
Learning-based Synthesis of Social Laws in STRIPS

Ronen Nir, Alexander Shleyfman, Erez Karpas
Technion — Israel Institute of Technology

ronenn@campus.technion.ac.il, shleyfman.alexander@gmail.com, karpase@technion.ac.il

Abstract
In a multi-agent environment, each agent must take into ac-
count not only the actions it must perform to achieve its goals,
but also the behavior of other agents in the system, which usu-
ally requires some sort of coordination between the agents.
One way to avoid the complexity of centralized planning and
online negotiation between agents is to design an artificial
social system. This system enacts a social law that restricts
the behavior of the agents. A robust social law enables the
agents to reach their goals while keeping them from interfer-
ing with each other. However, the problem of efficient syn-
thesis of such laws is computationally hard, and previously
proposed search techniques do not scale well. In this paper,
we propose the use of graph neural networks to predict so-
cial laws from a graph-based representation of multi-agent
systems. However, as this prediction can be wrong, we use
heuristic search to correct possible mistakes in the network’s
prediction ensuring that the produced social law is indeed ro-
bust. Our empirical evaluation shows that this approach beat
the previous state-of-the-art in social law synthesis and that
it can learn from an imperfect expert, even in the presence of
noise.

Introduction
Multi-agent systems are becoming increasingly more com-
mon, with applications such as warehouse order fulfillment,
autonomous cars, drone delivery, and more. In this paper,
we focus on multi-agent systems with classical planning ca-
pabilities, known as multi-agent planning (MAP) (Borrajo
and Fernández 2019). Automated MAP solves the problem
of generating sequences of actions that achieve the individ-
ual goals of the agents starting from a given initial state. The
design of such agents and environments is quite different
from the design of an isolated agent and should take into
account conflicts between agents, communication, privacy,
etc. In a multi-agent setting, a plan that would have allowed
an agent to obtain its goals in solitude may yield unexpected
consequences. As Helmut von Moltke put it “no plan sur-
vives contact with the enemy”.

Broadly speaking, the approaches to solve multi-agent
planning can be divided into two categories: centralized
and distributed, where each of the approaches has its draw-
backs (Wooldridge 2009; Shoham and Leyton-Brown 2009).

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Centralized planning methods, usually, refer to the whole
system as one planning problem, which neglects the pri-
vacy issues and usually do not scale well due to exponen-
tial growth in the number of agents. While being useful in
numerous domains, this approach might suffer from limi-
tations, such as the mentioned bottlenecks, or system-wide
vulnerability to failure. On the other hand, the distributed
approach requires some sort of coordination between the
agents, where the coordination can be either implicit or
explicit. Explicit coordination requires agents to negotiate
(usually repeatedly) for conflict resolution, which requires
time and physical embodiment of the communication de-
vices. Implicit coordination, in turn, involves an element of
system design that either imposes some rules of encounter
on the agents or enacts a social law restricting the agents
from performing certain actions under some conditions.

Our focus here is on the social law approach (Tennenholtz
and Moses 1989), which is a form of implicit coordination.
A social law restricts the allowed behaviors of the agents.
A social law is called robust if, assuming all agents follow
the law, they are all guaranteed to achieve their goals. Re-
cent work (Nir, Shleyfman, and Karpas 2020) proposed an
automatic method for synthesizing robust social laws for a
given multi-agent environment. This is done by treating this
problem as a heuristic search problem through the space of
possible social laws. However, as this search space is huge
(exponential in the number of actions), this technique does
not scale well to large problems. Morales et al. (2018) pro-
posed a technique of social law synthesis in the context of
normative systems. Their approach is based on an evolution-
ary algorithm and does not guarantee completeness.

Theoretically, if we had a complete specification of the
possible instances in a given MAP domain, we could use
formal methods to synthesize a generic social law for the
domain. However, MAP domains typically do not have such
a specification, rather only a description of the schematic
predicates and operators, without any specification of the
possible combinations of initial states and goals (Shleyfman
and Karpas 2018). Thus, the generalization of social laws,
and the study of domain structures, though an interesting
topic, can not provide guarantees about unseen problem in-
stances.

Instead, we focus on a statistical machine learning ap-
proach, in which we generalize from labeled examples –

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

88

social laws for MAP instances (MAPs), to social laws in
unseen MAPs of the same domain. Specifically, we assume
access to a domain-expert, who provides us with a set of
examples – small instances of the same domain, with a ro-
bust social law for each instance. We introduce a technique
for learning from such examples and show that it is pos-
sible to generalize from such small examples and use the
learned knowledge to synthesize social laws in large prob-
lem instances. Our aim here is to produce a robust social
law for a given MAP based on the knowledge provided
by the domain-expert. To do so, we use graph neural net-
works, combined with a search procedure to correct possi-
ble mistakes in the network’s prediction, as a fast, domain-
independent solution for the problem of social law genera-
tion.

Our technique works by representing multi-agent plan-
ning problems as graphs (extending the notion of Problem
Description Graph (PDG) (Pochter, Zohar, and Rosenschein
2011) to the multi-agent setting). We train a Graph Convo-
lutional Neural network (GCN) (Kipf and Welling 2017) on
our labeled examples and use it to predict social laws on
larger problems. However, as there are no guarantees that
the predicted social law will be robust, we use the network
output to speed up the search for social laws (Nir, Shleyf-
man, and Karpas 2020) by (a) introducing new heuristics
based on the prediction, and (b) seeding the open list with
potential social law candidates.

