
SOLO: Search Online, Learn Offline for Combinatorial Optimization Problems

Joel Oren1, Chana Ross1, Maksym Lefarov1, Felix Richter1, Ayal Taitler2, Zohar Feldman1,
Dotan Di Castro1, Christian Daniel1

1 Bosch Center for AI
2 Technion – Israel Institute of Technology

{joel.oren, chana.ross}@il.bosch.com, {maksym.lefarov, felixmilo.richter}@de.bosch.com
ataitler@technion.ac.il, {zohar.feldman, dotan.dicastro}@il.bosch.com, christian.daniel@de.bosch.com

Abstract

We study combinatorial problems with real world applica-
tions such as machine scheduling, routing, and assignment.
We propose a method that combines Reinforcement Learning
(RL) and planning. This method can equally be applied to
both the offline, as well as online, variants of the combinato-
rial problem, in which the problem components (e.g., jobs in
scheduling problems) are not known in advance, but rather ar-
rive during the decision-making process. Our solution is quite
generic, scalable, and leverages distributional knowledge of
the problem parameters. We frame the solution process as an
MDP, and take a Deep Q-Learning approach wherein states
are represented as graphs, thereby allowing our trained poli-
cies to deal with arbitrary changes in a principled manner.
Though learned policies work well in expectation, small de-
viations can have substantial negative effects in combinato-
rial settings. We mitigate these drawbacks by employing our
graph-convolutional policies as non-optimal heuristics in a
compatible search algorithm, Monte Carlo Tree Search, to
significantly improve overall performance. We demonstrate
our method on two problems: Machine Scheduling and Ca-
pacitated Vehicle Routing. We show that our method outper-
forms custom-tailored mathematical solvers, state of the art
learning-based algorithms, and common heuristics, both in
computation time and performance.

Introduction
Combinatorial optimization (CO) is a central area of study
in computer science with a vast body of work that has
been done over the past several decades. Despite grow-
ing compute resources and efficient solvers, many prac-
tical problems are computationally intractable, and there-
fore, problem-specific heuristics and approximation meth-
ods have been developed (Williamson and Shmoys 2011).
However, these methods suffer from two limitations. First,
they are usually highly specialized: they require the algo-
rithm designer to gain insights about the problem at hand.
Second, they typically aim for worst-case scenarios; this of-
ten renders them less useful in practical applications, where
average-case performance is key.

Researchers have recently studied the applicability and
advantages of Reinforcement Learning (RL) methods for

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

CO problems. In particular, and unlike analytical methods,
learned policies can be evaluated in near real-time once
trained, thus enabling fast response times without sacrificing
the solution quality. While early work concentrated on sim-
plified state-action spaces (e.g., when to run a given heuristic
in a search procedure Khalil, Dilkina, and et al. 2017; Kru-
ber, Lübbecke, and Parmentier 2017), recent advances in RL
have enabled the training of policies on more expressive rep-
resentations of the state-action space (see e.g., Waschneck,
Reichstaller, and et al. 2018).

A common RL approach to CO is to incrementally con-
struct solutions by treating the partial solutions as the states
and their extensions as actions. We propose to model the
state-action space as a graph and learn a graph neural net-
work (GNN) policy that operates on it. GNNs have recently
become a popular neural method for learning representations
of rich combinatorial structures using graphs. They offer a
number of desireable properties such as invariance to node
permutation and independence of graph and node neighbor-
hood sizes. Specifically in our case, they allow us to han-
dle problems of different sizes in states and actions spaces,
using the same compact network. We represent each sepa-
rate observation as a graph, which lets us deal with dynamic
changes in the problem. We then extend existing Deep Q-
learning approaches (DQN; Mnih, Kavukcuoglu, and et al.
2013; Hessel, Modayil, and et al. 2018) to learn effective
policies that are agnostic to the number of components in the
problem instance (e.g., locations in routing problems, jobs in
scheduling problems), and compatible with online stochastic
arrivals. We train our GNN models to predict the Q-values
of states, by making use of their applicability to graphs of
varying sizes. We note at this point that exploring GNN ar-
chitectures was not the main focus of this work, but utilizing
a common architecture and in our planning-learning scheme.

