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Abstract

We present a novel way to measure the performance of
IDA* heuristics. With this measure of heuristic quality η, dif-
ferent heuristics for the same problem space can be compared
objectively without regards to a particular problem instance.
We show how η can be used to model the performance ex-
pectations of PDB heuristics. By drawing histograms of the
contributions of different parts of the search space to η, we
show what parts are most critical to the quality of a heuristic
and contribute to the long-standing question on what h values
are most critical to the performance of an IDA* heuristic.

1 Introduction
Heuristic search algorithms such as A* (Hart, Nilsson, and
Raphael 1968) and iterative deepening A* (IDA*, Korf 1985)
are driven by a heuristic function h(v). Giving a lower bound
to the number of steps needed to reach the goal vertex from
the current vertex v, the heuristic function allows the search
algorithm to disregard nodes in the search tree that cannot
possibly lead to the goal within the remaining distance bud-
get.

Of particular interest are pattern database or PDB heuris-
tics (Culberson and Schaeffer 1996; Korf and Felner 2002).
A PDB roughly simplifies a search problem, such that the so-
lutions of the simpler problem can be tabulated and looked
up at runtime. The distances of this simpler problem form an
admissible heuristic, often with considerable pruning power.

Heuristic functions are the key factor to search perfor-
mance. Designing heuristic functions is an active research
area with many breakthroughs in the past years. However,
not every improvement to heuristics gives equal results, and
the impact of adjusting heuristics for different parts of the
search space remains poorly understood.

In this paper, we introduce a new measure of heuristic
quality allowing us to compare heuristic functions indepen-
dently of a specific problem instance. In contrast to prior
measures such as average h value, this heuristic quality η
has a direct linear relation to the number of expanded nodes
and admits further analysis on how the h values of different
parts of the search space affect overall search performance.
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2 Background
Given a directed or undirected graph G = (V,E) and a
pair of vertices v0 and z, the iterative-deepening A* algo-
rithm IDA* (Korf 1985) finds a shortest path from v0 to z by
a series of bounded depth-first searches with progressively
larger depth d until a path is found. An admissible heuristic
function h(v) guides the search by providing a lower bound
for the number of steps needed to reach z from the current
candidate vertex v ∈ V , telling the search if z can be ex-
pected to be reached within the remaining depth budget.

In their foundational paper Time Complexity of iterative-
deepening A*, Korf, Reid, and Edelkamp (2001) estimated
the number of expanded nodes in one round of such an
IDA* search from a vertex v0 to depth d by

E(v0, d, P ) =
d∑

i=0

Ni P (d− i) (1)

where Ni is the number of vertices encountered at depth i of
an uninformed depth-first search from v0 and

P (i) = P[h(u) ≤ i ] (2)

is the probability that a vertex u chosen from the graph at
random has an h value of no more than i.

For Eq. 1 to apply, P (i) must be computed with respect
to the equilibrium distribution of the search space, which is
the distribution achieved by taking the limit of the distribu-
tion obtained after a random walk of k steps without returns
as k →∞ (see Korf 2007).

3 The Heuristic Quality η
While the limitations of Eq. 1 are well known (see Zahavi
et al. 2010) and more sophisticated analyses of the perfor-
mance of IDA* exist (Lelis, Zilles, and Holte 2013), we
would like to use E(v0, d, P ) to measure the performance
(or quality) of heuristics for a problem space in general as
opposed to a specific instance within this space. This makes
the limitations less important as we are not interested in an
accurate prediction of expanded nodes for a specific search,
but rather in understanding how the heuristic influences the
search process.

We start by following an observation due to Korf (2007)
that independently of v, the search front sizeNi grows expo-
nentially in i for many interesting search spaces. The base b
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of this exponential growth is called the branching factor of
the problem space. Setting

(3)Ni = bi

in Eq. 1, we obtain

(4a)E(b, d, P ) =
d∑

i=0

bi P (d− i)

and then flip the order of summation by swapping i and d−i,
allowing us to pull out bd.