We empirically show that our technique can exploit a few
small labeled examples to synthesize social laws for larger
MAPs in the same domain, even when the domain-expert is
imperfect. We also address the drawbacks of this approach,
i.e., the domain-expert may not be able to locate all of the
possible conflicts or produce a fully robust social law for
each of the proposed examples. This is simulated by intro-
ducing noise to the social laws produced by the expert. We
show that our approach is noise-tolerant, and can sometimes
even benefit from such noise.

Preliminaries
In this work we consider a multi-agent planning (MAP)
setting that reasons about multiple non-collaborative, non-
communicating agents. We start with the definition of the
modified version of MA-STRIPS (Brafman and Domshlak
2008) introduced by Karpas et al. (2017). This modification
employs individual goals for agents rather than a single goal
for the entire problem.

Formally, a MAP problem in this setting is defined as a
tuple Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉, where: n ∈ N repre-
sents the number of agents, F is a set of facts, I ⊆ F is
the initial state, and Gi ⊆ F and Ai define the goal and the
actions of agent i, correspondingly. The set of all actions of
the problem and the overall goal of the problem are writ-
ten as A =

⋃n
i=1Ai and G =

⋃n
i=1Gi. We say that s is a

state of the system Π if s ⊆ F , and S = 2F is the set of
all states of Π. Each action a ∈ Ai is described by precon-
ditions pre(a) ⊆ F , negative preconditions npre(a) ⊆ F 1,

1For domains with no negative preconditions we assume
npre(a) = ∅.

add effects add(a) ⊆ F , and delete effects del(a) ⊆ F . We
say that the action a is well-defined if pre(a) ∩ npre(a) =
add(a) ∩ del(a) = ∅. The action a is applicable in the state
s if pre(a) ⊆ s and s ∩ npre(a) = ∅. The result of such
application is be denoted by sJaK := (s \ del(a)) ∪ add(a).
In what follows we assume well-defined, unit-cost actions.

We define a projection of Π for an agent i to be Πi =
〈F,Ai, I, Gi〉. Note that Π is a regular (single-agent) STRIPS
task (Fikes and Nilsson 1971). A sequence of actions πi is
called a plan for the task Πi if the actions are consequently
applicable starting from the state I and resulting in a state s,
s.t. Gi ⊆ s. The single-agent plans in the MAP context are
referred to as individual plans. Following, Fišer et al. (2019),
for an action set L ⊆ A, we denote Πi \ L := 〈F,Ai \
L, I,Gi〉, generalizing it to the MAP setting as Π \ L =
〈F, {Ai \ L}ni=1, I, {Gi}ni=1〉.

We consider an execution model where each agent plans
its actions in advance, and a given arbitrary scheduler exe-
cutes the actions one by one with no given priorities, i.e., the
scheduler can execute the plans provided by the agents in
any possible order. At each step of the joint plan execution,
the agent chosen by the scheduler acts according to its pend-
ing action, changing the state of the world accordingly. The
scheduler repeats this procedure until one of the following
happens: either all individual plans are executed, or some
agent fails to execute its pending action. This failure to ex-
ecute an action is denoted as a conflict. In what follows, we
consider the scheduler to be adversarial, i.e., we would like
to avoid any possible joint execution that results in either a
conflict or in reaching a state s where one of the agents has
not achieved its goal (for some i it holds that Gi 6⊆ s).

To ensure that no execution results in such a failure,
Karpas et al. introduced the notion of social law for MAP2

– a set restrictions on agents’ behavior that are meant to pre-
vent conflicts. They described a social law as a modification
to a MAP task Π that can add, delete or modify facts, ac-
tions, the initial state, or the goal, and showed that some re-
strictions require complex conditions, for which the original
set of facts is insufficient. In this work, we follow in the foot-
steps of Nir et al. (2020), which concentrated only on social
laws that restrict conflict-inducing actions, while preserving
the reachability of all agent goals, without altering the initial
set of facts.

Robust Social Laws
In this work we follow the definition of rational robustness
given by Karpas et al., a social law is considered to be ro-
bust if it prevents any possibility for a conflict between the
agents, whatever plans the agents choose to execute. For-
mally characterizing it as follows:

Definition 1. A MAP Π is robust to rational iff an action
sequence that arbitrarily interleaves any individual plans of
all agents achieves the individual goals of these agents.

In what follows, we address the social laws under which

2Obviously, Karpas et al. did not coin the term per se. Various
social laws were introduced to multiple other domains much prior
to the mentioned work.

89

a MAP Π is robust to rational, or simply robust. To this end,
we refer to the definition of social laws by Nir et al. (2020)
Definition 2. For a MAP Π with total action set A, we call
a set of restricted actions L ⊆ A a social law. We say that a
social law L is robust if the restricted MAP Π \ L is robust.

In other words, a social law L is robust if it allows any
scheduling of the agents’ plans: preventing any possible con-
flicts and ensuring that each agent will reach its goal at the
end of the execution, i.e., that any scheduling of plans for
the modified agent projections Πi \ L yields no conflict.

The procedure proposed by Karpas et al. to verify that a
MAP Π \ L is robust can be seen as two independent sub-
procedures, that both solve classical planing problems:
IS SOLVABLE FORALL(Π \ L) checks whether for each

agent i the projection Πi \ L is solvable, i.e. agent i can
reach its goal. We say that a social law L is feasible if the
procedure returns true.

FIND CONFLICT(Π \ L) ensures that there are no conflicts
in any possible schedule. This is achieved by the construc-
tion of a classical planning task whose goal is to reach
a conflict, where unsolvability means that there are no
scheduling interferences.