Combinatorial problems are notorious for being sensitive
to slight perturbations in their solutions (see e.g., Hall and
Posner 2004 and Chapter 26 in Gonzalez 2007). Drawing
inspiration from recent self-play methods for board games
(Silver, Schrittwieser, and et al. 2017), we complement our
policy with a search procedure, using our trained Q-network
as a guide in a modified Monte-Carlo Tree Search (MCTS).
We demonstrate the efficacy of our hybrid method, on two
NP-hard problems (Kramer, Iori, and Lacomme 2021; Toth
and Vigo 2014) and their online variants: the Parallel Ma-

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

97

chine Job Scheduling problem (PMSP), and the Capacitated
Vehicle Routing problem (CVRP).

Contributions: We propose a method that incorporates
end-to-end GNN models. This allows our trained, fixed-size
policies to operate on problems with varying state and action
sizes. In particular, our approach is capable of solving of-
fline and online problems of magnitudes that are not known
a priori. To mitigate degradation in performance of learned
solutions, we devise a scheme that bridges the gap between
searching online and learning offline, named SOLO. This ap-
proach benefits from the generalization capacity, and real-
time performance of trained policies, as well as the ro-
bustness obtained by online search. Our results show that
SOLO finds higher quality solutions than existing learning-
based approaches and heuristics, while being competitive
with fine-tuned analytical solvers.

Related Work
The application of Machine Learning (ML) approaches to
NP-hard problems (Garey and Johnson 1990) has gained
much interest recently. While they are generally hard to
solve at scale, these problems are amenable to approximate
solutions via ML algorithms (Bengio, Lodi, and Prouvost
2021). In general, there are three popular approaches for
solving NP-Hard combinatorial problems. The most basic
one includes non ML algorithms such as branch & bound
search. Another, applies ML techniques in an end to end
manner. Finally, there are works that combine the two previ-
ous methods together in an augmented way.

Classical Search Methods: Researchers in Operations
Research and Computer Science have developed an ex-
tensive set of tools and algorithms for CO problems over
the years (Korte et al. 2011). Their drawbacks are usually
the need for domain-specific tailoring or extensive compu-
tational requirements (Wolsey and Nemhauser 1999). Pe-
ters, Stephan, and et al 2019 compared local search via
genetic algorithms and Integer Programming in a staff as-
signment problem, and showed that local search can pro-
duce sub-optimal solutions relatively fast. Many other lo-
cal search methods using neighborhood relations have been
established, and applied to problems such as paint shop
scheduling (Winter, Musliu, and et al. 2019), scheduling
with time widows (He, de Weerdt, and Yorke-Smith 2019)
and more. A popular approach for global search is Monte-
Carlo Tree Search (MCTS). The Upper Confidence-Bounds
applied to Trees (UCT) (Kocsis and Szepesvári 2006) is a
particular instance of MCTS, which provides formal guaran-
tees on optimality and achieves attractive results in practice.
Distributed approaches have also been investigated by the
community, Nicolo, Ferrer, and et al. 2019 solved a multi-
agent scheduling problem using a distributed structure. They
have allocated different agents that execute simultaneous lo-
cal searches on previously found solutions.

End To End Machine Learning: Common approaches
apply RL algorithms in order to generate solutions with-
out the use of problem specific heuristics. Khalil, Dai, and
et al. 2017 implemented a combined DQN and GNN archi-
tecture in order to learn a greedy search for graph optimiza-

tion problems. Bello et al. 2016 used an RNN and REIN-
FORCE (Williams 1992) to train an agent to solve the Trav-
elling Salesperson problem (TSP). Nazari, Oroojlooy, and
et. al. 2018 employed a similar method with the addition
of an attention mechanism. Kool, van Hoof, and Welling
2019 also approached routing problems using a GNN archi-
tecture combined with an attention encoder-decoder mech-
anism and the REINFORCE algorithm. These three works
employ a masking step on their outputs to disallow un-
available actions (e.g., locations already visited). This ap-
proach requires the set of actions to be set in advance. Mao,
Schwarzkopf, and et al. 2019 also used REINFORCE with
graph convolutional embedding for job scheduling on a clus-
ter, but in an online setting where the jobs had a DAG struc-
ture that could be exploited. No search was incorporated in
here due to the real-time dynamic nature of the processing
cluster scheduling. Recently Joe and Lau 2020 applied DQN
in the Dynamic Vehicle Routing Problem to learn approxi-
mated value function and a routing heuristic.

