
Revisiting the Complexity Analysis of Conflict-Based Search:
New Computational Techniques and Improved Bounds

Ofir Gordon, Yuval Filmus, Oren Salzman
Technion–Israel Institute of Technology, Computer Science Dept., Haifa, Israel

ofirgo@cs.technion.ac.il, filmus.yuval@gmail.com, osalzman@cs.technion.ac.il

Abstract

The problem of Multi-Agent Path Finding (MAPF) calls for
finding a set of conflict-free paths for a fleet of agents oper-
ating in a given environment. Arguably, the state-of-the-art
approach to computing optimal solutions is Conflict-Based
Search (CBS). In this work we revisit the complexity analy-
sis of CBS to provide tighter bounds on the algorithm’s run-
time in the worst-case. Our analysis paves the way to better
pinpoint the parameters that govern (in the worst case) the
algorithm’s computational complexity. Our analysis is based
on two complementary approaches: In the first approach we
bound the run-time using the size of a Multi-valued De-
cision Diagram (MDD)—a layered graph which compactly
contains all possible single-agent paths between two given
vertices for a specific path length. In the second approach
we express the running time by a novel recurrence relation
which bounds the algorithm’s complexity. We use generating
functions-based analysis in order to tightly bound the recur-
rence. Using these technique we provide several new upper-
bounds on CBS’s complexity. The results allow us to improve
the existing bound on the running time of CBS for many
cases. For example, on a set of common benchmarks we im-
prove the upper-bound by a factor of at least 210

7

.

1 Introduction
The Multi-Agent Path Finding problem (MAPF) is a well-
studied problem, which attracts high interest among the
robotics and AI community. It can be used to model
many real-life applications, from automated warehouses
(Wurman, D’Andrea, and Mountz 2008), through computer
games (Sturtevant 2012) and to autonomous vehicles (Pal-
lottino et al. 2007). Therefore, many efforts are invested in
order to solve the problem as efficiently as possible, under
different models and for different scenarios.

In the general version of MAPF (Stern et al. 2019) we
are given a graph G = (V,E) with n vertices and a set of k
agents A = {a1, a2, ..., ak}. Each agent ai is provided with
a start and a goal location, (si, gi) s.t. si, gi ∈ V . Time is
discretized and at every time-step an agent can either wait
in its current location or move across an edge to an adjacent
vertex. A feasible solution is a paths setP = {p1, p2, ..., pk}
such that pi is a path for agent ai from si to gi, and there is

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

no conflict between any two paths in P . We consider two
types of conflicts—a vertex-conflict, in which two agents
occupy the same vertex at the same time-step, and an edge-
conflict, in which two agents traverse the same edge from
opposite sides at the same time-step. An optimal solution
is a paths set P which also optimizes some objective func-
tion. Arguably, the most common objective functions used
for MAPF are:

1. Makespan–where we want to minimize the time in which
the last agents arrives to its goal.

2. Sum-of-Costs–where we want to minimize the combined
time it took for all agents to arrive at their goals.

The task of finding an optimal solution is known to be
NP-hard (Yu 2016) for both aforementioned objectives. The
problem remains NP-hard even when G is a sub-graph of
a planar grid graph (Banfi, Basilico, and Amigoni 2017).
Nevertheless, state-of-the-art optimal algorithms are able
to effectively solve many non-trivial instances. Arguably,
the most commonly-used algorithm for solving MAPF opti-
mally is Conflict-Based Search (CBS) (Sharon et al. 2015).
CBS first plans an initial (possibly infeasible) solution, and
then systematically identifies and resolves conflicts. After
CBS finds a conflict it applies a constraint that prohibits a
conflicted agent from being in the location of the conflict at
that certain time-step. Studies that followed, introduce dif-
ferent techniques that allow to empirically improve the al-
gorithm’s run-time (Boyarski et al. 2015; Felner et al. 2018;
Li et al. 2019a; Zhang et al. 2020).

Despite the ability of those techniques to cope with a wide
range of non-trivial instances, there are many cases where
CBS and its improvements cannot solve the problem even
when allowed very long running times (Kaduri, Boyarski,
and Stern 2020). Interestingly, many such empirically-hard
instances do not exhibit notable differences from easy ones
and identifying the exact source of (theoretical and empiri-
cal) hardness is an open question (Salzman and Stern 2020).

The original exposition of CBS (Sharon et al. 2015) pre-
sented a (loose) upper-bound on the algorithm’s complexity
that is exponential both in the problem’s parameters (number
of agents k and the number of vertices n in the graphG) and
in the cost of an optimal solution. In this work we tighten this
upper-bound and provide a new point-of-view on the anal-
ysis of a worst-case scenario for the algorithm. We believe

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

64

that this is a first step towards improving our understand-
ing on the problem’s hardness which, in turn, will allow to
design algorithms that can solve a wider range of instances.

We suggest two novel approaches to improve the algo-
rithm’s worst-case complexity analysis. In the first approach
we improve the (existing) upper-bound on the number of
possible constraints that CBS might need to apply in order
to find a solution. We do it by bounding the size of a Multi-
valued Decision Diagram (MDD)—a layered graph which
compactly contains all possible paths between two vertices
for a specific path length (Sharon et al. 2013). In the sec-
ond approach we express the run-time of CBS using a novel
recurrence relation which bounds the algorithm’s complex-
ity. We compute the generating function (Wilf 2006) of the
recurrence and use it to tightly bound its value in order to
obtain a tighter bound on the complexity of CBS.

