
Finding the Exact Diameter of a Graph with Partial Breadth-First Searches

Richard E. Korf
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu

Abstract
The diameter of a graph is the longest shortest path between
two nodes. This paper presents an improved algorithm for
finding the exact diameter of an undirected graph. Rather than
performing complete breadth-first searches, these searches
can be terminated early. The algorithm is readily parallelized,
and is used to find the diameters of 4-peg Tower of Hanoi
problem-space graphs with up to 18 discs. Performance im-
provements range from a factor of almost 2 to 5.88 over the
previous state of the art.

Introduction
The eccentricity of a node in a graph is the maximum dis-
tance from that node to any other node. The diameter of a
graph is the largest eccentricity of any node, or the longest
shortest path between any two nodes. For a problem-space
graph, these nodes correspond to the initial and goal states of
a hardest instance of the problem. In a communication net-
work, the diameter is the largest distance a message would
have to travel. In a social network, the diameter is the maxi-
mum degree of separation between two individuals.

We assume that the graphs are undirected, which is re-
quired by the algorithm, and that all edges have unit cost,
which is not. The algorithm generalizes to weighted graphs.

For many combinatorial problems, such as Rubik’s Cube,
all states are equivalent, and all nodes have the same eccen-
tricity, which is the diameter of the problem-space graph.
The diameter of such a graph can be computed by a single
complete breadth-first search (BFS) from any state. Finding
the diameter of the Rubik’s Cube problem space was an open
problem for 35 years, until it was shown to be 20 moves by
(Rokicki et al. 2010). This required a great deal of domain-
specific analysis, and 35 cpu-years of computation.

For other problems, such as the sliding-tile problems,
there are only a few non-equivalent states, based on the po-
sition of the blank in this case. For the Fifteen Puzzle, for
example, only three BFSs are required to find the diameter:
one from a state with the blank in a corner, one with the
blank on the side, and one with the blank in the interior.

For yet other problems, such as the 4-peg Tower of Hanoi,
there are nodes with many different eccentricities, requiring
multiple searches to find the diameter.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Related Work
Textbook Algorithm
The simplest algorithm for this problem is to perform a com-
plete BFS from every node of the graph, and take the max-
imum of their eccentricities. For a graph with V nodes and
and E edges this would require O(V E) time, since each
BFS requires O(E) time. For graphs with constant-bounded
degree, this is O(V 2), whereas for dense graphs it is O(V 3).
Note that for problem-space graphs, V is typically expo-
nential in the size of the problem, and hence O(V 2) is pro-
hibitively expensive. For example, the 18-disc 4-peg Tower
of Hanoi graph has 418 or over 68 billion nodes.

Theoretical Approaches
Most of the previous work on this problem is in theoretical
computer science. One goal is to reduce the cubic complex-
ity for dense graphs. The best result appears to be O(V w),
where w is the exponent of fast matrix multiplication, which
is currently about 2.37 (Yuster 2011). Another goal is to de-
sign approximation algorithms, which do not compute the
exact diameter. See for example (Chechik et al. 2014). Most
of this work focusses on proofs of worst-case complexity
and/or bounds on the degree of approximation, and does not
report any implementation nor experimental results. Only a
few papers report experimental results.

Cresenzi et al
The algorithm of (Crescenzi et al. 2013) starts with a com-
plete BFS from a single root node, generating a breadth-first
search tree. Then, starting from the leaf nodes and working
up toward the root, it performs a complete BFS from each
node, determining the eccentricity of that node. Let M be
the maximum of these eccentricites, which is a lower-bound
on the diameter of the graph. This process continues until
the eccentricity of every node at depth greater than d in the
original BFS tree has been computed, where 2d ≤ M . At
this point, any shortest path with at least one endpoint in a
node at depth greater than d must be less than or equal to
M , since M is the maximum eccentricity of all such nodes.
All that remains to consider are shortest paths between two
nodes at depth d or less in the original BFS tree. None of
these paths can be longer that 2d, since we can get from any
of these nodes to any other by going through the root of the

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

73



original BFS tree. Since 2d ≤ M , M must be the diameter
of the graph, and we can terminate the algorithm.