The social law L is considered to be robust if the first sub-
procedure returns true (the social law is feasible), and the
second returns unsolvable (there are no conflicts). Here it is
important to note that while the unsolvable problems were
mostly ignored in classical planning in the previous decades,
considerable progress was achieved in the past years (Muise
and Lipovetzky 2015).

Example: We illustrate these concepts with a toy problem
from the ROVERS domain (see Figure 1) with two locations
L1, L2, two rovers R1, R2 and, one rock sample to collect.
The actions that can be taken by the rovers are move – that
moves rover between locations and collect – collects a rock
sample while destroying the rock (the action is irreversible).
Suppose that the rock sample is to be taken by R1 rover
from L2 and both rovers are initially positioned at L1. For
simplicity, the goal of R2 is considered to be an empty set.
Two possible robust social laws for this task are: forbid the
rover R2 to take the sample sample(R2, L2), or forbid the
rover R2 to move to location L2, which results in the social
law L = {move(R2, L1, L2)}. Note that if R2 cannot move
to L2, it also cannot collect the rock sample located at L2.

The Search for Social Laws
In their work, Nir et al. introduced a forward search ap-
proach that returns a robust social law for a given MA-
STRIPS problem Π, if there is one. The problem consists of
the following components:

• The original MA-STRIPS problem is considered to be the
initial state s0. This is the MAP Π equipped with the
empty social law L0 = ∅.

• The transition function τ(s, a), where s is the state asso-
ciated with the social law L (s = Π\L) and a is an action
of the original MAP Π. The application of a in the state

Figure 1: The ROVERS Toy Problem.

s results in the state/MAP s′ = Π \ (L ∪ {a}), with the
associated social law L′ = L ∪ {a}.

• The goal test function, as mentioned in the previous sub-
section, is the test for two independent sub-procedures:

IS SOLVABLE FORALL(s) ∧ ¬FIND CONFLICT(s)

The size of this search space is 2|A| where A is set of
all actions in Π, and given a fixed planning task, each state
can be seen as a set of the actions forbidden by its social
law. Unfortunately, uninformed search algorithms, such as
BFS or DFS, do not scale well. Thus, Nir et al. proposed
various techniques, such as pruning, heuristics and preferred
operators identification, to speed up the search. In this paper,
we will rely on learning using graph convolutional neural
networks, described next, to better guide the search.

Graph Convolutional Neural Networks
To predict a social law based on previously seen social laws
for other MAPs, we need to introduce some compact rep-
resentation that encapsulates the complex relations between
the components of a given MAP. We use a graph represen-
tation where facts, actions, and agents correspond to graph
vertices, while the relations between them are encapsulated
in graph edges. Next, we need a scalable approach for su-
pervised learning on graph-structured data. The method we
chose is based on an efficient variant of convolutional neural
networks which operates directly on graphs, i.e., Graph Con-
volutional Neural networks (GCN) (Kipf and Welling 2017).
This model scales linearly in the number of graph edges and
learns hidden layer representations that encode both local
graph structure and features of nodes.

The GCN models we use classify nodes by propagating
information through a multi-layer architecture with convo-
lutional layers that capture structural patterns. Specifically,
given a graph G = (V, E), the network’s input is:
• A feature vector xv ∈ Rd for every node v ∈ V ; summa-

rized in a |V| × d feature matrix X , where d is the feature
vector dimension, and

• An adjacency matrixE ∈ {0, 1}|V|×|V| (where the matrix
entry euv = 1 if euv ∈ E or u = v, and 0 otherwise). Note
that E represents the edges of the graph G.
Every layer in this network is written as a non-linear acti-

vation function σ, where
H(k) = σ(H(k−1), E), ∀k ∈ {1, . . . ,K}

90

with H(0) = X and H(K) the output feature matrix, K
being the number of layers. The various GCN models pre-
sented in the literature mostly differ in how σ(·, ·) is con-
structed and parameterized (Duvenaud et al. 2015; Li et al.
2016; Jain et al. 2016).

In the following sections, we introduce a method that,
given some training MAP examples and their corresponding
social law, yields a robust social law for unseen examples
from the same domain. In other words, given training data:
{(Πj , Lj)}mj=1, where: Πj = 〈F, {Ai}ni=1, I, {Gi}ni=1〉 is a
MA-STRIPS planning problem with |A| = k being the num-
ber of total grounded actions and, Lj ∈ 2k is a label vector
which denotes which actions are to be restricted by a possi-
ble robust social law for this planning problem, it is required
to build a model that can formulate a robust social law, i.e. a
subset of actions L ⊆ A.

Social Laws: Graph Representation
In the next subsection, we show what is the graph repre-
sentation of a given MA-STRIPS planning problem and the
corresponding social law.

Problem Description Graphs
The concept of the problem description graph (PDG) is
not new. In classical planning, PDGs were introduced by
Pochter et al. (2011) in the setting of symmetry detection for
problem formulated in SAS+ (Bäckström and Nebel 1995).
Later on Shleyfman et al. (2015) rewrote this formulation
for STRIPS, and Sievers et al. (2019) used this approach for
learning a portfolio planner selection. We, however, adopt
the PDG for the MA-STRIPS formalism.

Definition 3. Let Π = 〈F, {Ai}ni=1, I, {Gi}ni=1〉 be a
MA-STRIPS planning task. The problem description graph
(PDG) of Π is the graph 〈V,E〉 with

• Graph vertices V = VF ∪ VA ∪ VAg, such that,

VF = V +
F ∪ V

−
F = {v+f , v

−
f | f ∈ F},

VA = V main
A ∪ V pre

A ∪ V eff
A = {vmain

a , vpre
a , veff

a | a ∈ A},
VAg = {vi | i ∈ {1, . . . , n}}.