Combining the results from both approaches provides us
with new tighter upper-bounds for the worst-case complex-
ity of CBS. Beyond the new bounds, we anticipate that the
computational tools we introduce will allow to obtain future
improvements to the upper-bound. For example, this can be
obtained via tighter bounds on the recurrence relation, or by
improving the analysis of an MDD size.

2 Setting and Background
Given an optimal solution P , denote by T (p) the time that a
single-agent’s path p ∈ P terminates (note that wait moves
are counted as a timestep in a path p). Now, set C to be
the latest time that a single-agent’s path p ∈ P terminates.
Namely, C = maxi {T (pi)}.

Under the minimal-makespan objective, C constitutes the
cost of the optimal solution P . Thus, for the rest of this pa-
per we will consider C as the cost of an optimal solution
of the problem, to be used in the complexity analysis. No-
tice that kC constitutes an upper-bound on the cost of an
optimal solution for the sum-of-costs objective. We further
discuss the applicability of our results for the sum-of-costs
objective in Sec. 5.

2.1 CBS and its Complexity Analysis
Conflict-Based Search (CBS) (Sharon et al. 2015) is a two-
level search algorithm which works as follows—first it finds
an optimal path for each agent independently using some
single-agent search algorithm like A* (Hart, Nilsson, and
Raphael 1968). CBS then works to resolve conflicts that
occur in the solution: in the high-level search it preforms a
best-first search upon a constructed conflicts-tree (CT). Each
node in the CT consists of a solution, the solution’s cost and
a set of constraints imposed on the agents. A constraint is ei-
ther a vertex-constraint of the form 〈a, v, t〉, which prohibits
agent a from being at vertex v at time-step t, or an edge-
constraint of the form 〈a, u, v, t〉, which prohibits agent a
from crossing the edge (u, v) at time-step t. We refer to such
constraints as negative constraints.

In each iteration, CBS selects an unexpanded CT node
with a lowest cost. It then finds a conflict that occurs be-
tween two agents in the node’s solution. It splits the CT
node into two child-nodes, each with a constraint on one

of the agents that were involved in the conflict. It then runs
the low-level search to construct a new solution in each child
node, that does not violate the new constraint, by running a
single-agent search algorithm like A*.

The basic version that we just presented was recently im-
proved using positive constraints (Li et al. 2019b). In a posi-
tive constraint 〈a, v, t〉, agent a is required to be at vertex v at
time-step t. When using positive constraint with CBS, a CT
node is split into two child nodes using a positive and neg-
ative constraints forcing and forbidding the conflicted agent
to be at a vertex or edge at a certain time-step, respectively.

An analysis of the worst-case time-complexity of CBS
was originally presented by Sharon et al. (2015). They show
that CBS’s complexity can be decomposed to bounding the
size of the CT and the complexity of the single-agent search
in each low-level iteration. We refer to the size of the CT
in a worst-case scenario as the high-level search complexity.
The low-level search complexity corresponds to running A*
for a single agent. For the rest of this paper we focus on
analyzing the high-level search complexity, thus, a complete
upper-bound on CBS’s complexity can obtained by simply
multiplying any of the following results with the complexity
of a single agent’s A*-search.

The original analysis uses the assumption that each agent
can potentially be in every vertex at every time-step. This
bounds the number of (negative) constraints that CBS might
need to apply by O(nkC). At each CT node exactly one
constraint is added. Thus, the number of possible constraints
bounds the depth of the CT, and gives an overall bound on
CBS’s running time of O(nC · 2knC).1 In the rest of this
paper, we refer to this analysis and bound as the original
analysis and original upper-bound, respectively.

It is important to note that the original analysis does not
account for the possibility that CBS would apply edge-
constraints (in order to resolve conflicts). It is possible that in
a worst-case scenario the algorithm would require not only
to prevent any agent from occupying any vertex in the graph
at each time-step, but also from crossing each edge of the
graph, in order to find the optimal solution. Therefore, ac-
counting for edge constraint should further increase the the-
oretical upper-bound. For clarity of exposition, we present
our tools for analysing CBS’s complexity with the same as-
sumption, i.e., that only vertex-constraints are considered.
Nevertheless, we address this issue in Sec. 5 and show how
to incorporate edge-constraints in the complexity analysis.

2.2 Multi-valued Decision Diagram (MDD)
The multi-valued decision diagram MDDCi is a layered
graph that consists of C layers, which compactly contains
all possible paths of agent ai of cost at most C from si to gi
(Sharon et al. 2013). A vertex v ∈ V appears at the t’th layer
of MDDCi if it is reachable from si and gi in t and C − t

1The original paper contains a minor error in the calculation
of the upper bound. The bound presented here is the new bound
whose validity was verified with one of the authors. Similarly, the
oversight regarding not accounting for edge constraints (explained
shortly) was also discussed and verified with one of the authors in
the original CBS paper.

65

steps, respectively. Finally, the size M of an MDD, repre-
sents the total number of MDD nodes and the size Mt of
the t’th layer is the number of MDD nodes in that layer.

MDD graphs are commonly-used for different purposes in
MAPF algorithms, since they can be constructed efficiently
for a given cost and their compact representation contains in-
formation that can help improve the identification and clas-
sification of conflicts (Li et al. 2019a; Zhang et al. 2020).
In this work we use MDDs to bound the number of possible
constraints that might need to be applied on a single agent
during a CBS execution.