(4b)
=

d∑
i=0

bd−i P (i)

= bd
d∑

i=0

P (i)

bi

The sum is made independent of d by summing to i = ∞
and accounting for the difference with an error term.

(4c)= bd
∞∑
i=0

P (i)

bi
− bd

∞∑
i=d+1

P (i)

bi

Using 0 < P (i) ≤ 1, we establish bounds for the error term

0 < bd
∞∑

i=d+1

P (i)

bi
≤ bd

∞∑
i=d+1

1

bi
=

1

b

∞∑
i=0

1

bi
=

1

b− 1
(5)

and show how the number of expanded nodes predicted
by Eq. 1 is proportional to bd with the heuristic merely con-
tributing a constant factor, regardless of what heuristic is
used.

bd
∞∑
i=0

P (i)

bi
− 1

b− 1
≤ E(b, d, P ) < bd

∞∑
i=0

P (i)

bi
(6)

We would like to express Eq. 6 in terms of p(i), the prob-
ability that a vertex u chosen from the graph according to
the equilibrium distribution has an h value equal to i.

p(i) = P[h(u) = i ] (7)

It is

P (i) =
i∑

j=0

p(i), p(i) = P (i)− P (i− 1). (8)

This is useful because as i surpasses the diameter of the
graph, P (i) assumes 1 but p(i) drops to 0. While the sums
in Eq. 6 have infinite terms, a reformulation in terms of p(i)
gives sums with only finitely many non-zero terms, making
them easier to evaluate.

Rewriting Eq. 6, we find that
∑∞

i=0 P (i)/b
i is related to

∑∞
i=0 p(i)/b

i through the geometric sum b
b−1 =

∑∞
i=1 b

−i.

(9)

b− 1

b

∞∑
i =0

P (i)

bi
=
∞∑
i=0

P (i)

bi
−
∞∑
i=0

P (i)

bi+1

=
∞∑
i=0

P (i)

bi
−
∞∑
i=1

P (i− 1)

bi

=
∞∑
i=0

P (i)− P (i− 1)

bi
+
P (−1)
b0

=
∞∑
i=0

p(i)

bi
.

From this, we define the heuristic quality η.

(10)
η =

∞∑
i=0

p(i)

bi

=
b− 1

b

∞∑
i=0

P (i)

bi

This is the constant factor by which a given heuristic h re-
duces the number of expanded nodes compared to an unin-
formed iterative deepening search. We then restate Eq. 6 in
terms of η:

b

b− 1
bdη − 1

b− 1
≤ E(b, d, P ) <

b

b− 1
bdη. (11)

With η, we have obtained a powerful tool to quantify how
much a heuristic function h(v) improves search perfor-
mance. Eq. 11 shows that the factor by which a heuristic
function improves the search is predicted to be independent
of the depth or specifities of the problem instance we solve,
making η a general, problem independent metric.

Intuitively, bd is the number of nodes at depth d of unin-
formed depth-first search to depth d, b

b−1 accounts for the
inner nodes in the search tree and η is the constant factor by
which the heuristic reduces the number of expanded nodes.
We decided to keep the factor b

b−1 separate from η to keep
η normalised in the sense that η = 1 for a trivial heuristic h
with h(v) = 0 everywhere.

Another way to see η is to view the heuristic h(v) as re-
ducing the depth of the search problem from d to an effective
depth

d′ = d− logb(1/η) (12)
such that a depth-first search to depth d using h(v) expands
as many nodes as an uniformed depth-first search to depth d′.

4 The Quality of Arbitrary Heuristics
While the definition of η seems simple enough, finding the
quality of arbitrary heuristics without knowledge about their
construction takes more effort. The general idea is to treat η
as an expected value

η = E[b−h(v)] (13)

over the equilibrium-distributed search space, allowing an
approximation of its value by the arithmetic mean of a ran-
dom sample of vertices. However, this approach quickly
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n steps random walk

IDA*: d(vn, z) = n ?