As the authors acknowledge, this is only effective for
graphs where most of the nodes are tightly clustered around
a center, with only a few outlying nodes. This is not the
case with most problem-space graphs, however, where most
nodes are found well beyond half the maximum eccentricity
of any node. For example, for the 15-disc, 4-peg Tower of
Hanoi graphs, even if the initial BFS was done from a node
of minimum eccentricity, this algorithm would have to per-
form a complete BFS from over two-thirds of the states in
the space. The largest graph whose diameter Cresenzi et al
found with their method contained 149 million nodes.

Pennycuff and Weninger
The algorithm of (Pennycuff and Weninger 2015) is based
on a model called vertex programming, where nodes of the
graph exchange messages with neighboring nodes to de-
termine their eccentricities. Unfortunately, this method re-
quires O(V E) messages, and O(V 2) memory in most cases,
making it infeasible for large graphs. The largest graphs they
report experimental data for have 100 thousand nodes.

Borassi et al
The previous state-of-the-art for this problem is represented
by (Borassi et al. 2015), which is heavily based on (Takes
and Kosters 2011). A complete BFS from any node gives
us the eccentricity of that node, but we can get more infor-
mation from each BFS. Let M be the maximum eccentricity
found so far, and hence a lower-bound on the diameter of the
graph. Assume the eccentricity of a given root node r is e,
where e is less than M , and consider a node n at a distance
d from r. Since we can reach r from n via a path of length
d, and we can reach any node from r via a path of length e
or less, we can reach any node from n by a path of length
d + e or less. Thus, the eccentricity of n is no greater than
d + e. If d + e is not greater than M , then there is no need
to do a BFS from node n. We say that node n is pruned in
this case. Using this idea, Borassi et al perform a series of
complete breadth-first searches until all nodes are pruned.

In the above scenario, the eccentricity of n is no greater
than d + e. We could maintain a table with the least upper
bound on the eccentricity of each node. If the maximum ec-
centricity found so far ever increases, we can prune those
nodes with upper bounds on their eccentricities less than or
equal to the new maximum eccentricity. This functionality
is not used here, because for the 4-peg Tower of Hanoi, the
initial estimate of the diameter turned out to be exact in each
case, and the maximum eccentricity never increased.

Another idea in their paper is that any root node with ec-
centricity e produces a upper bound of 2e on the diameter
of the graph. The reason is that we can get from any node
to any other by going through the root, resulting in a path
no longer than 2e. Thus, if M is the maximum eccentricity
found so far, and we find a node with eccentricity e, where
2e ≤ M , then M is the diameter of the graph. This also
doesn’t apply to the 4-peg Tower of Hanoi, since no state
has an eccentricity close to half the maximum eccentricity.

The largest graph for which they compute the diameter
consists of about 4.2 million nodes. Much of (Borassi et al.
2015) is focussed on heuristics for deciding the order of the
root nodes for the BFSs, in order to find a large eccentricity
early to maximize subsequent pruning. This also does not
apply to our domain, since the first search returned the max-
imum eccentricity for each problem size.

All of their searches are complete BFSs. The main con-
tribution of this paper is showing how to terminate these
searches early, which can also be used to improve the per-
formance of their full algorithm on any undirected graphs.

Sagharichian et al
(Sagharichian, Langouri, and Naderi 2016) describe how to
get even more information out of each complete BFS. A BFS
generates a rooted breadth-first tree of the graph. We can
get a more accurate upper bound on the eccentricity of any
node by transforming the given tree into a new tree rooted at
that node. Imagine the tree consisting of a set of rigid edges
connected by flexible links at each node that allow arbitrary
rotations, and that we “pick up” the original tree by the node
of interest, allowing the rest of the tree to fall from its new
root. The depth of the deepest node in this new tree is an
upper bound on the eccentricity of this new root node.

Unfortunately, computing this new tree for each node is
very expensive. It requires storing the entire tree in memory,
and the time complexity for each BFS is O(E + V + V d),
where d is the tree depth. This last term is prohibitively ex-
pensive for the 4-peg Tower of Hanoi problem, since the di-
ameter of the 18-disc problem is 225, for example. We will
see at the end of this paper that even one step in this direc-
tion, considering the tree rooted at the neighbor of the origi-
nal root along a longest path, does not pay for its overhead.