Combined Search and Machine Learning: Combina-
tion of search algorithms and ML techniques can benefit one
another by either employing search to accelerate the learn-
ing, or learning better models for the search to use or both.
Waschneck, Reichstaller, and et al. 2018 applied RL meth-
ods for optimizing scheduling problems with a multi-agent
cooperative approach. However, their experiments did not
demonstrate clear improvements over heuristic algorithms.
Chen and Tian 2019 took a different approach, they used a
DQN for choosing regions in the solution to improve a local
search heuristic. We use their method as a baseline in our ex-
periments section. Zhuwen, Qifeng, and Vladlen 2018 used
GNN and supervised learning to label nodes in a graph, to
determine whether they belong to a Maximal Independent
Set. This prediction was used within a tree search algorithm
to find the best feasible solution the network predicted. Re-
cently, MCTS combined with RL methods has gained much
traction due to superhuman play level in board games such
as Go, Chess, and Shogi (Silver, Schrittwieser, and et al.
2017). Laterre, Fu, and et al. 2018 have integrated MCTS
into a RL loop and solved the Bin Packing Problem (BPP)
in two and three dimensions using ranking rewards.

Method and Definitions
Modeling Combinatorial Optimization Problems
A combinatorial optimization (CO) problem is given by a
triplet

〈
I, S, f

〉
, where I is the set of problem instances,

S maps an instance I ∈ I to its set of feasible solutions,
and f is the objective function mapping solutions in S(I)
to real values. We model a sequential solution process of
an instance I , in which at each time t a partial solution
is extended, using a finite horizon Markov Decision Pro-
cess (MDP; Puterman 1994) of T steps. At each time t, the
state st corresponds to a partial solution, an action at cor-
responds to a feasible extension of st (similarly to a greedy
algorithm), a reward rt+1 = r(st, at) = f(st+1) − f(st),1

1Note that a different reward function that equals the resulting
solution value at the end of the episode, and zero anywhere else

98

and a transition probability p(s′|st, a). The action distribu-
tion is set by a policy π(a|s). This leads to a distribution
over trajectories ρ = (〈st, at, rt+1〉)t=0,...,T−1, p(ρ) =

p(s0)
∏T−1
t=0 π(at|st)p(st+1|st, at). The Q-function is de-

fined as

Q(st, at) , Eρ

[
N−t∑
i=0

r(si, ai)

∣∣∣∣∣ s0 = st, a0 = at

]
,

where the agent’s objective is to find an optimal policy
π∗(a|s) = arg maxaQ(s, a) (Sutton and Barto 2018).

We encode a problem instance I , or rather, a sub-problem
thereof, induced by a partial solution st, as a graph Gt =
(Vt, Et, f

v
t , f

e
t) where fvt (resp. fet) maps nodes (edges) to

feature vectors. This encoding is often quite expressive and
allows for a systematic treatment of many CO problems.

Motivating Combinatorial Problems

Our approach is quite generic and can be applied to many
optimization problems. We illustrate its efficacy on two
well-known problems: the Parallel Machine Scheduling
Problem (Kramer, Iori, and Lacomme 2021), or PMSP for
short, and a simplified version of the Capacitated Vehi-
cle Routing problem (CVRP), introduced by Dantzig and
Ramser 1959. Both PMSP and the CVRP are widely-known
problems, however, we briefly outline them here.

CVRP is widely known, but briefly: there is a set N =
{1, . . . , n} of customers with demands {di}i∈N for a sin-
gle commodity, and locations {pi}i∈N . The commodity is
located at a depot o, and is to be transported from it to the
customers so as to meet their demand by a vehicle of ca-
pacity C∗ (for feasibility, we assume that di ≤ C∗ for all
i ∈ N) and velocity ν. A tour consists of visited locations,
τ = (p1 = o, . . . , pnτ = o), in which the vehicle’s load
does not exceed its capacity and satisfies the demands of the
customers along it. The objective is to minimize the total
distance traveled by the vehicle.