2.3 Generating Functions for Bounding
Recurrence Relations

Generating functions are a well-known mathematical tool
which, among other things, can be used to bound recur-
rence relations. Formally, a generating function of a se-
quence a0, a1, a2, . . . with the general element denoted
by ar, is the function F (x) =

∑
r≥0 arx

r, i.e., the se-
quence elements are the coefficients of the series expan-
sion of F (x). This notion can be extended for a se-
quence (or recurrence relation) with multiple variables. For
instance, given a recursion T (r, s) which defines a se-
quence, a possible generating function for it will be of the
form F (x, y) =

∑
r,s≥0 T (r, s)xrys. For further details on

generating functions see, e.g., the book by Wilf (2006).
Given a generating function for a specific sequence, there

can be many methods which allow to utilize the function in
order to bound the value of the sequence at a certain index.
These different methods are dependent on the sequence and
the obtained function and there is no guarantee that a certain
method could always be applied for this purpose.

Pemantle and Wilson (2008) provide one approach for
dealing with recursions of multiple variables which we
briefly describe (additional details are presented mainly in
Sec. 3 of the aforementioned paper) as it will be a key tech-
nique used to obtain our complexity bounds. Assume that
we are given a recursion T (r, s) and a matching generating
function for it F (x, y) =

∑
r,s≥0 T (r, s)xrys that can be

expressed by the following form: F (x, y) = G(x,y)
H(x,y) . De-

note by Hz the partial derivative of H for z (where z can be
a sequence of x and y). The first step calls for finding crit-
ical points, which are given by the solutions in the positive
quadrant (i.e., x, y ≥ 0) for the following system:{

H = 0

sxHx = ryHy.
(1)

Denote the critical points by q1, q2, . . . , qm. Each
point qi = (xi, yi) contributes a certain factor to the
approximation of T (r, s), and this contribution can be
calculated according to the point’s multiplicity. The exact
way each point contributes to the bound is detailed by
Pemantle and Wilson (2008) and in the extended version of
this paper (Gordon, Filmus, and Salzman 2021).

Assume that the contribution of qi is given by Ti (r, s)
for each 1 ≤ i ≤ m, then the analysis suggests that the
asymptotic growth of T (r, s) can be tightly approximated

by one of the factors which is given by the critical point’s
contribution.

3 CBS’s Complexity Analysis using MDDs
Recall that the original analysis was obtained by bounding
the number of possible (vertex) constraints that CBS may
apply. In addition, as explained in Sec. 2.1, the original anal-
ysis did not account for edge constraints as a possible mean
that can be used by the algorithm. We temporarily limit our
analysis to account for vertex constraints only and defer han-
dling edge constraints to Sec. 5.

We suggest a new approach to bound this number of pos-
sible constraints that CBS may apply, using the following
observation:

Observation 1. Given an agent ai and an optimal solu-
tion’s cost C, the maximal number of negative constraints
that CBS may apply on ai is bounded by the size of MDDCi .

Obs. 1 holds as CBS may only apply a constraint on
agent ai at vertex v for time-step t if ai can reach v from si
within t time-steps and still reach gi in C − t time-steps,
which is the exact definition of an MDD node.

From Obs. 1 we obtain the following corollary:

Corollary 1. LetM denote the maximal size of an agent’s
MDD in a given instance. The size of CBS’s conflict-tree
is bounded by O(2kM) for any execution of the algorithm
on this instance. This implies a similar bound on the algo-
rithm’s high-level search complexity.

Cor. 1 can be used to recover the original analysis of
CBS—a (loose) bound on M can be obtained by bound-
ing the size of any MDD layer by n. Thus M = O(nC)
which gives us the original bound of O(2knC).

We present two (tighter) bounds onM. The first (Sec 3.1)
removes the number of environment vertices from the com-
plexity analysis, eliminating the possibility to deem a prob-
lem computationally hard just by adding inconsequential
vertices to the environment.

The second bound accounts for the structure of G. In ad-
dition to the obtained bound, it demonstrates a complexity
analysis restricted to a specific setting. This allows to (poten-
tially) obtain tighter bounds on the size of an MDD which,
in turn, provides tighter bounds on CBS’s complexity for a
given setting of interest.

In the following sections, we assume that G is a
full
√
n×
√
n grid with no blocked vertices and si = gi for

some agent ai (this serves as an upper bound on the size
of MDDCi for any other instance).

3.1 Upper-Bound on the Size of an MDD
For the simplicity of the exposition, we restrict the
discussion in this section to MAPF instances on infi-
nite 4-connected grids (Banfi, Basilico, and Amigoni 2017;
Stern et al. 2019). That is, we consider the setting where
an agent can move in four directions from any vertex in the
graph. Nonetheless, we emphasize that the technique we use
to bound CBS’s complexity can be used to bound the size
of an MDD for any environment.

66

si

Figure 1: Illustration of vertices reachable for an agent ai
located at si within 1-3 time-steps, on a 4-connected grid.

For any optimal path, an agent ai can’t be located
at any vertex within distance larger than C/2 from its
start si or goal gi. This implies a symmetry on the struc-
ture of MDDCi —the last bC/2c layers form a mirror-image
of the first bC/2c layers. The number of vertices on a grid
which are reachable from si within exactly t steps is 4t (see
Fig. 1). At time-step t, ai can be located at any vertex within
distance at most t from si. Therefore, we sum the number of
reachable vertices in the range from one to t (excluding si).
For any t ≤ C/2 the size of the t’th layer in MDDCi is:

Mt ≤
t∑
i=1

4i = 2t(t+ 1). (2)

Given the aforementioned symmetry:

M≤ 2 ·
C/2∑
t=1

2t(t+ 1) =
C3 + 6C2 + 8C

6
= O(C3). (3)

We assume for simplicity that C is even, if C is odd then
the size of the middle layer (O(C2) according to Eq. 2)
needs to be added to the result of Eq. 3.