Figure 1: A vertex vn drawn by random walk from z = v0

fails for large search spaces as the vertices in the neighbor-
hood of z dominate the value of η but are only a minuscule
overall share of vertices.

For example, a PDB heuristic for the 24 puzzle using par-
titioning (a) from Fig. 3 has quality η = 4.562×10−22 with
standard deviation σ = 4.590 × 10−13 (when interpreted
as an expected value according to Eq. 13). To estimate this
quality to just one significant digit (i. e. with an expected
relative error of 10% at 95% confidence), about 4 × 1020

observations would be required, a clearly intractable num-
ber.

We get around this issue by sampling the search space
stratified by distance to the goal vertex z. As distance to the
goal vertex necessarily has a strong correlation to h value,
this scheme, named sphere stratified sampling, captures the
vertices with low h values in few small strata, allowing us to
get a decent estimate of η with a feasible number of samples.

As an example, the quality given above was measured to
an expected error of 0.73% at 95% confidence using only
about 5× 108 observations spread over 66 strata.

Sphere Stratified Sampling
With sphere stratified sampling, the search space is divided
(stratified) into spheres V0, V1, . . . , Vl−1 of vertices up to
some limit l where each sphere Vn holds those vertices at
distance n to the goal vertex z.

Vn = { v | v ∈ V, d(v, z) = n } (14)

A final stratum V≥l accounts for the rest of the graph.

V≥l = { v | v ∈ V, d(v, z) ≥ l } (15)

After having sampled the strata, the partial value of η for
each stratum is estimated in η0, η1, . . . , ηl−1, η≥l and then
combined into an estimate of η over the whole search space.
The quality is then found as the sum of the partial qualities.

Sampling Spheres A sample from Vn is taken by per-
forming a series of random walks of n steps from v0 = z
(cf. Fig. 1). In case of a directed graph, this walk is per-
formed with the direction of all edges flipped. At each step i,
we uniformly draw a random vertex

vi ∈ N ′(v0, v1, . . . , vi−1) (16)

where N ′(v0, v1, . . . , vi−1) is the neighborhood of vi−1
pruned in some way such that each v ∈ Vi is reachable
from z by some random walk.1 After n steps the walk con-
cludes, and we check if vn ∈ Vn by means of some search
algorithm. If it is, vn is accepted and added to our collection
of samples Ṽn. The observed probability of a sample being
accepted is kept track of in the sampling yield y.

Unfortunately, the sample collected this way is not uni-
form. While it is difficult to make the sample uniform, we
can compute the probability pvn of having accepted a ver-
tex vn into Ṽn after an n step random walk and compensate
for the bias later on. This can be done using information
we have already collected: if the verification search from z
to vn is conducted to completion, we obtain the set S(z, vn)
of shortest paths leading from z to vn. The probability of
reaching vn by one path (v0, v1, . . . , vn) ∈ S(z, vn) is the
product of the probabilities of having picked the right outgo-
ing edge at each step of the random walk. The probability of
having reached vn after a random walk of n steps is the sum
of the probability of each path by which it could have been
reached. Finally, we divide by y to get the probability of vn
being drawn as a sample under the precondition vn ∈ Vn.
This gives us

pvn
=

1

y

∑
(v0,...,vn)
∈S(z,vn)

n−1∏
i=0

∣∣N ′(v0, . . . , vi)∣∣−1. (17)

Using this probability, ηn can be obtained as

ηn =
|Vn|
|V |
|Ṽn|−1

∑
vn∈Ṽn

w(vn)

|Vn| pvn

b−h(vn), (18)

wherew(vn) applies the equilibrium weight explained in de-
tail in Sec. 5, |Vn| pvn compensates for the sampling bias,
and |Vn|

/
|V | scales ηn to be the part Vn contributes to η.