• E is the graph edges set:

E = EF ∪ EA ∪ EAg , where

EF = {{v+f , v
−
f } | f ∈ F},

EA =
⋃
a∈A

(
Emain

a ∪ Epre
a ∪ Eeff

a

)
, where

Emain
a = {{vmain

a , vpre
a }, {vmain

a , veff
a } | a ∈ A}

Epre
a = {{v+f , v

pre
a } | f ∈ pre(a)}∪

{{v−f , v
pre
a } | f ∈ npre(a)}

Eeff
a = {{v+f , v

eff
a } | f ∈ add(a)}∪

{{v−f , v
eff
a } | f ∈ del(a)}, and

EAg = {{vi, v+f } | f ∈ Gi} ∪ {{vi, vmain
a } | a ∈ Ai}

have_sample(R1,L2)

¬rock_at(L2)

rock_at(L2)

at(R1,L2)

R1

isAgent = T

collect(R1,L2)

collect(...).EFF

collect(...).PRE

isActionMain = T

isActionEff = T

isActionPre = T

isPredicate+ = T
isGoal= T

isPredicate+ = T
isInit = T

isPredicate+ = T

isPredicate- = T

Figure 2: Part of the PDG of Example ROVERS Problem Cor-
responding

• Each v ∈ V has 8 binary attributes as follows:
isPredicate+(v) = T for v ∈ V +

F else F
isPredicate−(v) = T for v ∈ V −F else F
isAgent(v) = T for v ∈ VAg else F

isActionMain(v) = T for v ∈ V main
A else F

isActionPre(v) = T for v ∈ V pre
A else F

isActionEff(v) = T for v ∈ V eff
A else F

isInit(v) = T for v ∈ (V +
f ∩ I) ∪ (V −f \ I) else F

isGoal(v) = T for v ∈ V +
f ∩G else F

where G =
⋃n

i=1Gi

Informally, the PDG has three types of vertex clusters: VF
– each fact can be either true or false, and thus represented
by two vertices; VA – actions have three vertices each, the
vertices of the action a correspond to the elements of the
tuple 〈pre(a), npre(a), add(a), del(a)〉; VAg – each vertex
here represents an agent. For example, if f ∈ F is a predi-
cate such that f ∈ I ∩ Gj for some agent j, the following
attributes hold true for vf : isPredicate+(vf), isInit(vf), and
isGoal(vf).

The edges indicate the connections between the vertices.
Firstly, we connect the vertices of the clusters of actions and
facts. Secondly, the precondition and effect vertices of each
action are connected to their corresponding facts. Finally, we
connect the agents’ vertices to their actions and goal facts.

The vertex attributes are introduced to mark vertex type
(agent, fact, etc.) and to specify such conditions as being in
the initial state or being in one of the agents’ goals. Overall,
there are 4 attributes for facts, 3 attributes for actions, and 1
attribute to designate agent vertices. It is important to note
that all agent vertices have the attributes, therefore the agents
are interchangeable, i.e., there is no particular order on the
agent that will make one agent more “important” than the
other.

Figure 2 shows part of the PDG for our ROVERS toy prob-
lem, corresponding to the action collect(R1, L1). The node
R1 represents the first rover agent. The node collect(R1, L2)
represents the rover’s collect action and, is connected to its
corresponding precondition and effect nodes that, in turn,
are connected to 4 additional fact nodes.

Data Representation
In our case, we start with m MAP examples {Π1, . . . ,Πm}
from the same domain, and a domain-expert. For each of
these tasks, the expert produces a social law Li (we assume

91

that these social laws do exist), such that the augmented
MAP Πi \ Li is robust.

Each task Πi is represented by a graph PDG(Πi) =
〈Vi, Ei〉, where Ei ∈ {0, 1}|Vi|×|Vi| is the corresponding
adjacency matrix, Vi ∈ {0, 1}|V |×8 is the nodes feature ma-
trix, i.e. each row represents a node and its attributes.

The social law is represented as a vector of vertex labels,
i.e. yi = {−1, 0, 1}|Vi|, where -1 is the label of the non-
action vertices, 0 is the label for action vertices that are not
included in the social law, and 1 is the label for the action
vertices that are included in the robust social law for Πi. Us-
ing this notation the training data above can be represented
as a series of tuples

{(PDG1, y1) , . . . , (PDGm, ym)}
This data is used to train the GCN-based models. The ex-

act architecture of the GCN is described in Table 1 and, dis-
cussed in the Empirical Evaluation section.

Learning-Based Social Law Synthesis Method
In this section, we introduce a method that utilizes a given
dataset, as described above, to train a predictive model. This
model, in turn, is exploited to synthesize a robust social law
for an unseen MAP.

The output of such a predictor may contain some errors.
One of our contributions is a procedure that can handle such
inaccuracies. The model may fail on both counts: it can re-
strict a necessary and completely harmless action, or, on the
contrary, allow a conflict-inducing action; in both cases, the
predicted social law is not robust.

Thus, it is necessary to establish a method that uses the
knowledge from the predictor while guaranteeing the robust-
ness of the synthesized social law. The learning-based social
law synthesis method proposed here has three primary steps,
which we further describe in the following subsections:

Train and Predict given a dataset with m MAPs and their
corresponding social laws from a certain MA-STRIPS do-
main, we train a network to predict a social law for an
unseen MAP from the same domain.

Preprocessing given a predicted social law for an unseen
MAP, the first step we take to find a robust social law
is performing some relatively low-cost preprocessing to
eliminate some easy-to-find mistakes resulting in a feasi-
ble social law, i.e., one where every agent can still achieve
its goal individually.