PMSP is a scheduling problem with m (unrelated) ma-
chines, and n jobs with weights

(
wi
)
i=1,...,n

and processing
times

(
pi
)
i=1,...,n

. Also, each job u belongs to a job class
κu ∈ {1, . . . , c}, so that if job u is scheduled to process im-
mediately after job u′ on the same machine, then there is an
additional incurred setup time P [κu′ , κu], where P is a ma-
trix with non-negative entries, and zeros in the diagonal. The
objective is to minimize the total weighted completion time,
which consists of the waiting, setup, and processing times of
all arrived jobs.

Online Variants: Both problems have online variations,
in which the problem constituents are not known apriori, but
rather, arrive according to certain distributions, at the time in
which a solution is constructed. In the case of online CVRP,
customers arrive at different times, as the vehicle proceeds
along its current route. In PMSP, jobs appear as machines
are processing the previously arrived jobs.

Solution Approach
Our solution is composed of two phases as depicted in Fig-
ure 1. First, we train an agent offline, using a simulated envi-
ronment, in an off-policy manner, where representations of
the states are learned using a graph neural network. Second,
at solution time, we use the policy trained offline as a heuris-
tic in a Monte-Carlo tree search (MCTS). This approach al-
lows us to train offline a good policy, while the online tree
search ensures a more robust solution.

Learn Offline: We base our offline part of the method
on the off-policy DQN algorithm where we learn a neu-
ral approximation Q̃(s, a; θ) ≈ Q(s, a), parametrized by
θ (Mnih, Kavukcuoglu, and et al. 2013). Modelling Q̃ us-
ing feed-forward or convolutional neural network architec-
tures is challenging in the CO setting as the sizes of the
state and action spaces can vary throughout an episode.
For this reason, we encode a state-action tuple as a graph
Gt = (Vt, Et, f

v
t , f

e
t) with sets of nodes Vt, edges Et, node

features fvt and edge features fet . See the next section for
problem-specific descriptions of the graph encodings.

As shown in Figure 1, we train our Q̃ model using a sim-
ulation of the problem. At decision time t, the current state
st is translated to a graph, and the next action is chosen us-
ing the model’s prediction of the Q-values for each state-
action tuple (st, at). We take an epsilon-greedy approach in
the training phase for choosing the next action. We model Q̃
as a Graph Neural Network (GNN) with the following three
components: (1) embedding model: a vanilla feed forward
model with leaky ReLU activation function. This component
converts the features of each node to a higher dimension. (2)
encoder model. (3) decoder model. The encoder and decoder
models both use a variant of the message-passing GNN ar-
chitecture (Battaglia, Hamrick, and et al. 2018) with the fol-
lowing update rules:

e
(t+1)
i = φe(e

(t)
i , ρv→e(V), w), ∀ei ∈ E,

v
(t+1)
i = φv(v

(t)
i , ρ(e,v)→v(V,E), w), ∀vi ∈ V,

w(t+1) = φw(w(t), ρ(e,v)→w(V,E)),

Where ρv→e, ρ(e,v)→v , ρ(e,v)→w are the aggregation func-
tions that collect information from the related parts of Gt,
and φe, φv , φw are the neural networks that update the fea-
ture vectors fvt , fet and w, respectively (w being a global
feature of the graph).

Each neural network consists of a number of fully con-
nected layers (three layers in the encoder model and one
in the decoder model), followed by a leaky ReLU activa-
tion function and finally a normalization layer. Our DQN
training process includes several common techniques used
in deep Q-learning, such as double DQN and priority replay
(see e.g., Hessel, Modayil, and et al. 2018). More informa-
tion about our model can be found in the supplementary ma-
terial.

We compute Q̃(s, a) as the the output of φe at the final
message-passing step of the decoder model since the edges

would tend to make the learning process harder, due to its sparsity.

99

Figure 1: A schematic overview of SOLO. On the left, a depiction of our DQN training process, which produces the Q̃-Net
heuristic. On the right is our planning procedure that, for each step, runs our modified MCTS with Q̃-Net as a heuristic.

represent the actions in our problems. This architecture al-
lows us to address the changing size of the state (i.e., dif-
ferent |V | and |E| per step) in a principled manner. A nice
property of GNN’s is that the results are insensitive to or-
dering in the input, making them particularly effective for
un-ordered data such as sets and graphs.