As it usually encompasses most vertices in the graph,
V≥l is sampled by picking vertices uniformly from V and
rejecting those that can be solved in less than l steps. This
can be done using an IDA* search that aborts as soon as the
budget f reaches l, indicating that the goal is at least l steps
away. As this is a uniform sample, bias needs not be com-
pensated and Eq. 19 can be used to find η≥l.

η≥l =
|V≥l|
|V |

|Ṽ≥l|−1
∑

v∈Ṽ≥l

w(v)

bh(v)
(19)

Sphere Sizes To estimate ηn using Eq. 18, the size of the
strata must be known. For small n, the size of Vn could be
computed by means of an exhaustive breadth-first search to

1For this work, the authors used a variant of finite state ma-
chine pruning (Taylor and Korf 1993) extended to detect and prune
moribund states. A state is 0-moribund if it is an accepting (i. e.
pruned) state and k-moribund if each outgoing edge of the state is
k − 1 or less moribund. If a k moribund state is reached with k or
less steps left in the random walk, every possible continuation of
the walk will lead to an accepting state before it could reach its
goal. A move leading to such a situation is pruned immediately.
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Figure 2: The solved configuration of the 15 puzzle as seen by the non-additive and the additive {1, 2, 3, 5, 6, 7} pattern database.
While the non-additive PDB admits 2 moves out of this configuration, the additive PDB has 5 moves, reflecting its higher
branching factor B > b.

distance n. While this approach becomes impracticable as
n grows, we can luckily estimate |Vn| to high precision using
the probabilities pvn collected during the sampling process.

The reciprocal size |Vn|−1 is the average probability of
each vertex in Vn being drawn and thus the expected value
of pvn assuming equidistributed vertices. We can model the
sampling process as a size-biased sample drawing biased ob-
servations of pvn

where the probability of having drawn each
observation is proportional to its value as the value pvn

is the
probability itself. Applying a theorem due to Cox (2005), the
expected value of reciprocals in a size-biased distribution is
equal to the reciprocal of the expected value in a uniform
distribution. That is, we have in the size-biased (i. e. sam-
pled) distribution

E[1/pvn
] =

∑
vn∈Vn

pvn
/pvn

=
∑

vn∈Vn

1 = |Vn| (20)

allowing us to estimate |Vn| easily from the harmonic mean
of probabilities pvn

.
As for V≥l, its size is found by subtracting the size of all

preceding spheres from the number of vertices in the graph.

|V≥l|= |V |−
l−1∑
i=0

|Vi| (21)

It is also possible to estimate |V≥l| by dividing |V | by the
probability of a uniformly drawn vertex being in V≥l (a side
product of drawing samples from V≥l).

5 The Quality of Pattern Databases
The general idea behind PDBs is to abstract the problem into
a simpler problem by ignoring some parts of its state. This
yields a problem with a search space so small that the dis-
tance from each abstracted vertex v′ to the abstracted solved
configuration z′ can be tabulated. If the abstraction is cho-
sen such that each legal move in the original problem cor-
responds to a legal move in the abstracted problem, these
distances form an admissible and consistent heuristic.

As an example, consider Fig. 2 for two ways to abstract
the 15 puzzle, a common benchmark problem for heuris-
tic search. On the left, you can see the solved state of the
15 puzzle. Following the original Culberson and Schaeffer

(1996) paper, the puzzle is abstracted by ignoring the iden-
tity of tiles 4 and 8–15, obtaining a 9!= 362 880 fold reduc-
tion of the search space size. This approach was improved
by Korf and Felner (2002) into an additive PDB shown on
the right, where we pretend the tiles 4 and 8–15 do not exist,
allowing any moves into the hatched space. While this leads
to a worse heuristic quality than the Culberson/Schaeffer
approach, we gain additivity. This is the ability to add the
h values of PDBs for disjoint tile sets, leading to much bet-
ter h values with acceptable memory consumption through
the combination of several small additive PDBs.