Search for Robust Social Law after the preprocessing is
done, we perform a search through the space of possible
social laws, guided by the prediction of our network.

Train and Predict with GCN based models
Let us first briefly describe how we train and evaluate GCN-
based models to predict social laws.

Network Structure: All models have 4 or 6 convolu-
tional layers, as described in Table 1, followed by a batch
normalization layer, a ReLU activation layer and, a 50%
dropout. The network output is passed through a sigmoid
function.

Model Model Structure # Parameters

Net-1 4× C128 - sigmoid 52,098
Net-2 4× C256 - sigmoid 202,498
Net-3 3× C128 - 3× C256 - sigmoid 201,730

Table 1: Models’ Structures. We use C128 to mark a graph
convolutional layer with 128 parameters, a ReLU and a
batch normalization layer.

Training: First, we randomly split the given dataset to
train, validation, and test subsets according to the following
ratios: 50%, 25%, and 25% respectively. Then, we train 3
networks (see Table 1) with the Adam optimizer (Kingma
and Ba 2015) using negative log-likelihood as the criterion.
The training parameters are as follows: two possible learning
rates: (1e-4, 5e-5), three possible batch sizes: (2,8,16) and,
the default Adam optimizer settings. We also use an early
stop mechanism with 50 epochs of patience, testing for im-
provement in validation set loss.

We are interested in social laws that are permissive, i.e.
restrict only a small fraction of the agents’ actions, which
is why the labels in our dataset are imbalanced – with more
allowed actions (false labels) than restricted actions (true la-
bels). Furthermore, as described in the next section, detect-
ing false-positives requires less effort. Thus, the procedure
emphasizes recall over precision and gives a higher weight
(x3) to false-negative errors. Finally, the procedure picks the
best network according to its balanced accuracy score, i.e.
the arithmetic mean of the true positive and the true negative
rates.

Prediction: the predicted social law LM is the set of
all graph nodes (actions) that got a positive prediction by
the network, i.e., a score higher than 0.5. Let us define
M : A → [0, 1], a function that maps an action node to
its network’s score. Thus, the predicted social law LM is the
set of all actions that got a positive score LM = {a ∈ A |
M(a) > 0.5}. As previously mentioned, enacting LM on Π
gives a similar multi-agent problem only without the actions
included in LM .

Note that LM is not guaranteed to be robust thus, the pur-
pose of the following steps is to detect and correct possible
errors in LM , to produce a robust social law.

Preprocessing of the Predicted Social Law
Here we describe a relatively low-cost procedure to process
the predicted social law and fix possible errors. The proce-
dure goes through LM and detects what restrictions prevent
agents from achieving their goal individually, making LM

an infeasible social law. Then, to establish a feasible so-
cial law, the procedure removes these parts from the social
law, that is, it allows these actions. Let us note that, while
this preprocessing procedure ensures that the produced so-
cial law is feasible, there still are no guarantees about its
robustness.

The procedure consists of two main steps: (a) checking
every single-action restriction in LM individually and re-
moving the restrictions that make it infeasible, and (b) per-

92

forming a binary search through the remaining subsets of the
social law, aiming to find one that is feasible, trying to keep
the majority of LM . In the following, we further describe the
above-mentioned steps.

We implement the first step by constructing MSL =
{L1, L2, . . . , Ln} a set of n atomic (one-sized) social laws
s.t. each L ∈ MSL consists of only one action restriction
from LM . Then, for every L ∈ MSL, the procedure con-
firms that the affected agent can achieve its goal, i.e. L is
feasible, by solving the single-agent projection of the plan-
ning problem. We denote these safe restrictions as appli-
cable restrictions. We finish the first step by constructing
LM
r ⊆ LM , the refined social law that consists of all ap-

plicable restrictions from the predicted social law. In other
words, we discard from LM actions which, if we include
them in the social law, will prevent one of the agents from
achieving its goal individually.

Despite the first step, LM
r may be an infeasible social law,

as restricting two actions could prevent some agent from
achieving its goal, even if restricting each of these separately
does not. Of course, checking all possible subsets of LM

r is
not tractable so, to acquire some feasible social law, we in-
troduce the second step of the procedure that executes a bi-
nary search to remove parts ofLM

r such that the resulting so-
cial law is feasible. The intuition behind this step lies in the
assumption that the actions with a lowerM(a) score (that is,
where the network is less certain) should be restricted with
lower priority. Thus, in case of an infeasible social law, the
procedure would prefer to discard these actions first.

The binary search procedure is implemented by, first, con-
structing a list l = [a1, a2, . . .] with the actions in LM

r ,
sorted by M(a), i.e., the higher score actions (the actions
that should be restricted according to the network’s predic-
tion) are at the suffix of the list. Then, the procedure per-
forms a binary search in l to detect the largest contiguous
suffix s.t. the corresponding social law is feasible, i.e., all
agents can achieve their goals — this is verified by calling
IS SOLVABLE FORALL for every suffix that is checked. We
denote the resulting social law as LM

f – the feasible pre-
dicted social law. Let us note that this step could result in an
empty social law.

It is easy to see that LM
f is a feasible social law for Π as

the second phase confirms it before producing it. Also, our
empirical evaluations shows that this procedure scales well
and can produce large (∼ 150 actions) and feasible social
laws in less than a minute.

Searching for a Robust Social Law
In the previous section, we described a procedure that fixes
one type of mistake in the predicted social law LM , produc-
ing a feasible social law LM

f ⊆ LM . However, we may need
to add necessary and more complex modifications to LM

f to
obtain a robust social law. Here we describe a method, based
on the search technique from Nir et al., to tackle this chal-
lenge.