Hinz, Klavzar, and Petr
Hinz, Klavzar and Petr (Hinz, Klavzar, and Petr 2018) have
done more work on the Tower of Hanoi than anyone. They
computed the eccentricity of every node of the 4-peg prob-
lem with up to 15 discs, and hence the diameter, by perform-
ing a complete BFS on every state. I worked independently,
but periodically informed them of my results. They have also
computed the diameters for up to 18 discs, using the basic
algorithm of Takes and Kosters, on a large supercomputer.

The Main Contribution of this Paper
Borassi et al perform a series of complete BFSs, each of
which generate every node in the graph. These searches can
be early however, resulting in partial BFSs.

When a node is pruned, it is because we know that its
eccentricity is less than or equal to M , the maximum eccen-
tricity found so far. This means that it cannot be the endpoint
of any shortest path longer than M . Any longer path in the
graph must be between two nodes which have not yet been
pruned, which we call active nodes.

The main contribution of this paper is the observation that
we can terminate each BFS as soon as all active nodes have
been generated. Since we are only searching for paths be-
tween active nodes as endpoints, there is no reason to con-
tinue a BFS once all active nodes have been generated.

74



Once we terminate a search when all active nodes have
been generated, we can use the maximum depth reached at
that point as if it were the eccentricity of the root, for pur-
poses of pruning other nodes. The reason is that we are only
searching for shortest paths between active node end points.
Let e′ be the maximum distance reached from the root to any
active node. Given a node n at a distance d from the root, the
maximum distance from n to any other active node can be
no greater than d+e′, since we can reach any node by going
through the root. Thus, if d + e′ is less than or equal to M ,
then node n can be pruned.

There are two benefits to this early termination. The first
is that by terminating early, we reduce the time of each BFS.
Experimentally, this effect is very small, however. More sig-
nificantly, the lower value of e′ compared to the actual ec-
centricity e allows us to prune many more nodes than if the
search had completed, reducing the number of searches.

The Serial Algorithm
The algorithm uses a state table with one entry per state. This
entry stores whether the state is active or pruned, whether
it has been visited in the current BFS, and if so, its depth.
Each state is mapped to a unique index, so we don’t have
to store the states themselves. In addition, a circular list is
used to store the queue of nodes to be expanded by the BFS.
Each queue entry must be large enough to store a state. The
number of queue entries needed is the maximum width of a
BFS, which is the largest number of nodes at any depth.

Note that since the queue is accessed strictly sequentially,
it can be stored on disk instead of in memory. One file can
be used for nodes at each depth, with small buffers in mem-
ory for input and output. This is slower than an in-memory
implementation however.

We begin with all states marked as active, and perform a
BFS from each active state. Before each BFS, we initialize
every state to unvisited, regardless of its active or pruned sta-
tus, and count the number of active states. Then we perform
the BFS, storing the depth of each state visited, and count-
ing the number of active states generated, until that number
equals the total number of active states. Let e′ be the maxi-
mum depth reached by this search, and let M be the maxi-
mum eccentricity so far. Then we linearly scan the state ta-
ble, and for each state at a distance d from the root for which
d+e′ ≤ M , we mark that state as pruned, including the root.
This scan is also used to initialize all the states to unvisited,
and count the number of active states, in preparation for the
next BFS. We then perform a BFS on the next active state in
the order, until all active states have been pruned.

One bit of the state table indicates if the state is active or
pruned, and the remaining bits store the depth of the state
in the current BFS. States that have not been visited in the
current BFS have all their depth bits set to one. Since we
can only prune nodes close to the root, we don’t need to
store the full range of search depths, but can set a maximum
depth value, and use that value for any deeper states, if we
don’t prune any states at this depth. With one byte per state,
using one bit for active or pruned leaves 7 bits for the state
depth in the current BFS. Using 127 to denote states not yet
visited in the current BFS gives us a depth range of 0 to 126.

The state table can be reduced to just two bits per state,
storing only active and visited status, but not the state depths,
in two different ways. One is after each BFS, we restart the
same BFS and run it only to the maximum depth at which
nodes can be pruned. In most cases this depth is relatively
shallow. Alternatively, during each BFS we could write each
state and its depth sequentially to a disk file, then after the
BFS we read the first part of that file, pruning the nodes at
shallow depths.