By placing the result from Eq. 3 in Cor. 1 we obtain that:
Claim 1. The high-level search complexity of CBS on grid
graphs is bounded by O

(
2kC

3
)

.2

The bound in Claim. 1 provides a tighter estima-
tion for the algorithm’s complexity for any instance
where: C3 < n · C ⇒ C <

√
n. In addition, this result re-

moves n from the bound expression.

3.2 MDD Size Based on the Graph’s Radius
Definition 1. The distance dist(u, v) between two ver-
tices u, v in a graph is the number of edges on a
shortest path between them. The radius of a graph
is ρ = min

u∈V
max
v∈V
{dist(u, v)}. A vertex u for which it holds

that ∀v ∈ V : dist(u, v) ≤ ρ is called a center vertex.

In a complete square grid of size n, we have
that ρ =

√
n− 1, with the center in the d

√
n
2 e’th row and

column for an odd value of
√
n. When

√
n is even, there is

2Note that in general it does not hold that 2O(m) = O(2m).
The reason for which it does hold in this case is since the hidden
constant in the Big-O notation in Eq. 3 is smaller than 1.

no single center vertex. For simplicity, we assume that
√
n

is odd.

Observation 2. A layer of size n exists in MDDCi only
if C ≥ 2ρ (note that a layer’s size can’t exceed n).

Obs. 2 allows us to characterize settings for which it is
possible to refine our previous analysis. For the first and
last ρ layers of MDDCi we bound a layer’s size using Eq. 2.
Using Obs. 2, the remaining layers are the only layers with
size n. This gives us the following bound forM, for cases
where C = 2ρ+ δ for some δ ∈ N:

M≤ δn+ 2 ·
ρ∑
t=1

2t(t+ 1)

=
4

3
· ρ(ρ+ 1)(ρ+ 2) + δn

(4)

The expression 4
3 · ρ(ρ + 1)(ρ + 2) is smaller than 2 · ρ3

for any ρ ≥ 7. By placing the result from Eq. 4 in Cor. 1 we
obtain that:

Claim 2. The high-level search complexity of CBS on grid
graphs with radius ρ ≥ 7 whereC = 2ρ+ δ for some δ ∈ N
is bounded by O

(
2k·(2ρ

3+δn)
)

.

Claim. 2 not only allows to express the bound in
terms of a new (and arguably, more relevant) parame-
ter (namely, the radius of a graph), it also provides a
slightly tighter bound on the overall complexity for full
grid graphs, as long as the graph’s radius is not too small.
The new bound is tighter than the original bound for
cases where: k · (2ρ3 + δn) < kn · (2ρ+ δ) =⇒ ρ <

√
n

(which, indeed holds for complete grids). The hidden con-
stant in the Big-O notation in both the new and the original
bounds is small and does not affect the asymptotic compari-
son between them.

4 Complexity Analysis for CBS using a
Recurrence Relation

We introduce a novel recurrence relation which bounds the
high-level search complexity. More precisely, it bounds the
maximal number of CT nodes that might be generated dur-
ing the high-level search. We provide an upper-bound on this
recurrence relation that allows to improve the original bound
on the run-time of CBS for many cases.

Our improved bound incorporates the fact that recent
CBS variants use positive constraints (Sec. 2.1). This is in
contrast to the original analysis that only considers negative
constraints. However, the method in which the recursion is
defined is not tied to positive constraints. We believe that
tighter bounds may be obtained in the future by defining
a similar recursion for alternative implementations of CBS
(such as CBS with symmetry-breaking (Li et al. 2019c)).

4.1 Recurrence Relation which Bounds CBS’s
Worst-Case Complexity

Given a MAPF instance with k agents on a graph of size n
where the optimal cost of a solution is C, our goal is to

67

bound the maximal number of CT nodes that might be gen-
erated by CBS after applying a given number of positive and
negative constraints. CBS will terminate if:

1. All possible negative constraints were applied (this as-
sumption is similar to the one used for the original bound).

2. The algorithm applied C positive constraints on each of
the k agents.

Note that any (positive or negative) constraint applied to a
CT node cannot be applied to any of its children in the CT.
In addition, if agents ai and aj were found to be in a con-
flict at vertex v at time-step t, applying a positive constraint
on agent ai implies that the negative constraints 〈ai, v, t〉
and 〈aj , v, t〉 cannot appear in the sub-tree of the CT node.

From the above we get the following recurrence relation:

Lemma 1. Let r and s denote the maximal number of neg-
ative and positive constraints that CBS may apply before
it is bound to terminate, respectively. Then, the high-level
complexity of CBS is bounded by:

T (r, s) ≤

1, r = 0 or s = 0

3, r = 1 and s > 0

T (r − 1, s)+

T (r − 2, s− 1) + 1, else.

(5)

For r = 0 or s = 0 we get that one of the aforementioned
conditions for termination holds, therefore, this respected
node is a leaf node. For r = 1 there is still a single nega-
tive constraint left to apply, so the node can be split only one
more time, creating two additional leaves (and the node it-
self is also counted). For any other inner-node, the algorithm
would split it according to a conflict by applying a negative
constraint on one branch, and a positive constraint for the
other branch. Note that when applying a negative constraint
(i.e., reducing r by one) it does not imply that a positive con-
straints has been applied (therefore, in the first component of
the recurrence step s does not change).