Computing the Quality
Glossing over the various kinds of pattern databases, we
define a table-based heuristic of s entries over a search
space G = (V,E) as a pair (idx , tbl) of an index function
idx (v) : V → {0, 1, . . . , s−1} projecting the vertex set V to
table entries and a lookup table tbl [e] : {0, 1 . . . , s−1} → N
such that h(v) = tbl [idx (v)] is a heuristic function. Addi-
tionally, the multi-valued inverse index function

idx−1(e) = { v | v ∈ V, idx (v) = e } (22)

maps a table index back to the set of vertices it describes.
In the following paragraphs, we make use of the equi-

librium weight function w(v) giving weights to the search
space’s vertices proportional to the probability of drawing
them in the equilibrium distribution. The proportionality
constant is chosen such thatw(v) = 1 for all v if the equilib-
rium distribution is an equidistribution. Letting u be a ran-
dom vertex, it is thus

w(v) = |V |P[u = v ] with
∑
v∈V

w(v) = |V |. (23)

This definition can then be used to express η as the sum of
the contributions of each vertex to its value.

η = |V |−1
∑
v∈V

w(v)

bh(v)
(24)

Computing η is easy for table-based heuristics as p(i)
can be found by taking an appropriately weighted histogram
over tbl . To do so, we first define the index weight widx (e)
as being the sum of w(v) for all v ∈ V with idx (v) = e.
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(a) (b) (c)

Figure 3: Two partitionings of the 24 puzzle into 6-6-6-6 PDBs and one into 8-8-8 PDBs. (a) due to (Korf and Felner 2002),
(b) from the author’s previous work (Clausecker and Reinefeld 2019), and (c) due to (Döbbelin, Schütt, and Reinefeld 2013).

Similarly to Eq. 23, we have

widx (e) =
∑

v∈idx−1(e)

w(v) with
s−1∑
e=0

widx (e) = |V |. (25)

With this in hand, we can compute the probability mass
function

p(i) = |V |−1
∑

tbl[e]=i

widx (e) (26)

and directly obtain η in analogy to Eq. 24.

η = |V |−1
s−1∑
e=0

widx (e)

btbl[e]
(27)

Predicting the Quality
Non-additive PDBs In a performance analysis due to Korf
(2007), pattern database (PDB) heuristics are modeled as
subspaces of the problem space where each vertex in the
subspace corresponds to an equal number of vertices in the
problem space. The subspace described by the PDB is mod-
eled as having the same branching factor b as the problem
space such that the subspace is made up of k + 1 classes of
vertices with distances i = 0, 1, . . . , k and bi vertices each.

This model accurately describes some kinds of non-
additive PDBs like those for sliding tile puzzles described
by Culberson and Schaeffer (1996) but due to the differing
branching factors fails for additive PDBs such as those for
sliding tile puzzles (Korf and Felner 2002) or gained by op-
erator partitioning (Pommerening et al. 2015). An illustra-
tion of this effect can be seen in Fig. 2: because the addi-
tive PDB treats tiles not part of its pattern as nonexistent,
it admits many more moves out of most positions than the
unabstracted configuration.

In Korf’s model, a pattern database with size

s =
k∑

i=0

bi =
bk+1 − 1

b− 1
, (28)

has probability mass function

p(i) =

{
bi/s if 0 ≤ i ≤ k
0 otherwise. (29)

We can rewrite Eq. 28 to express k in terms of s and b

(30)k = logb
(
s (b− 1) + 1

)
− 1

= logb s+ logb(b− 1)− 1 +O(s−1)

and then compute η by plugging s, p(i), and k into Eq. 10.

(31)

η =

k∑
i=0

bi/s

bi
=
k + 1

s

=
logb

(
s (b− 1) + 1

)
s

=
logb s+ logb(b− 1)

s
+O(s−2)

Hence, the pruning power of a PDB following this model
is proportional to its size by the logarithm of its size. Korf
(2007) gets the slightly different result

η =
logb s+ logb(b− 1) + (b− 1)−1

s
≈ logb s+ 1

s
,

(32)
where the extra (b− 1)−1 term is an artifact of some coarser
approximations in his derivation.