We adapt the social law search technique from Nir et al.
to correct the remaining errors, if there are any, in LM

f . Most
of the search problem settings, as briefly described in the

Domain Empty Open List Modified Open List Base
hsum havg hcnt hsum havg hcnt

ROVER 6 4 5 9 10 10 4
ZENO 10 10 10 10 10 10 4
TAXI 4 4 4 4 4 4 4
DLOG 7 7 4 9 7 7 4

TOTAL 27 25 23 32 31 31 16

Table 2: Number of Successful Searches on IPC Bench-
marks (size of train set = 64, noise = 0%, ZENO = ZENO-
TRAVEL, DLOG = DRIVERLOG, Baseline = GBFS-hstat-NP
from (2020))

preliminaries, remain the same as well as the search safe
pruning techniques.

Additionally, we suggest 2 ways to use the predictor func-
tion. First, we suggest inserting LM

f to the open list at the
beginning of the search, as we assume it will be closer to a
robust social law than the standard initial social law, ∅. We
remark that the empty social law is also put on the open list,
so our method remains complete.

Second, we introduce 3 new heuristic functions which
rely on the social law predictive function M : A → R to
guide the search. Let us note that our greedy search is set to
explore nodes (social laws) with higher heuristics value.

Sum of Scores Heuristic hsum(L) =
∑

a∈LM(a)
This heuristic sums M(a) for all actions restricted by the

social law (a ∈ L), making the search explore social laws
that restrict high-score actions, i.e. actions that, according to
the network, are more likely to be included in a robust social
law. Note that this heuristic will always prefer to add more
actions to the social law, without regard to its size.

Average Score Heuristic havg(L) = 1
|L|
∑

a∈LM(a)

This heuristic computes the arithmetic mean of M(a) re-
stricted by the social law, and thus guides the search towards
smaller, less-restrictive social laws. However, its preference
for smaller social laws that include only high-score actions
may limit its use when handling larger problems.

Count Heuristic hcnt(L) = |{a ∈ L |M(a) > 0}|
This heuristic returns the number of restricted actions

with a positiveM(a) score. One may use this heuristic when
M(a) is noisy and the true robust social law may need to re-
strict actions that got a negative score.

Empirical Evaluation
We begin with a description of our data generation proce-
dure, and then evaluate our approach on problems from Nir
et al. (2020) that are based on domains from the first Com-
petition of Distributed and Multi Agent Planners (Komenda,
Stolba, and Kovacs 2016).

Data Generation
To evaluate our approach, we need a way to generate ro-
bust social laws for multiple problems in each domain we
use. Therefore, we implemented automatic social law gener-
ators for 4 domains: DRIVERLOG, ZENOTRAVEL, TAXI and,

93

Figure 3: Number of Successful Searches on IPC Benchmarks with Varying Training Set Sizes (using hsum-MOL search config-
uration, baseline values are based on GBFS-hstat-NP search configuration (2020))

ROVERS, for which we also have random problem gener-
ators. These social law generators are meant to simulate a
domain-expert, but are not perfect – we implemented them
based on a small number of problems, and in some cases
they do not generalize correctly to other randomly gener-
ated problems. Thus, they simulate an imperfect expert. As
we will see, our technique is still able to use the labels from
such an imperfect expert to generate robust social laws.

This setup simulates a single expert who applies the same
class of social law to problems from a subset of a multi agent
planning domain. It is true that if multiple experts were to
provide social laws for different problems in the same do-
main, they could formulate different classes of social laws –
this is left for future work. Note that although we manually
wrote these social law generators for each domain, for the
purpose of the empirical evaluation, the social law learning
technique we present and evaluate is domain-independent –
the same technique is used in all domains.

In addition to the imperfect labeling mentioned above, we
wanted to simulate and control additional errors. One type of
error a domain-expert might make is needlessly restricting
some actions, leading to an overly restrictive social law. To
simulate this in our empirical evaluation we added artificial
noise to the social law generator output. We implement this
by randomly adding some percentage of the agents’ actions
to the generated social law. Note that, mistakes that make
a social law not-robust can be detected using social law ro-
bustness verification (Karpas, Shleyfman, and Tennenholtz
2017) thus, the noise we induce is unidirectional, and af-
fects only allowed actions. Additionally, the number of the
allowed actions is usually much smaller than the size of the
restricted actions so adding only 5% noise can actually dou-
ble the size of the social law.

Robust Social Law Synthesis
We have described three different network-based heuristics
hsum, hcnt and, havg, as well as the technique for seeding the
open list with the predicted social law. Thus, we have 6 dif-
ferent greedy search configurations to compare: using one
out of the three heuristics, either with open list modification

(denoted MOL) or without (denoted NM). These are tested on
80 planning problems from 4 different domains.

Similarly to previous work on automated social law syn-
thesis, the search goal test calls the Fast Downward Stone
Soup (FD) (Röger, Pommerening, and Seipp 2014) and
SymPA (Torralba 2016) planners for the goal test – checking
if the current social law is robust. We too deploy a sequential
order of timed attempts (2-minute attempts (FD and SymPA)
followed by 30-minute attempts (again, FD, then SymPA)).

We consider a search successful if it either found or dis-
proves the existence of a robust social law. Table 2 reports
the number of successful searches in each domain with 0%
noise and 64 training samples. The baseline – the best social
law synthesis configuration from the previous work (2020)
– was able to solve 16 of these problems. All of the pro-
posed configurations solved more problems. These results
show that inserting the predicted social law to the search
open list (denoted MOL) leads to at least 5 more successful
searches. Our best configuration, using hsum with MOL solves
twice as many problems as the baseline.