We present two techniques for upper-bounding the recur-
sion presented in Eq. 5, which in turns provide an upper-
bound for CBS’s complexity.

4.2 Induction-Based Bound
Claim 3. For any (r, s) s.t. r ≥ 1 and s ≥ 1 it holds that:

T (r, s) ≤ 3 · rs. (6)

Which implies that T (r, s) = O(rs).

Proof sketch. The proof is by induction over pairs (r, s),
assuming an order where (r1, s1) ≥ (r2, s2) if r1 ≥ r2
and s1 ≥ s2 (there exists such an order on pairs
where r, s ∈ N).
Base:

T (1, s) ≤ 3 ≤ 3 · 1s.
T (r, 1) ≤ T (r − 1, 1) + T (r − 2, 0) + 1 = T (r − 1, 1) + 2

≤ · · · ≤ T (1, 1) + 2(r − 1) = 2r + 1 ≤ 3 · r1.

Step: We assume that the claim holds for all pairs smaller
than (r, s) and prove for (r, s):

T (r, s) ≤ T (r − 1, s) + T (r − 2, s− 1) + 1

≤
i.h.

3(r − 1)s + 3(r − 2)s−1 + 1

≤
∗
3(r − 1)s + 3(r − 1)s−1

= 3[(r − 1)s−1 · (r − 1) + (r − 1)s−1]

= 3(r − 1)s−1 · (r − 1 + 1)

= 3r · (r − 1)s−1 ≤ 3r · rs−1 = 3rs.

Where ∗ holds because (r− 1)s−1 ≥ 1 for r > 1 and s > 1.

Recall that negative and positive constraints are bounded
by r = kM and s = kC, respectively (whereM is the size
of an MDD graph of a single agent). Placing those values in
Eq. 6 gives the following result:

T (kM, kC) ≤ O
(
(kM)kC

)
. (7)

From Eq. 7 we obtain the following lemma:
Lemma 2. The time-complexity of the high-level search of
CBS is bounded by O

(
(kM)kC

)
.

By taking M = nC (i.e., the bound on an MDD size
considered in the original analysis), we get an upper-
bound of O

(
(knC)kC

)
in contrast to the original bound

of O(2nkC). Here again, the hidden constant in the Big-O
notation in both bounds is small, thus, we omit it in the up-
coming comparison between them (see end of Sec. 4.3).

4.3 Generating Functions-Based Bound
In our second approach, we present an alternative approach
to bounding the recursion (Eq. 5) using generating func-
tions. This, in turn, will allow us to obtain a tighter bound
on CBS’s complexity. Due to lack of space we only outline
the analysis and refer the reader to the extended version of
this paper (Gordon, Filmus, and Salzman 2021).

We start by introducing the generating function
for T (r, s). We then continue to follow the steps out-
lined by Pemantle and Wilson (2008) to obtain a bound
on T (r, s). We stress that the suggested analysis method is
not applicable for formally proving the bound’s correctness,
but we can use it to deduce an asymptotic upper-bound
which we then support empirically for a variety of different
values.

The method by Pemantle and Wilson (2008), as described
in Sec. 2.3, calls for finding the contribution for the bound
obtained by each critical point given from the solutions for
Eq. 1. We first find the the contribution for each critical
point. We then apply the following key observation which
allows us to deduce a suggested upper-bound for CBS. The
observation follows from our analysis of the size of an MDD
(Sec. 3.1):
Observation 3. For any MAPF instance, there is a linear
dependency between r, the maximal number of negative con-
straints and s, the maximal number of positive constraints
that CBS can apply. Specifically, r = n · (kC) = n · s.

68

Benchmark Category n k C ORG REC+IND REC+GF ORG
REC+GF

Warehouse 9,776 8 120 210
7

210
5

210
5

2107

Warehouse 9,776 64 140 210
8

210
6

210
5

2108

Warehouse 38,756 256 250 210
10

210
7

210
5

21010

Room 206,642 8 400 210
9

210
6

210
6

2109

Room 206,642 8 500 210
9

210
6

210
6

2109

Empty 2,304 64 70 210
8

210
6

210
4

2108

Empty 2,304 128 80 210
8

210
7

210
4

2108

Random 3,687 64 100 210
8

210
6

210
4

2108

Random 3,687 128 100 210
8

210
7

210
4

2108

Table 1: A comparison between the different upper-bounds obtained using the original analysis (ORG), Lemma. 2 (REC+IND)
and Prop. 1 (REC+GF), on standard benchmarks (Sturtevant 2012; Stern et al. 2019). The last column presents a lower bound
on the ratio between our improved bound and the original bound, which reflects the improvement. All bounds are calculated
considering thatM = nC. Note that all actual bounds include a small constant multiplication factor, but the comparison in this
table accounts only for the asymptotic factors.

By applying Obs. 3 we get that one of the contribution
factors obtained from the analysis gives a tight upper-bound
on T (r, s).