The Parallel Algorithm
The serial version of this algorithm is limited by time, not
memory. Almost all modern computers have multiple pro-
cessors and cores, suggesting parallelizing the algorithm to
reduce its runtime. We assume here a shared memory model,
where each thread has access to the entire memory of the
machine. Since the algorithm consists of many individual
BFSs, the most natural way to parallelize the algorithm is
for different threads to perform different searches.

Each BFS is independent, and each thread has its own
state table and queue of nodes to be expanded. The active or
pruned status of a node is a global property, however, stored
in a single table shared by all threads, using one bit per state.
No locking of this shared table is needed, since each state
goes from active to pruned, and multiple writes marking the
same state as pruned have no effect on the final result.

Each thread needs a local copy of this table as well. The
reason is that each BFS starts with a target number of active
states, and runs until they have all been generated. If another
thread marks one or more of those active states as pruned
while the first BFS is running, it won’t count that state in its
tally of visited active states, and never reach its target num-
ber. In that case, it will perform a complete BFS, negating
the advantage of the algorithm. The local copy of this table
is initialized with the active/pruned status from the global
table at the start of each BFS.

The main drawback of this parallel algorithm is that it per-
forms searches on root nodes that the serial algorithm does
not, because those nodes may be pruned by another search
which is in progress when the BFS starts. This results in
a parallel overhead represented by more total searches per-
formed than by the serial algorithm. To minimize this over-
head, the root nodes of the different threads are spaced as far
apart in the problem space as possible.

As we will see, the function we use to index states in the
4-peg Tower of Hanoi problem has the property that states
that have nearby indices also tend to be close in the problem
space. Thus, we divide the entire interval of states evenly
among the number of parallel threads, and each thread starts
at a different point in this interval. Once it reaches the end of
the interval, it wraps around to the beginning, and continues
until it reaches the state at which it started. This mechanism
keeps the threads working on different parts of the problem
space initially, but they tend to bunch up near the end.

Another optimization is that before a thread begins a BFS
on a root node, it immediately prunes that node in the global
table of pruned nodes, so that another parallel thread will not
start another search with the same root.

75



Experiments
4-Peg Tower of Hanoi Problem
Our experimental domain is the 4-peg Tower of Hanoi prob-
lem. It provides a set of problem-space graphs, each of size
4n, where n is the number of discs. The eccentricity of states
varies significantly, and the diameters of the problem spaces
are not known a priori. For the 3-peg Tower of Hanoi, it is
easy to prove that the diameter of the problem-space graph
is 2n − 1 for n discs, which is also the number of moves
needed to transfer all discs from one peg to another.

The eccentricity of a state with all discs on the same peg
is a good estimate of the diameter of the graph, and the first
BFS starts from such a state. For all problems that have been
run to date, this is in fact the diameter of the graph, but there
is no proof of this conjecture in general.

The pegs are indistinguishable. Thus, most states repre-
sent 4! = 24 symmetric states that differ only by a permu-
tation of the pegs, and have the same eccentricity. The rel-
atively few states with two or more empty pegs have fewer
than 23 symmetric partners. Whenever we prune a state, we
also prune its symmetric states. This reduces the number of
searches by almost a factor of 24.

A problem state is represented by specifying the peg each
disc is on, since the discs on each peg are stacked in order of
size. For the 4-peg problem, two bits per disc are both neces-
sary and sufficient. This provides a bijection between the set
of states and the numbers from zero to 4n − 1. These num-
bers are used as the index into the state table. The positions
of the smallest discs are represented by the least significant
bits. Since most nearby states differ in the positions of the
smallest discs, this provides locality of reference in the state
table that improves cache performance.