The results in the TAXI domain show that there is no ro-
bust social law present for all of the solved problems. In fact,
we suspect that this result holds for the rest of the domain.
As expected, this shows that our approach does not have an
advantage in proving a robust social law does not exist.

Next, we evaluate the effects of the size and quality of the
training set. Figure 3 shows the number of problems solved
(y axis of the plots in the top row) and the balanced accuracy
score (y axis of the plots on the bottom row) in each domain
with various noise levels, for varying sizes of the training set
(x axis). We calculate the balanced accuracy score on an un-
seen test set of generated problems and their corresponding
social law. Putting aside TAXI, the results show that 4 train-
ing samples are enough to beat the baseline that is marked on
the graph as a horizontal dashed line. Note that the trends in
the graphs point that there is a correlation between the num-
ber of successful searches and the balanced accuracy score.

Interestingly, a limited amount of noise does not seem to
hurt and, in fact, our results show that noise may sometimes
help the network in achieving higher balanced accuracy and

94

Search Time Social Law Length
Instances Empty Open List (NM) Modified Open List (MOL) Empty Open List (NM) Modified Open List (MOL)

hsum havg hcnt hsum havg hcnt hsum havg hcnt hsum havg hcnt

ROVERS-0 183.75 193.07 188.42 123.01 1931.3 122.92 15 15 15 16 16 16
ROVERS-1 181.84 180.99 179.98 123.41 126.83 123.3 12 12 12 14 14 14
ROVERS-3 248.23 274.47 247.97 127.2 1930.56 127.44 18 18 18 20 20 20
ROVERS-5 174.99 215.17 1984.85 126.81 149.26 124.41 7 8 8 11 11 11
ZNTL-0 140.99 129.61 129.29 30.02 20.48 16.03 5 4 5 22 22 22
ZNTL-1 43.58 103.44 130.49 19.52 20.48 17.32 6 5 4 22 22 22
ZNTL-2 1860.55 134.9 145.19 121.92 131.13 121.86 4 4 4 28 4 28
ZNTL-3 141.78 1949.14 156.73 121.95 136.01 121.99 7 6 6 36 36 36
ZNTL-4 137.37 138.25 137.39 753.75 134.51 121.93 5 5 5 36 5 36
ZNTL-5 192.89 194.52 191.74 123.39 128.22 123.41 14 13 13 87 87 87
ZNTL-6 216.22 217.37 235.15 123.56 211.48 123.48 14 14 16 98 14 98
ZNTL-7 248.3 232.68 243.03 124.54 213.19 123.33 16 16 16 112 16 112
ZNTL-8 2071.7 274.92 299.67 124.66 263.31 1928.34 16 16 19 137 16 137
ZNTL-9 309.3 2125.22 319.14 124.73 309.57 1928.5 18 18 18 153 18 153
TAXI-0 7.81 7.88 7.85 10.79 10.58 10.27 NSL NSL NSL NSL NSL NSL

TAXI-1 13.51 13.95 13.6 13.68 15.26 16.79 NSL NSL NSL NSL NSL NSL

TAXI-2 32.36 12.42 14.35 16.68 17.74 17.58 NSL NSL NSL NSL NSL NSL

TAXI-6 39.72 36.54 32.09 17.97 19.81 18.13 7 7 7 37 37 37
DLOG-0 10.19 10.24 7.7 1.22 2.29 1.25 4 4 5 35 35 35
DLOG-3 147.4 362.76 689.15 119.32 126.74 127.13 11 9 9 47 78 78

AVG 320.1 340.4 267.7 117.4 294.9 265.8 10.5 10.2 10.6 53.6 26.5 55.4

Table 3: Search Time on IPC Benchmarks (Right), and Length of the Resulting Social Laws (Left) (size of training set = 64,
noise = 0%, NSL = robust social law does not exist, ZNTL = zenotravel domain)

solving more problems. Note that adding noise to training
data is considered to be a standard data augmentation tech-
nique in deep learning because it expands the size of the
training dataset. However, in our procedure, it is not the case
because the noise is encoded in training samples. Of course,
we do not add noise to the test set samples.

All in all, 20 problems were solved by all of the configu-
rations and are used to compare search times and social law
length as reported in Table 2. As our results show, using MOL
improves search times, mostly when using hsum and havg. The
most likely explanation for that is that the predicted social
law is closer to the search goal than an empty social law,
and thus the search can be shallower. However, using MOL
tends to result in more restrictive social laws. This may be
handled by employing havg that, as expected, may be slower
but tends to regulate the length of the resulted social law.

Conclusion
In this paper, we explored the use of graph neural networks
to better guide the process of social law synthesis. Our em-
pirical evaluation shows that the proposed techniques are
scalable; we solve twice as many problems as the previ-
ous state-of-the-art. Furthermore, the results show that these
techniques can learn from an imperfect expert, even in the
presence of noise.

Given the PDG representation we used is domain-
independent, we see two interesting directions for future re-
search: adding domain-specific features (predicate name for
fact nodes, operator name for action nodes, etc.) and, trans-
fer learning between domains that exploits possible domain
structure similarities.

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11: 625–656.

Borrajo, D.; and Fernández, S. 2019. Efficient approaches
for multi-agent planning. Knowl. Inf. Syst. 58(2): 425–479.

Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In
Proceedings of the Eighteenth International Conference on
Automated Planning and Scheduling, ICAPS 2008, Sydney,
Australia, September 14-18, 2008, 28–35.