As explained, We start with presenting the generating
function for this recursion, which is:

F (x, y) =
1− x+ 2xy − x2y

(1− x)(1− y)(1− x− x2y)
. (8)

We denote F = G/H where

G(x, y) = 1− x+ 2xy − x2y,
H(x, y) = (1− x)(1− y)(1− x− x2y),

and solve Eq. 1 to find the critical points. In this setting there
are three such points:

q1 := (x1, y1) =

(
−1 +

√
5

2
, 1

)
,

q2 := (x2, y2) = (1, 1) ,

q3 := (x3, y3) =

(
r − 2s

r − s
,
s(r − s)
(r − 2s)2

)
.

We denote the matching contribution factor of each point qi
by Ti (r, s). Computing the exact contribution for each point
is done according to Pemantle and Wilson (2008). This in-
volves basic (yet daunting) algebraic manipulations and is
summarized in Lemma. 3 (proof omitted).

Lemma 3.

T1 (r, s) = 1,

T2 (r, s) = O(1) ·

(
1 +
√
5

2

)r
,

T3 (r, s) =
(r − s)r−s

(r − 2s)r−2s · ss
· 2s

r − 2s
·
√

α

2π
,

where α = O
(
r2

s

)
.

Following Pemantle and Wilson (2008), we can use
Lemma. 3 to estimate the asymptotic growth of Eq. 5.
Specifically, this growth is likely to be estimated by one of
the three terms. Yet, using it to deduce an upper-bound for
CBS’s complexity is not straightforward.

Fortunately, by applying Obs. 3 we can obtain an esti-
mated bound on Eq. 5 that is tighter than the one obtained
using the induction-based analysis (Lemma. 2). We do it by
restricting the recurrence to values of r and s that can be at-
tained in our MAPF setting. Specifically, using r = n · s in
Lemma. 3 we have that,
Proposition 1. The high-level search complexity of CBS for
instances with n ≥ 4 vertices, k agents and an optimal so-
lution cost C is bounded by O

(
(en)kC

)
.

We approximate the value of T (ns, s) according to
Lemma. 3 and have that

T1 (ns, s) = 1,

T2 (ns, s) = O(1) ·

(
1 +
√
5

2

)ns
,

T3 (ns, s) =

(
(n− 1)n−1

(n− 2)n−2

)s
· 2

n− 2
·
√

β

2πs
,

(9)

where β = O
(
n2
)
.

The contribution to T (ns, s) from q1 and q2 (given
by T1 (ns, s) + T2 (ns, s)) is identical to the contribution
from q3 (given by T3 (ns, s)) at n0 =

√
5+2
2 ≈ 3.618033. In

Sec. 4.4 we empirically demonstrate that T3 (ns, s) indeed
constitutes a tight bound for any n > n0.

Therefore, we continue with the simplification of the ex-

pression given by T3 (ns, s). Since 2
n−2 ·

√
β
2π = O(1)

and
(

(n−1)n−1

(n−2)n−2

)
< en, we get the following result:

T (ns, s) = O((en)s),
with a small hidden constant factor in the Big-O notation. By
placing s = kC, which is the maximal number of positive

69

(a) s = log2 n (b) s =
√
n (c) s = n

Figure 2: The log2 of the bounds as a function of the graph size for different ratios between the graph’s size (n) and the instance
properties (s = kC). The two new bounds (REC+IND, REC+GF) are significantly lower than the original bound. Notice that
the approximation obtained from the generating functions analysis (REC+GF) indeed tightly bounds the recurrence T (ns, s).

constraints that needs to be applied by CBS in the worst
case, we get the desired bound.

Prop. 1 improves the original known bound of O
(
2nkC

)
for any set of values n, k and C. Moreover, it is also tighter
than the already-improved bound presented in Lemma. 2.
Notice that it allows to replace the asymptotic factor of kC
in the base of the exponent with a constant (e), while also
still eliminating the exponential dependency in n.

New bounds can also be obtained by combining the re-
sults from Sec. 3 that bound the size of an MDD. For exam-
ple, using Eq. 3 we observe that there is a quadratic depen-
dency between r = kC3 and s = kC on 4-connected grids.
By simply substituting n with C2 in the bound obtained by
Prop. 1 we have that,

Corollary 2. The high-level search complexity of CBS on
4-connected grids is bounded by O

(
(eC)2kC

)
.

4.4 Empirical Comparison of Bounds
To demonstrate the difference between the new bounds and
the original one, we evaluated their ratio for commonly-
used benchmarks. The results are summarized in Table 1,
which presents the worst-case complexity of CBS’s high-
level search, for the original bound (ORG), the looser
induction-based bound presented in Lemma. 2 (REG+IND)
and the tighter generating functions-based bound presented
in Prop. 1 (REC+GF). It also presents the ratio between
the original bound and the best newly-obtained bound, to
demonstrate the improvement.

For all benchmarks, the new bound improves the original
one by a factor of at least 210

7

. More precisely, for any in-
stance we examined, we obtain a significantly-tighter bound
on the high-level complexity of CBS.

To support the correctness of the bound obtained in
Prop. 1, we evaluated and compared its value to the recur-
rence’s value for large values of n and s. We also use this
evaluation to further demonstrate the difference between the
new bounds and the original one.

Fig. 2 presents a comparison (on a logarithmic scale)
of the three bounds (ORG, REG+IND and REC+GF)
and T (r, s) for different graph sizes n for the setting r = ns
(see Obs. 3). The three different figures reflect different set-

tings of MAPF, where the dependency between the graph’s
size and the instance properties (number of agents and opti-
mal solution cost) changes. Indeed for all different cases the
same trend can be observed where the gap between the pre-
sented functions demonstrate the magnitude of the improve-
ment obtained using our analysis. In addition, the figures
serve as an empirical validation of the generating functions-
based analysis—the asymptotic bound (REC+GF) tightly
approximates the recurrence relation (Eq. 5).