Experimental Results
The results are shown in Table 1. The top half of the ta-
ble reports on the serial algorithms, and the bottom half
on the parallel algorithms. “Complete BFS” is the previ-
ous state-of-the-art, performing complete BFSs, but with-
out storing upper bounds on the eccentricity of each node,
since that never leads to any pruning in this domain. “Par-
tial BFS” is our improved algorithm that terminates each
BFS when all active nodes have been generated. Each row
gives the number of discs, the diameter of the problem space,
the number of BFSs, and the running time in the form of
days:hours:minutes:seconds. The last line of each row is the
ratio of the running time of the complete BFS algorithm di-
vided by the running time of the partial BFS algorithm. All
runs were done on an Intel Xeon machine running CentOS
Linux, version 7.8.2003, at 3.3 gigahertz, with 240 gigabytes
of memory. Code was written in C, and compiled with GCC,
with optimization level 3. Pthreads were used to implement
the parallel algorithms. All algorithms were implemented
entirely in memory, without the use of disk storage.

The order in which the BFSs are done affects the number
of searches, by affecting the amount of pruning done with
each BFS. BFS roots were chosen in increasing order of their
index values. Several other orders were tried, such as reverse
index order and random orders. Both performed worse than

the forward sequential order, and thus results are reported
for the forward index order.

Note that the reverse index order is not simply generat-
ing all the indices in reverse order, since this produces the
same results as the forward index order, because of symme-
try among states due to permuting the pegs. Rather, we first
generate all canonical states, where each canonical state rep-
resents an entire group of 24 symmetric states in most cases.
A canonical state is generated by sorting the pegs in order of
the largest disc on each peg. Then we perform searches on
just the canonical states in decreasing order of their indices.

Serial Performance
The first thing to notice is how effective the pruning of even
the complete BFS algorithm is compared to performing a
BFS from every state. The maximum number of searches in
the table, 22296, is less than .05% of the total number of
non-symmetric states in the 15-disc problem space.

The running times of both algorithms are linear in the
number of searches, and the time per search grows by about
a factor of four with each additional disc, since the size of the
problem space is 4n. There is some overhead in the partial
BFS algorithm to count the number of active nodes gener-
ated, making it about 11% slower per search than the com-
plete BFS algorithm, but it performs many fewer searches.

For 10 through 13 discs, the partial BFS algorithm per-
forms about half the searches of the complete BFS algo-
rithm. As a result, it takes a little more than half the time.
For 14 discs, the complete BFS algorithm performs 2.56
times as many searches as the partial BFS algorithm, and
runs 2.35 times longer. For 15 discs, the complete BFS algo-
rithm performs 6.22 times as many searches, and runs 5.88
times longer than the partial BFS algorithm. This ratio tends
to increase with the number of searches.

Parallel Performance
For larger problems, the parallel versions of both algorithms
were used. My machine has 12 cores distributed over two
processors, and 12 parallel threads were used, for all but the
18-disc problem, for which there was only enough memory
for 6 parallel threads. Also due to memory limitations, for
the 17 and 18 disc problems, the depth of each state was not
stored as it was generated, but the nodes to be pruned were
regenerated after each BFS. For 15 discs, the largest problem
for which the serial algorithm was run, the parallel speedup
in the time to conduct each search was about 11 for the serial
algorithm, and 10.5 for the parallel algorithm.

The overall parallel speedup is less than this, due to the in-
creased number of searches performed by the parallel algo-
rithm, compared to the serial algorithm. As explained above,
this is due to searches of nodes that are pruned by other
threads running simultaneously. In these experiments, this
search overhead was a factor of 1.457, 1.622, and 1.664 for
13, 14, and 15 discs, respectively.

For 18 discs, it was impractical to run the complete BFS
algorithm. The number of searches listed for this algorithm,
14332, comes from Andreas M. Hinz and Ciril Petr, who
computed the diameter of this problem using the complete

76



Comparison of Serial Algorithms
Complete BFS Partial BFS Ratio

Discs Diameter Searches Time Searches Time
10 49 330 :16 159 :9 1.78
11 65 239 :46 120 :25 1.84
12 81 272 3:33 140 2:02 1.75
13 97 558 30:24 256 15:41 1.94
14 113 1597 5:58:50 624 2:32:37 2.35
15 130 13663 8:19:48:01 2195 36:00:18 5.88

Comparison of Parallel Algorithms
Complete BFS Partial BFS Ratio

Discs Diameter Searches Time Searches Time
13 97 858 4:24 373 2:12 2.00
14 113 2387 49:23 1012 23:15 2.12
15 130 22296 1:07:22:38 3652 5:41:24 5.51
16 161 7532 1:19:58:28 1981 12:09:21 3.62
17 193 6976 6:19:04:10 2022 2:05:25:18 3.05
18 225 14332* 2378 22:21:47:17 5.33*

Table 1: Experimental Results on 4-Peg Tower of Hanoi Problem

BFS algorithm on a large supercomputer1. Their running
time is not listed, since they ran on a different machine, used
a less efficient BFS algorithm, and typically employed 48
processors in parallel. Their implementation took 2.29 cpu
hours per BFS on their machine, while mine took about 1.39
cpu hours on my machine.