Search Online: At run time, we use online search to
optimize the decisions in the states observed in real time.
Namely, we take the time until the next decision is due (e.g.,
the next job assignment or the next customer pick-up) to
evaluate all the applicable actions in the current state, and
upon reaching the timeout, output the estimated best ac-
tion for this state. We employ a modified version of the
popular MCTS algorithm UCT (Upper Confidence-Bound
applied to Trees, Kocsis and Szepesvári 2006) in conjunc-
tion with the Q̃-value that was trained offline. The algo-
rithm works by sampling rollouts iteratively from the cur-
rent root state, st, until we reach a terminal state. After
each iteration of the online search, the Q-value of any pre-
viously encountered state-action pair (s, a) is estimated as
QT (s, a) =

∑n(s,a)
i=1

ri
n(s,a) , with n(s, a) denoting the num-

ber of times action a was sampled in state s over all the
sampled rollouts. Each reward-to-go ri is the accumulated
reward from state s onward in a corresponding rollout that
passed through (s, a). Similarly to UCT, we select actions
during each rollout according to the Upper Confidence-
Bound (UCB) policy. Namely, we select an action that was
not yet sampled in the current state, if such action exists,
and otherwise we select the action that maximizes the value
QT (s, a) + β

√
log(n(s))
n(s,a) , with n(s) =

∑
a n(s, a), and β

is the exploration factor that governs the balance between
exploration and exploitation. Algorithm 1 depicts our online
search. While UCT is guaranteed to asymptotically converge
at the optimal decision by sampling each action infinitely of-

ten, in order to improve its practical efficiency, we combine
it with the following features:

MCTS heuristic: We use the Q̃-value as an out-of-tree
heuristic. We employ an iterative deepening scheme accord-
ing to which, in each iteration, the search tree is expanded
with at most one state, which is the first state in the rollout
that is not already in the tree. During a rollout, whenever we
encounter states that are not yet in the tree, we choose the
action that maximizes the Q̃-value rather than using UCB
(corresponding to a random action in this case). This is a
common technique that often improves performance signif-
icantly, depending on the quality of the used heuristic.

Action pruning: Second, we use the Q̃-values to prune
the action space. Since the number of plausible actions in
CO problems tends to be intractably high, we would like to
focus the samples on actions that have higher potential to
be a (near-)optimal action. We thus consider for each state
s only the k actions with the highest Q̃-value, where k is a
hyper-parameter of our algorithm. Indeed, as the estimated
Q̃-value becomes more accurate, the probability that one of
these k actions is near-optimal increases.

Rollout preemption Additionally, to allow for more sam-
pled rollouts, we shorten the lookahead period by suppress-
ing future arrivals (e.g., arrivals of jobs or customers) that
are scheduled for a time after t+ ∆T , where ∆T is a hyper-
parameter). As this technique is mostly implemented in the
simulation, it is not depicted in Algorithm 1. By applying the
above features, we theoretically compromise optimality, but
our experiments demonstrate that they hold some practical
merits.

Implementation Details
In the following section we show how to represent states,
actions, and rewards in our solution framework.

Graph States: In CVRP a state st is given by the set of nt

100

pending customers, their coordinates pi ∈ R2 and demands
di ≥ 0, for i = 1, . . . , nt. The current state also specifies the
current vehicle location p∗, along with its remaining capac-
ity c∗, and the location of the depot po. To encode st, we use
a simple star graph topology with nt + 2 nodes that consist
of a vehicle node u∗ as the central node that is connected to
nt customer nodes {ui}i=1,...,nt and a depot node uo. We
employ a unified node feature vector that holds entries for
the features of all three node types (with zeros where inap-
plicable): node u’s location pu, capacity c∗ (vehicle), and
demand (customers). A node feature vector also includes a
length-3 one-hot encoding denoting the node type. Finally, a
node ui’s feature vector contains a binary value I[di ≤ c∗],
indicating (in the case of a customer) whether the vehicle
can travel to it. As for edges connecting the customer to the
depot and vehicle, their features consist of solely their re-
spective distances.