Duvenaud, D.; Maclaurin, D.; Aguilera-Iparraguirre, J.;
Gómez-Bombarelli, R.; Hirzel, T.; Aspuru-Guzik, A.; and
Adams, R. P. 2015. Convolutional Networks on Graphs for
Learning Molecular Fingerprints. In Advances in Neural
Information Processing Systems 28: Annual Conference on
Neural Information Processing Systems 2015, December 7-
12, 2015, Montreal, Quebec, Canada, 2224–2232.

95

Fikes, R.; and Nilsson, N. J. 1971. STRIPS: A New Ap-
proach to the Application of Theorem Proving to Problem
Solving. Artif. Intell. 2(3/4): 189–208.

Fiser, D.; Torralba, Á.; and Shleyfman, A. 2019. Operator
Mutexes and Symmetries for Simplifying Planning Tasks.
In The Thirty-Third AAAI Conference on Artificial Intelli-
gence, AAAI 2019, The Thirty-First Innovative Applications
of Artificial Intelligence Conference, IAAI 2019, The Ninth
AAAI Symposium on Educational Advances in Artificial In-
telligence, EAAI 2019, Honolulu, Hawaii, USA, January 27
- February 1, 2019., 7586–7593.

Jain, A.; Zamir, A. R.; Savarese, S.; and Saxena, A.
2016. Structural-RNN: Deep Learning on Spatio-Temporal
Graphs. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June
27-30, 2016, 5308–5317. IEEE Computer Society.

Karpas, E.; Shleyfman, A.; and Tennenholtz, M. 2017. Au-
tomated Verification of Social Law Robustness in STRIPS.
In Proceedings of the Twenty-Seventh International Confer-
ence on Automated Planning and Scheduling, ICAPS 2017,
Pittsburgh, Pennsylvania, USA, June 18-23, 2017., 163–171.

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In Bengio, Y.; and LeCun, Y., eds.,
3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Confer-
ence Track Proceedings.

Kipf, T. N.; and Welling, M. 2017. Semi-Supervised Clas-
sification with Graph Convolutional Networks. In 5th In-
ternational Conference on Learning Representations, ICLR
2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

Komenda, A.; Stolba, M.; and Kovacs, D. L. 2016. The In-
ternational Competition of Distributed and Multiagent Plan-
ners (CoDMAP). AI Magazine 37(3): 109–115.

Li, Y.; Tarlow, D.; Brockschmidt, M.; and Zemel, R. S. 2016.
Gated Graph Sequence Neural Networks. In Bengio, Y.; and
LeCun, Y., eds., 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings.

Morales, J.; Wooldridge, M. J.; Rodrı́guez-Aguilar, J. A.;
and López-Sánchez, M. 2018. Off-line synthesis of evolu-
tionarily stable normative systems. Autonomous Agents and
Multi-Agent Systems 32(5): 635–671.

Muise, C.; and Lipovetzky, N. 2015. Unplannability IPC
Track. In Workshop on the International Planning Compe-
tition (WIPC’15).

Nir, R.; Shleyfman, A.; and Karpas, E. 2020. Automated
Synthesis of Social Laws in STRIPS. In The Thirty-Fourth
AAAI Conference on Artificial Intelligence, AAAI 2020, The
Thirty-Second Innovative Applications of Artificial Intelli-
gence Conference, IAAI 2020, The Tenth AAAI Symposium
on Educational Advances in Artificial Intelligence, EAAI
2020, New York, New York, USA, February 7 - February 12,
2020., 7683–7690.

Pochter, N.; Zohar, A.; and Rosenschein, J. S. 2011. Exploit-
ing Problem Symmetries in State-Based Planners. In Proc.
25th AAAI Conference on Artificial Intelligence, (AAAI-
2011).
Röger, G.; Pommerening, F.; and Seipp, J. 2014. Fast down-
ward stone soup 2014. The 2014 International Planning
Competition .
Shleyfman, A.; and Karpas, E. 2018. Position Paper: Rea-
soning About Domains with PDDL. In 2018 AAAI Spring
Symposia, Stanford University, Palo Alto, California, USA,
March 26-28, 2018. AAAI Press.
Shleyfman, A.; Katz, M.; Helmert, M.; Sievers, S.; and
Wehrle, M. 2015. Heuristics and Symmetries in Classical
Planning. In Proc. 33rd AAAI Conference on Artificial In-
telligence (AAAI-2019), 3371–3377.
Shoham, Y.; and Leyton-Brown, K. 2009. Multiagent Sys-
tems - Algorithmic, Game-Theoretic, and Logical Founda-
tions. Cambridge University Press.
Sievers, S.; Katz, M.; Sohrabi, S.; Samulowitz, H.; and Fer-
ber, P. 2019. Deep Learning for Cost-Optimal Planning:
Task-Dependent Planner Selection. In The Thirty-Third
AAAI Conference on Artificial Intelligence, AAAI 2019, The
Thirty-First Innovative Applications of Artificial Intelligence
Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-
ucational Advances in Artificial Intelligence, EAAI 2019,
Honolulu, Hawaii, USA, January 27 - February 1, 2019,
7715–7723. AAAI Press.
Tennenholtz, M.; and Moses, Y. 1989. On Cooperation in
a Multi-Entity Model. In Proceedings of the 11th Inter-
national Joint Conference on Artificial Intelligence. Detroit,
MI, USA, August 1989, 918–923.

Torralba, Á. 2016. SymPA: Symbolic Perimeter Abstrac-
tions for Proving Unsolvability. In UIPC 2016 planner ab-
stracts, 8–11.
Wooldridge, M. 2009. An Introduction to Multiagent Sys-
tems. Chichester, UK, 2 edition.

96