The number of searches is not directly comparable either,
since they used a random search order, and I used the index
order. The ratio of 5.33 is an estimate based on the ratio
of the number of searches performed, correcting this by the
13% slower speed per search of the partial BFS algorithm
compared to the complete BFS algorithm on 17 discs.

In general, the parallel partial BFS algorithm runs be-
tween 2 and 5.51 times faster than the complete BFS algo-
rithm. There are significant differences in this ratio for dif-
ferent size problems. As with the serial algorithms, the par-
tial BFS algorithm is slightly slower than the complete BFS
algorithm per search, despite generating fewer nodes. The
performance gains come from performing fewer searches,
since terminating a search at a shallower depth allows many
more nodes to be pruned.

The number of searches doesn’t vary smoothly with
the number of discs. The smaller problems generate fewer
searches, and the larger ones more, but it isn’t monotonic.
In particular, the 15-disc problem requires the most searches
by far. I don’t know why, but 15 discs is unusual for another
reason. For almost all size problems up to 20 discs, the op-
timal solution length for moving all discs from one peg to
another equals the eccentricity of the canonical initial state
with all discs on the same peg, except for 15 discs. In this
case the optimal solution length is 129 moves, but there are
states that are 130 moves away from the canonical initial
state (Korf 2008). For 20 through 26 discs, the eccentricity
of this canonical initial state is also greater than the optimal

1Ciril Petr and Andreas M. Hinz, personal communication,
December 2020

solution length (Korf 2008; Hinz, Klavzar, and Petr 2018),
with the difference increasing with increasing numbers of
discs. We conjecture that the diameter of the graph always
equals the eccentricity of the canonical state with all discs
on the same peg, but no proof of this conjecture is known.
This work and that of Hinz and Petr independently confirm
this conjecture for up to 18 discs.

An Additional Optimization?
The pruning power of each BFS is based on the maximum
tree depth. For each node, we add its distance to the root to
the maximum tree depth, and if the sum is no greater than
the current lower bound on the diameter, then we prune that
node. As described in the related work section, computing a
new tree from each BFS but rooted in every other node is too
expensive, but we can take one small step in this direction.

Consider a BFS tree rooted at node r, with a longest path
of length e, with node n being the immediate neighbor of
r on that path. We can prune node n if 1 + e is no greater
than the current lower bound on the diameter. However, the
endpoint of this longest path can be reached from node n in
e − 1 moves, since there is no need to go from n to r, and
back to n again. The maximum eccentricity of n is therefore
the maximum of e−1 and 1+f , where f is the longest path
from any other neighbor of the root. More generally, for all
nodes descendent from n, and at a distance d from the root,
their maximum eccentricity is the maximum of e+d−2 and
d + f . This can result in more pruning among those nodes.
This idea can be extended by considering the descendants of
the nodes at depths two, three, or more from the root.

To implement the one-step version of this, for each state
generated we keep track of which neighbor of the root it is
descended from. We also keep track of the maximum depth
of the nodes descended from each neighbor. In experiments
with 13 disks, this reduced the number of searches required,
resulting in a 12.75% reduction in running time. For 14

77



discs, this resulted in only a 1.23% reduction in time. For
15 disks, the number of searches was reduced, but the addi-
tional overhead of this method resulted in a 4.24% slowdown
in running time. Thus, this optimization doesn’t seem to pay
for itself on larger problems in this domain.