In PMSP, a state st consists of the currently pending
nt jobs, the set of m machines along with the remain-
ing processing times (r

(i)
t)i=1,...,m and their last or cur-

rently assigned job classes (for computing setup times),
(κlastt,i)i=1,...,m. We represent this as a complete bipartite
graph (Vt = (Jt,M), Et, f

v
t , f

e
t), where Jt and M are the

sets of job and machine nodes, respectively, Et = Jt ×M
is the complete set of edges, connecting every job to ev-
ery machine. and lastly, fvt and fet map nodes and edges
to feature vectors. For a job node uj ∈ Vt, j = 1, . . . , nt,
its feature vector fvt (uj) consists of its processing time
pj , weight wj , and arrival time aj (positive in the online
case), a length-c one-hot encoding indicating the job class
κj , and a node-job indicator Ijobuj = 1. For a machine node
vi ∈ M, i = 1, . . . ,m, in addition to a machine indica-
tor bit Ijobvi = 0, we also encode the remaining processing
time of the machine r(i)t , and a one-hot encoding of length
c + 1 specifying the class of last run job, κlastt,i (including
the special “empty class” for machines that were not yet as-
signed jobs). For an edge eji, connecting job node uj to ma-
chine node vi, the only feature is the incurred setup time
P [κj , κ

last
t,i].2 As before, we keep the node feature vectors

at equal lengths, by having every node vector contain entries
for both job and machine features; for job nodes the machine
feature entries are zeroed out, and vice versa. Figures 2 and
3 depict the resulting complete bipartite graph and feature
vectors, respectively.

Actions: In both settings, the set of actions are specified
by the set of edges in the graph representation of the current
state st: in CVRP, selecting an edge between u∗ and ui (resp.
uo), corresponds to extending the route traveled thus far by
instructing the vehicle to drive to a customer (resp. depot) in
location pi (resp. po). Note that an edge to a customer node
ui is feasible provided that di ≤ c∗. Similarly in PMSP, the
set of actions is specified by the edges connecting jobs to
machines. Selecting an edge (uj , vi) corresponds to assign-
ing job j to machine i at the time of state st. Importantly, in
both settings we also allow for the special noop action that

2If machine i was not previously assigned a job, than the setup
time would be zero.

Algorithm 1: MCTS with pruned action search
Input: State St, Environment env, Q-value

estimator Q̃, random seed seed, rollout
budget r max, time budget t max, prune
limit k, state visits counter ns, state-action
visits counter nsa, Search Tree estimator QT

1 env.set seed(seed)
2 for r ← 1, . . . , r max do
3 if elapsed time() > t max then
4 break
5 s← env.set state(St)
6 done, ρ← false, []
7 tout ←∞
8 t← 0
9 while not done do

10 t← t+ 1

11 q̃ ← Q̃(s, ·)
12 if ns (s) == 0 then

// action with max. Q-value
13 a← arga max (q̃[a])
14 tout ← min(t, tout)
15 else
16 top actions← top k argsa(q̃[a], k)
17 qUCB ← {}
18 for a ∈ top actions do
19 qUCB [a]← QT (s, a) + β

√
logns(s)
nsa(s,a)

20 a← arga max (qUCB [a])
21 r, s′, done← env.step(a)
22 ρ [t]← 〈s, a, r〉
23 s← s′

24 update tree(ρ, ns, nsa, Q
T , tout)

25 return arga max
(
QT (St, a)

)
26 Def update tree(ρ, ns, nsa, QT , tout):
27 r ← 0
28 for i← |ρ| to 1 do
29 s, a, r ← ρ[i]
30 r ← r + γr
31 if i > tout then
32 continue
33 ns (s)← ns (s) + 1
34 nsa (s, a)← nsa (s, a) + 1

35 QT (s, a)← nsa(s,a)−1
nsa(s,a)

QT (s, a) + 1
nsa(s,a)

r

simply has no effect apart from “skipping” to the next de-
cision point (see below). Additionally, a given state might
induce a graph representation with certain disallowed edge
actions. Though one can simply remove these edges from
the graph, we decided to leave them in, and apply action
masking. We found this approach to be more effective since
it enables better flow of information between the nodes, and
gave overall better results.