5 Summary and Discussion
5.1 Summary
We presented two novel approaches for analyzing the worst-
case complexity of CBS’s high-level search. In the first ap-
proach, by analysing the size of an agent’s MDD graph, we
provided two new upper-bounds for CBS’s high-level search
of O(2kC3

) and O(2k·(2ρ3+δn)). The latter is a bound for a
setting where a solution’s optimal cost is dependent on the
radius ρ of G. Our approach allows to seamlessly obtain
tighter bounds on CBS’s complexity given tighter bounds
onM. Such bounds may be obtained either by (i) better an-
alyzing the general structure of an MDD or (ii) restricting
the analysis for a specific instance of interest.

In the second approach we presented the recurrence rela-
tion T (r, s). An upper-bound on T (r, s) constitutes a bound
on the size of the CT of CBS, therefore bounding the com-
plexity of CBS’s high-level search. Using this approach
we obtain a new general bound of O((kM)kC). When us-
ing M = nC, we obtain the new induction-based bound
of O((knC)kC).

Using a generating functions-based bound, we obtain a
tighter bound on the recurrence which, in turn, provides a
tighter bound for CBS. Observing that there exists a linear
dependency between the number of negative and positive
constraints, allows us to achieve further improvement, and
eventually obtain a bound of O

(
(en)kC

)
, which improves

the original bound on the algorithm by a significant factor
for a wide range of standard benchmarks.

We believe that the recurrence relation can be further im-
proved, in order to better express the real conditions of a
worst-case scenario. An immediate step would be to try

70

and account for tighter dependencies between the number of
constraints that are being eliminated once a single constraint
is applied. In addition, revisiting the conditions on the recur-
sion’s parameters may allow to tighten the upper-bound on
the recursion, and in turn, on the complexity of CBS.

It is important to note that the new bounds are still some-
what loose and present a worst-case analysis. However, our
analysis paves the way to better pinpoint the parameters
that govern (in the worst case) the algorithm’s computa-
tional complexity as well as analyze the complexity when
restricted to certain settings. Moreover it provides a general
methodology that can be used to analyze different variants
of the MAPF problem. For example, in the next sections
we show how to seamlessly account for edge constraints
(Sec. 5.2) as well as for settings that optimize the Sum-of-
Costs objective (Sec. 5.3).

5.2 CBS with Edge-Constraints
Recall that the analysis we performed in Sec. 3 and 4 (as well
as the original analysis) accounted for vertex constraints
only. We now show simple approaches to account for edge
constraints using the existing analysis. Accounting for edge
constraints directly is left for future work.

Counting edge constraints as vertex constraints Notice
that an edge constraint implicitly defines two vertex con-
straints (forcing agent ai to traverse (u, v) at time t cor-
responds to the constraint that ai has to be in vertex u
and v at times t and t + 1, respectively). Thus, we can sim-
ply increase the number of vertex constraints by the num-
ber of possible edge constraints (which is twice the num-
ber of edges as each edge can be traversed in both direc-
tions). Specifically, on 2D-grids, each node has at most 4
outgoing and incoming edges, therefore, using the original
analysis the number of negative constraints would increase
to nkC + 8nkC = 9nkC in the worst-case. For the gen-
eral case where |E| ≤ n2, the number of negative constraints
would increase to (2n2 + n) · kC in the worst-case. We em-
phasize that while the increase may seem negligible, the ac-
tual worst-case complexity is exponential in the number of
negative constraints and the additional constraints would ap-
pear in the exponent of the original bound. For example, the
original bound of O(2nkC) would be O(29·nkC).

A similar approach can be applied to the recursion-based
bounds presented in Sec. 4. We can consider a total number
of negative constraints of r = 9nkC, which also includes
the negative edge-constraint. One can show that Eq. 5 still
upper-bounds the number of expanded nodes in CBS’s high-
level search. Thus, by placing r = 9nkC in Prop. 1 we ob-
tain a bound of O

(
(9en)

kC
)

.

It is important to note that accounting for edge constraints
increases the relative improvement of the bounds we present
over the original bound. This is because in our bound the
additional work is reflected by increasing the base of the ex-
ponent and not the exponent itself as in the original bound.

Counting MDD edges In Cor. 1 the size of an MDD is de-
fined as the number of MDD vertices. However, if we wish

to account for edge constraints, the same result holds sim-
ply by changing the definition of the size of an MDD to
be the number of MDD vertices and edges. For instance,
on a 4-connected grid, the maximal (outgoing) degree of
each MDD node is five. Therefore, the total number of MDD
edges is bounded by five times the number of MDD vertices.
Using Eq. 3, the total number of vertex and edge constraints
is bounded by (1 + 5) · O

(
C3
)
. We then update Claim. 1

to incorporate edge constraints, and get a bound of 2O(kC
3)

(with a small hidden constant factor slightly larger than 1).

5.3 Analysis for the Sum-of-Costs (SoC)
Objective

The bounds we provided (Sec. 3 and 4) were obtained and
expressed usingC—an upper-bound on a single agent’s path
length in an optimal solution. In the setting where we seek
to minimize the makespan,C is indeed an optimal solution’s
cost. Unfortunately, this is not the case for the SoC objective.