Additive PDBs As an extension to Korf’s model, it is use-
ful to consider PDBs with a subspace branching factor B
strictly larger2 than the search space branching factor b, such
as an additive PDB. This gives a heuristic with

s =
k∑

i=0

Bi =
Bk+1 − 1

B − 1
, (33)

(34)k = logB
(
s (B − 1) + 1

)
− 1

= logB s+ logB(B − 1)− 1 +O(s−1),

and p(i) =

{
Bi/s if 0 ≤ i ≤ k
0 otherwise. (35)

The quality is somewhat messy to derive. Proceeding as with
Eq. 31, we start with

2B < b cannot occur for admissible heuristics.
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(36a)

η =
k∑

i=0

Bi/s

bi
=

1

s

k∑
i=0

(
B

b

)i

=
(B/b)k+1 − 1

s (B/b− 1)

=
b

s (B − b)

((
B

b

)k+1

− 1

)
and substitute k from Eq. 34.

(36b)=
b

s (B − b)

((
B

b

)logB(s (B−1)+1)

− 1

)
Then, the exponent is exchanged with the base using the
identity xlog y = ylog x.

(36c)=
b

s (B − b)

((
s (B − 1) + 1

)logB(B/b) − 1
)

We rewrite logB(B/b) as 1 − 1/logbB and then simplify
further. Assuming b < B, the exponent logbB in the de-
nominator is always greater than 1.

(36d)

=
b

s (B − b)

((
s (B − 1) + 1

)1−1/logb B − 1
)

=
b

s (B − b)

(
s (B − 1) + 1

logb B
√
s (B − 1) + 1

− 1

)
=

b

B − b

(
B − 1 + s−1

logb B
√
s (B − 1) + 1

− 1

s

)
=

B − 1

B/b− 1

1
logb B

√
s(B − 1) + 1

−O(s−1)

As we have O
(
1
/

logb B
√
s(B − 1) + 1)

)
> O

(
(logb s)/s

)
for b < B, the pruning power of an additive PDB given by
Eq. 36 grows slower than that of a non-additive PDB, given
by Eq. 31. The higher the difference between b and B is,
the worse this effect. This predicts highly diminished returns
when increasing PDB size for additive PDBs, as opposed to
non-additive PDBs.

6 Results
To illustrate the use of η, we have computed the quality of
some heuristics for the 24 puzzle using the method men-
tioned in Sec. 4. By plotting the contribution of each stratum
to η, we then visualise what parts of the search space are
most critical to the quality of a heuristic. This contributes to
a long-standing question by Holte et al. (2004).

Examples
Tbl. 1 shows the values of η for the well-known Manhat-
tan heuristic (Korf 1985), for three additive PDB heuris-
tics (Clausecker and Reinefeld 2019) based on two 6-6-6-
6 (Korf and Felner 2002; Clausecker and Reinefeld 2019)
and one 8-8-8 partitioning (Döbbelin, Schütt, and Reinefeld
2013), as well as for two PDB collections (Clausecker and

heuristic quality error
Manhattan heuristic η = 9.926× 10−20 (9.08%)

partitioning (a) η = 4.562× 10−22 (0.73%)
with transp. search η = 1.359× 10−22 (0.39%)

partitioning (b) η = 4.391× 10−22 (2.13%)
with transp. search η = 1.611× 10−22 (0.57%)

partitioning (c) η = 1.097× 10−22 (0.49%)
with transp. search η = 6.780× 10−23 (0.33%)

small collection η = 8.548× 10−23 (0.50%)
with transp. search η = 3.787× 10−23 (0.35%)

large collection η = 6.751× 10−23 (0.71%)
with transp. search η = 3.208× 10−23 (0.24%)

Table 1: The quality of various 24 puzzle heuristics without
and with transposition search and expected relative error at
95% confidence. Partitionings refer to Fig. 3, PDB collec-
tions to (Clausecker and Reinefeld 2019).

