2.0
Fast-PPCP 0.03 ± 0.04 84 ± 12 2 ± 0
wRTDP-Bel 600 (timeout) 94 ± 5 67 ± 75
PPCP 0.75 ± 0.46 79 ± 10 90 ± 56
un. = 15; α = 2.0
Fast-PPCP 0.01 ± 0.003 85 ± 13 2 ± 0
wRTDP-Bel 600 (timeout) 95 ± 5 81 ± 100
PPCP 1.17 ± 0.67 79 ± 10 141 ± 78

Table 3: Navigation (small environments)

Algorithm Time(s) Exp. cost Iterations
un.= 309; α = 1.5
Fast-PPCP 13.16 ± 36.63 412 ± 60 4 ± 4.19
PPCP 146 ± 23 380 ± 53 758 ± 525
un.= 474; α = 1.5
Fast-PPCP 20.73 ± 43.7 514 ± 73 5.2 ± 5.6
PPCP 150 ± 0.1 384 ± 52 619 ± 379
un.= 309; α = 1.7
Fast-PPCP 5.97 ± 23.62 408 ± 62 2.51 ± 2.2
PPCP 146 ± 23 380 ± 53 758 ± 525
un.= 474; α = 1.7
Fast-PPCP 6.23 ± 24.58 539 ± 87 3.3 ± 3.7
PPCP 150 ± 0.1 384 ± 52 619 ± 379

Table 4: Navigation (large environments)

while being ∼ 11 and ∼ 25 times faster than PPCP. Similar
results are seen for both weights in the 474 unknown vari-
ables case. WRTDP-BEL is unable to converge within 30
mins for large environments.

Domain 2: RockSample. We chose the RockSample do-
main (Smith and Simmons 2012) that has a clear preference
of outcomes (it is preferred to sense a good rock over a bad
rock) to evaluate PPCP and FAST-PPCP in a discounted
belief-MDP setting with discount factor γ = 0.95. We main-
tain the perfect sensing assumption by removing “check”
actions and update the belief states accordingly. Appendix
C in (Chatterjee 2021) details the transformation we formu-
late to convert discounted-reward CP-PS belief-MDPs into
discounted-cost belief-MDPs to which PPCP and FAST-
PPCP can be applied. We compare with HSVI2 (Smith and
Simmons 2012) which, as shown in (Kurniawati, Hsu, and
Lee 2008), performs better than SARSOP for the RockSam-
ple domain. Results are averaged over 3 environments each

44

Algorithm Time(s) Exp. reward Iterations
RS(10,10)
Fast-PPCP 1.23 ± 0.20 21 ± 25 2 ± 0
PPCP 4.21 ± 1.28 51 ± 20 79 ± 52
HSVI2 600 (timeout) 12 ± 1 2215 ± 184
RS(15,15)
Fast-PPCP 5.12 ± 2.74 51 ± 120 2.11 ± 0.5
PPCP 44.13 ± 30.37 70 ± 150 203 ± 179
HSVI2 - - -

Table 5: RockSample (RS), with α = 1.1 for Fast-PPCP

for Rocksample(10, 10) and Rocksample(15, 15) and plan-
ning instances generated by varying the start state from top
to bottom at the left boundary for each environment (the goal
is any state on the right boundary).

Results: Results are summarized in Tab. 5. Note that the
values reported in column 2 are expected rewards V πR in-
stead of expected costs V πC , the relation given in Appendix
C in (Chatterjee 2021). For α = 1.1, in RockSample(10, 10)
problems, FAST-PPCP spends roughly a quarter of the time,
in ∼ 39 times fewer iterations than PPCP on average to ter-
minate, and in RockSample(15, 15) problems, FAST-PPCP
spends roughly one-eighth of the time, in∼ 100 times fewer
iterations than PPCP on average to terminate. For both
RockSample domains, HSVI2 takes longer than 10 minutes
to converge, and computing an explicit belief space for some
RockSample(15, 15) instances exhausts memory.

Conclusion and Limitations of FAST-PPCP
In this work, we present FAST-PPCP—a novel approach
to probabilistic planning in domains with clear preferences
over missing information. We achieve substantial decrease
in run-time while incurring little loss in solution quality
compared to PPCP as well as some popular baselines. One
limitation of FAST-PPCP is that it may be possible to con-
struct worst-case scenarios in which FAST-PPCP performs
computationally worse than PPCP. Another limitation is the
perfect sensing assumption which makes the scope of the
problem narrower than POMDP planning.

Acknowledgements
This work was supported in part by ONR grant N00014-18-
1-2775.

References
Barto, A. G.; Bradtke, S. J.; and Singh, S. P. 1995. Learn-
ing to act using real-time dynamic programming. Artificial
intelligence 72(1-2): 81–138.

Bonet, B. 1998. Solving large POMDPs using real time
dynamic programming. In In Proc. AAAI Fall Symp. on
POMDPs. Citeseer.

Bonet, B.; and Geffner, H. 2009. Solving POMDPs: RTDP-
Bel vs. Point-based Algorithms. In IJCAI, 1641–1646.
Pasadena CA.

Camacho, A.; Muise, C.; and McIlraith, S. 2016. From
fond to robust probabilistic planning: Computing compact

policies that bypass avoidable deadends. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 26.
Chatterjee, I. 2021. Fast Bounded Suboptimal Probabilis-
tic Planning with Clear Preferences on Missing Information:
Proofs and Complete Pseudocode. Technical Report CMU-
RI-TR-21-20, Carnegie Mellon University, Pittsburgh, PA.
Ferguson, D.; Stentz, A.; and Thrun, S. 2004. PAO for plan-
ning with hidden state. In IEEE International Conference
on Robotics and Automation, 2004. Proceedings. ICRA’04.
2004, volume 3, 2840–2847. IEEE.
Hansen, E. A.; and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. Artificial
Intelligence 129(1-2): 35–62.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE transactions on Systems Science and Cybernetics 4(2):
100–107.
Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998.
Planning and acting in partially observable stochastic do-
mains. Artificial intelligence 101(1-2): 99–134.
Kochenderfer, M. J. 2015. Decision making under uncer-
tainty: theory and application. MIT press.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP:
Efficient point-based pomdp planning by approximating op-
timally reachable belief spaces. In Robotics: Science and
systems, volume 2008. Zurich, Switzerland.
Likhachev, M.; and Stentz, A. 2009. Probabilistic planning
with clear preferences on missing information. Artificial In-
telligence 173(5-6): 696–721.
Muise, C.; Belle, V.; and McIlraith, S. 2014. Comput-
ing contingent plans via fully observable non-deterministic
planning. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, volume 28.
Pineau, J.; Gordon, G.; Thrun, S.; et al. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In IJ-
CAI, volume 3, 1025–1032.
Ross, S.; Pineau, J.; Paquet, S.; and Chaib-Draa, B. 2008.
Online planning algorithms for POMDPs. Journal of Artifi-
cial Intelligence Research 32: 663–704.
Shani, G.; Pineau, J.; and Kaplow, R. 2013. A survey
of point-based POMDP solvers. Autonomous Agents and
Multi-Agent Systems 27(1): 1–51.
Silver, D.; and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Advances in neural information process-
ing systems, 2164–2172.
Smith, T.; and Simmons, R. 2012. Point-based POMDP
algorithms: Improved analysis and implementation. arXiv
preprint arXiv:1207.1412 .
Somani, A.; Ye, N.; Hsu, D.; and Lee, W. S. 2013. DESPOT:
Online POMDP planning with regularization. In Advances
in neural information processing systems, 1772–1780.

45