One way to use our results when using SoC as our opti-
mization objective is to observe that kC is an upper-bound
for the optimal solution’s cost. Namely, denote C ′ = kC
and use C ′ instead of kC in all the bounds presented. For
example, our generating function-based analysis for the SoC
objectives yields the bound ofO

(
(en)C

′
)

. This is a slightly
looser bound expressed with an upper-bound on a single-
agent’s solution’s optimal cost.

5.4 Future Improvements for CBS
Throughout this paper we presented several observations,
which improve our understanding regarding the hardness of
the MAPF problem. For instance, in Sec. 3 we discuss the
dependency of the graph’s size on the problem’s complexity,
and use it later to provide refined upper-bounds. We provide
a new understanding that the worst-case complexity of CBS
depends more on the graph’s radius rather on the graph’s
size. Another such observation is reflected in the incorpo-
ration of positive constraints in our recurrence-based analy-
sis. It focuses on the importance of positive constraints by
demonstrating the huge reduction in the search tree’s size.

We hope that these observations would allow, in addition
to improving the theoretical analysis of CBS, to be used
to improve the algorithm in practice. One possible way to
approach this task is to use these observations to develop
heuristics. For instance, by favoring expansion of CT nodes
with a large number of positive constraints or with a min-
imal amount of approximated work that is remained to be
done by the algorithm.

Acknowledgments
We wish to thank Roni Stern and the anonymous reviewers
of earlier versions of this paper for helpful discussions and
comments that contributed to this paper. This research was
partially supported by grants No. 102583, 2028142 from the
Israeli Ministry of Science & Technology (MOST), and by
grant No. 1018193 from the United States-Israel Binational
Science Foundation (BSF).

71

References
Banfi, J.; Basilico, N.; and Amigoni, F. 2017. Intractabil-
ity of Time-Optimal Multirobot Path Planning on 2D Grid
Graphs with Holes. IEEE Robotics and Automation Letters
2: 1941–1947.

Boyarski, E.; Felner, A.; Stern, R.; Sharon, G.; Tolpin,
D.; Betzalel, O.; and Shimony, E. 2015. ICBS: Improved
conflict-based search algorithm for multi-agent pathfind-
ing. Int. Joint Conf. on Artificial Intelligence, IJCAI 2015-
January: 740–746.

Felner, A.; Li, J.; Boyarski, E.; Ma, H.; Cohen, L.; Kumar,
T. K.; and Koenig, S. 2018. Adding heuristics to conflict-
based search for multi-agent path finding. In International
Conference on Automated Planning and Scheduling, ICAPS,
volume 2018-June, 83–87. AAAI press.

Gordon, O.; Filmus, Y.; and Salzman, O. 2021. Revisit-
ing the Complexity Analysis of Conflict-Based Search: New
Computational Techniques and Improved Bounds. CoRR
abs/2104.08759.

Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For-
mal Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Trans. on Systems Science and Cybernetics 4:
100–107.

Kaduri, O.; Boyarski, E.; and Stern, R. 2020. Algorithm se-
lection for optimal multi-agent pathfinding. In International
Conference on Automated Planning and Scheduling, ICAPS,
volume 30, 161–165. AAAI press.

Li, J.; Felner, A.; Boyarski, E.; Ma, H.; and Koenig, S.
2019a. Improved heuristics for multi-agent path finding with
conflict-based search. Int. Joint Conf. on Artificial Intelli-
gence, IJCAI 2019-August: 442–449.

Li, J.; Harabor, D.; Stuckey, P. J.; Felner, A.; Ma, H.; and
Koenig, S. 2019b. Disjoint splitting for multi-agent path
finding with conflict-based search. In International Confer-
ence on Automated Planning and Scheduling, ICAPS, 279–
283. AAAI press.

Li, J.; Harabor, D.; Stuckey, P. J.; Ma, H.; and Koenig, S.
2019c. Symmetry-breaking constraints for grid-based multi-
agent path finding. Symp. on Combinatorial Search, SoCS
184–185.

Pallottino, L.; Scordio, V. G.; Bicchi, A.; and Frazzoli, E.
2007. Decentralized Cooperative Policy for Conflict Reso-
lution in Multivehicle Systems. IEEE Trans. Robotics 23(6):
1170–1183.

Pemantle, R.; and Wilson, M. C. 2008. Twenty Combina-
torial Examples of Asymptotics Derived from Multivariate
Generating Functions. SIAM Rev. 50(2): 199–272.

Salzman, O.; and Stern, R. 2020. Research Challenges and
Opportunities in Multi-Agent Path Finding and Multi-Agent
Pickup and Delivery Problems. In International Confer-
ence on Autonomous Agents and Multiagent Systems, AA-
MAS, 1711–1715. International Foundation for Autonomous
Agents and Multiagent Systems.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219: 40–66.
Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artificial Intelligence 195: 470–495.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. Symp. on Combina-
torial Search, SoCS 151–158.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Trans. on Computational Intelligence and AI in Games
4: 144–148.
Wilf, H. S. 2006. Generatingfunctionology. A. K. Peters,
Ltd.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses. Artificial Intelligence 29(1): 9–20.
Yu, J. 2016. Intractability of optimal multirobot path plan-
ning on planar graphs. IEEE Robotics and Automation Let-
ters 1: 33–40.
Zhang, H.; Li, J.; Surynek, P.; Koenig, S.; and Satish Kumar,
T. K. 2020. Multi-agent path finding with mutex propaga-
tion. In International Conference on Automated Planning
and Scheduling, ICAPS, volume 30, 323–332. AAAI press.

72