Reinefeld 2019). The effect of transposition search3 on the
heuristic’s quality is shown as well, except for the Manhat-
tan heuristic, as it is invariant under transposition.

These measurements were taken using sphere stratified
sampling with 66 strata (corresponding to the sets V0 to V64
with a stratum V≥65 accounting for the remaining vertices).
Up to 107 observations per stratum were taken for V0 to V64
with 108 observations being taken for V≥65, giving a total of
5× 108 observations.

These results give a number of interesting insights into the
various heuristics. They show how the Manhattan heuristic’s
quality is 220 times worse than that of partitioning (a), the
next best heuristic considered. Thus, we can expect parti-
tioning (a) to expand on average 220 times less vertices than
the Manhattan heuristic when solving difficult problem in-
stances.

We also see how use of transposition search generally im-
proves the quality by more than a factor of 2, offsetting the
cost of the double lookup. An exception to this is partition-
ing (c) whose almost symmetrical structure likely causes the
transposed puzzle’s h-value to be very close to the original
puzzle’s h-value.

Lastly, we can see how the small collection of 7 parti-
tionings and 14 PDBs outperforms the 8-8-8 partitioning (c)
slightly without transposition and much more strongly with
transposition. This is contrasted with the large collection of
14 partitionings made of 20 PDBs which does not manage
to be all that better than the small collection, highlighting
the diminished returns from adding more partitionings to a
collection.

The Predictive Power
To show the effectiveness of η in predicting the pruning
power of a heuristic, we have solved the 50 random instances
of Korf and Felner (2002) with partitionings (a) and (b) as

3A method where the heuristic is queried both on the configu-
ration v itself and on its transposition vT across the main diagonal,
with max

(
h(v), h(vT )

)
being used as the h value for the search.
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Figure 4: Baseline histogram: quality of the perfect heuristic
h(v) = d(v, z) by stratum

well as the small PDB collection; transposition search was
used in all cases. Taking the geometric mean of the expanded
vertices in these searches, we found that partitioning (b) ex-
panded 1.022 times as many nodes as partitioning (a) while a
ratio of 1.185 is predicted by the ratio of qualities. Likewise,
we found that the small collection expanded 0.244 times
as many nodes as partitioning (a) while η predicts a ratio
of 0.279. While the predictions do not match exactly, they
are close and may match even better given a larger body of
instances.

Histograms
In their paper Multiple Pattern Databases, Holte et al.
(2004) proposed that “eliminating low h-values is more im-
portant for improving search performance than retaining
large h-values.”

The quality η in conjunction with sphere stratified sam-
pling provides us with the tools needed to test and expand
this idea. By plotting the value of ηk for each sphere Vk, we
obtain a quality histogram that tells us which parts of the
search space we predict to contribute how much to the total
number of expanded vertices. This partial η value ηk is de-
fined similarly to Eq. 24 and obtains as a part of the sphere
stratified sampling process.

ηk = |V |−1
∑
v∈Vk

w(v)

bh(v)
(37)

Baseline The quality of the hypothetical perfect heuristic
hmin(v) = d(v, z) given by

ηmin =
∞∑
i=0

p(i)

bi
=
∞∑
i=0

|Vi|/|V |
bi

(38)

serves as a baseline for these histograms. No admissible
heuristic can surpass hmin by definition and the quality his-
togram of no other heuristic can dip below ηmin. This tells
us what the margin for possible improvement there is within
the model of η.

For the 24 puzzle, we have ηmin = 2.506× 10−24; Fig. 4
shows the corresponding quality histogram. The shape of
the curve can be explained by |Vi| growing slower than bi
as not all moves possible in a given configuration bring us
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Figure 5: Manhattan heuristic quality histogram, η≥65 =
2.364× 10−20

further away from z. The initial spike in the graph is a conse-
quence of the solved configuration being a single state with
the blank tile in the corner that starts with a lower than av-
erage branching factor. As the distribution of states within
a sphere gradually approaches the equilibrium distribution,
the curve smoothes.