Extension to Non-Uniform Edge Costs
So far, we have assumed unit edge costs. The algorithms
described generalize to the case of weighted graphs, where
different edges have different costs. Instead of the length of
a path, we use the cost of a path, which is the sum of its
edge costs. The diameter becomes the largest cost of any
lowest-cost path between two nodes. In place of breadth-first
search, we use uniform-cost search, or equivalently Dijk-
stra’s single-source shortest path algorithm (Dijkstra 1959).
We can still terminate these searches when all active nodes
have been generated, rather than completing them. A node
can be pruned when the cost of reaching the root from that
node, plus the largest cost of any path from the root is no
greater than the current lower bound on the diameter. The
algorithm does require that the graph be undirected, in that
the cost of an edge must be the same in either direction.

Summary and Conclusions
The diameter is a fundamental property of a graph with
many applications. Despite this, there has been very little
empirical work on computing exact graph diameters. Even
the complete BFS algorithm of (Takes and Kosters 2011)
performs fewer than .05% of the searches of the textbook al-
gorithm on the 4-peg Tower of Hanoi problem. While all
previous algorithms perform complete BFSs, the primary
contribution of this paper is terminating these searches early,
once all active nodes have been generated. The algorithm is
readily parallelized to run on multiple cores.

The performance of this partial BFS algorithm was com-
pared to the complete BFS algorithm for computing the ex-
act diameter of 4-peg Tower of Hanoi problem-space graphs.
Improvements ranged from almost a factor of two to a factor
of 5.88. The 18-disc graph has over 68 billion nodes, which
is more than four orders of magnitude larger than any other
graph types whose exact diameter computations have been
reported in the literature.

While unit edge costs were assumed, this work can be
generalized to the case of undirected graphs with weighted
edge costs, by substituting uniform-cost search for BFS.

Acknowledgements
I would like to thank Ciril Petr and Andreas M. Hinz for
helpful correspondence regarding this problem. Their work
computing the eccentricities of every node in the 4-peg
Tower of Hanoi problem-space graphs with up to 15 discs
originally inspired me to compute the diameters of larger
graphs. I recently informed them of my latest results, and
they have computed the diameters of the 16 through 18-disc
problems, using the complete BFS algorithm on a large su-
percomputer.

References
Borassi, M.; Crescenzi, P.; Habib, M.; Kosters, W. A.;
Marino, A.; and Takes, F. W. 2015. Fast diameter and radius
BFS-based computation in (weekly connected) real-world
graphs with an application to the six degrees of separation
games. Theoretical Computer Science 586: 59–80.
Chechik, S.; Larkin, D. H.; Roditty, L.; Shoenebeck, G.; Tar-
jan, R. E.; and Williams, V. V. 2014. Better approximation
algorithms for the graph diameter. In Proceedings of the
25th Annual ACM-SIAM Syposium on Discrete Algorithms
(SODA ’14), 1041–1052. Portland, OR.
Crescenzi, P.; Grossi, R.; Habib, M.; Lanzi, L.; and Marino,
A. 2013. On computing the diameter of real-world undi-
rected graphs. Theoretical Computer Science 514: 84–95.
Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerishe Mathematik 1: 269–71.
Hinz, A. M.; Klavzar, S.; and Petr, C. 2018. The Tower
of Hanoi—Myths and Maths, 2nd ed. Cham, Switzerland:
Springer Birkhauser.
Korf, R. E. 2008. Linear-time disk-based implicit graph
search. Journal of the Association for Computing Machinery
(JACM) 55(6): 26–1:26–40.
Pennycuff, C.; and Weninger, T. 2015. Fast, Exact Graph
Diameter Computation with Vertex Programming. In 1st
High Performance Graph Mining Workshop (HPGM ’15).
Sydney, Australia.
Petr, C. 2020. Personal communication.
Rokicki, T.; Kociemba, H.; Davidson, M.; and Dethridge,
J. 2010. God’s number is 20. https:www.cube20.org.
Accessed:2021-05-28.
Sagharichian, M.; Langouri, M. A.; and Naderi, H. 2016.
Calculating exact diameter metric of large static graphs.
Journal of Universal Computer Science 23(3): 302–318.
Takes, F. W.; and Kosters, W. A. 2011. Determining the di-
ameter of small world networks. In Conference on Informa-
tion and Knowledge Management (CIKM-11), 1191–1196.
Glasgow, Scotland.
Yuster, R. 2011. Computing the diameter polynomially
faster than APSP. arXiv:1011.6181v2.

78