Example Histograms Figures 5, 6, and 7 show the quality
histograms of some of the heuristics listed in Tbl. 1. For suf-
ficiently good heuristics, it can be seen how a critical region
between about V30 and V60 accounts for most of the value
of η with contribution falling off to both sides.

We explain this intuitively through the interaction of
two factors: (a) Close to z, the heuristic is fairly good at
approximating d(v, z), but as the spheres get more dis-
tant, the heuristic does a worse and worse job. The differ-
ence d(v, z) − h(v) affects the contribution to η exponen-
tially, so the contribution of the spheres to η starts out low
and then rises sharply. (b) The farther we are from z, the
more does the b−i weighting pull down the curve. This is
because as i grows, the growth rate of the sphere size |Vi|
keeps falling while bi stays at the same exponential growth.
This is exacerbated once the “belly” of the graph is reached
and exponential growth in sphere size makes place for expo-
nential decline in sphere size. Between these two processes,
there is an interval where the contribution to η peaks, falling
off to both sides.

In comparison with one another, it becomes evident that
the peak moves slightly to the left as the heuristics get better.
We interpret this as the heuristics reducing the h value con-
tribution of more distant vertices more than that of vertices
closer to z.

What h-values are critical? While the insight on the criti-
cal region does not directly tell us whether low or high h val-
ues are critical to search performance, we can use the strong
correlation between distance to z and h value to observe
what sphere likely corresponds to what h value. Working
backwards from the definition of ηk and ignoring the equi-
librium weighting, we can obtain h̃k, the average h value for
the vertices in Vk.

h̃k = − logb

(
|V |
|Vk|

ηk

)
(39)
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Figure 6: Partitioning (a) quality histogram without (solid
line, η≥65 = 1.098× 10−23) and with (dashed line, η≥65 =
2.573× 10−23) transposition search

Under the precarious assumption that the h values within
one stratum are very close, we can use h̃k on the boundaries
of the critical region to obtain a critical region of h values to
target when optimising heuristics.

For example, we find h̃30 = 23.39 and h̃60 = 45.46 for
the histogram of partitioning (a) without transposition from
Fig. 6, so the h values critical to search performance are ex-
pected to be about h(v) ∈ {23, 24, . . . 46}.

We can use this knowledge to guide our choices on how
to spend the memory budget on heuristics. For example,
it could be used to choose more effective ranges for value
compressed PDBs (Sturtevant, Felner, and Helmert 2017) or
to decide if adding another PDB to a PDB collection suffi-
ciently increases h values in this region to be worth the extra
memory and lookup cost.

7 Conclusions
With the heuristic quality η, we have introduced a novel
measure for the quality of heuristic functions. It allows
us to model the influence of the heuristic function on an
IDA* search as a constant factor on the number of expanded
nodes and is a convenient tool to compare different heuris-
tics for pruning power.

Its simple definition enables the derivation of results about
the pruning power of classes of heuristics, affirming a previ-
ous result (Korf 2007) for the pruning power of non-additive
PDBs and extending it to the general case of table-based
heuristics with possibly differing branching factors.

Using a sphere-stratified sample, we can effectively esti-
mate η for arbitrary heuristics without having to know any
details about the heuristic’s construction. This gives us a tool
to objectively compare the effectiveness of different heuris-
tics in the general case and to improve heuristics by tuning
their parameters to maximise their quality.

Plotting a quality histogram of η by distance from the
solved configuration, we can see how the h values of a crit-
ical region in the search space contribute most to the num-
ber of expanded nodes. This gives us new insights into what
parts of the search space are most critical to the performance
of an IDA* heuristic and may guide decisions on what parts
of the search space to spend a heuristic’s memory budget on.
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Figure 7: Small collection quality histogram without (solid
line, η≥65 = 2.008× 10−24) and with (dashed line, η≥65 =
2.623× 10−25) transposition search
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