Decision Events: In CVRP a decision point at time t oc-
curs when the vehicle has reached its previous destination,
or in the online setting where a noop action was previously

101

u1 v1

u2 v2

u3 vm

unt

Jt M

...

...

Figure 2: PMS: The GNN representation of a state
St with nt waiting jobs and m machines.

pj wj aj hcκuj Inodeuj 0 0

0 0 0 0 Inodevi
ri hc+1

κvi

job features machine features

Figure 3: Feature vectors for job node uj and machine
node vi (PMSP).

taken and a new customer arrives. In PMSP, a decision point
at time t occurs when a machine has become free and there is
at least one pending job, or conversely: a new job has arrived
since the previous decision point (in the online setting), and
there is a free machine.

Reward Function: Both CVRP and PMSP are minimiza-
tion problems, and hence each time t would incur a cost, or
a negative reward, taken to be the difference in the objective
value for the partial solution resulting from extending the
current partial solution by taking at. In CVRP, this translates
to simply the distance traveled between step t and t + 1. In
PMSP, it is the product of the total weight of the jobs pro-
cessed between steps t and t+ 1 and their time difference.

Empirical Evaluation
We evaluate SOLO on the online and offline variants of the
two problems mentioned. With minor changes in the graph
representation and small hyper-parameter tuning, we man-
age to achieve competitive results in the online setting with-
out degrading the offline results.

Experimental Setup
As mentioned in previous sections all problems are repre-
sented as a bipartite graph (in CVRP we have a simpli-
fied star graph) where the actions are edges and the agents
or assignments are nodes. We compare all problems to
known baselines including naive solutions, optimal solutions
(CPLEX or OR-Tools), problem tailored heuristics and a
learned RL solution (Neural Rewriter, Chen and Tian). More
information about the baselines can be found in the sup-
plementary material. For fair comparison, we use the same
hardware and training time for all networks trained (our Q-
net and Neural Rewriter).34 In addition, MCTS and opti-
mization algorithms are given 10 seconds to optimize each
decision.

The known algorithms for online problems are typically
designed to minimize the competitive ratio, i.e., the worst-
case ratio of the an algorithm’s performance to that of the
optimal solution in hindsight (see e.g., Jaillet and Wagner
for a survey). However, the worst-case theoretical nature of

318-core Intel Xeon Gold 6150 @ 2.70 GHz, Nvidia Tesla
V100 (16 GB)

4all policies were trained for less than 24 hours

the measure makes it less suitable in more practical scenar-
ios. Therefore, the online results are compared to the offline
baselines while running them in a quasi-offline manner: at
each planning step we re-run the offline algorithm includ-
ing only opened jobs or customers. In CVRP this translates
to solving an offline problem whenever the vehicle reaches
the depot (all offline baselines assume the vehicle starts the
route and the depot and therefore could not be used each
time we reach a customer). In PMSP, we solve a new of-
fline problem after each interval or when a machine becomes
available.

To better understand the contribution of our approach and
components of our solution, we evaluate SOLO in three
ways:

1. Trained Q̃ alone (Offline part of SOLO)

2. MCTS + Naive baseline as heuristic (Online part of
SOLO)

3. MCTS + Trained Q̃ as heuristic (Full SOLO solution)

For the online problems, we run MCTS with rollout preemp-
tion, where in each rollout, the sampling of customers or
jobs is stopped past a certain time. In addition, we use an ac-
tion pruning mechanism to only evaluate a subset of the pos-
sible actions at each step. Given the limited computing time,
these techniques allow for a good balance between planning
for the future on the one hand, but also seeing a broad view
of the current state and possible actions. We train our policy,
Q-net, which is based on Q̃, using a decaying learning rate
with an initial value of 10−3. To allow for exploration the
learning starts after 5,000 steps and an ε function is used,
where the initial value of ε is 1.0 and it decays linearly over
time. The training stops after 106 steps and the model that
achieves the best overall evaluation is saved and used. see the
supplementary material for the full list of hyper-parameters
used.

CVRP: In both online and offline cases, we consider the
same setting as previous work (Chen and Tian; Kool, van
Hoof, and Welling; Nazari, Oroojlooy, and et. al.) that con-
sider three scenarios with N ∈ {20, 50, 100} customers and
vehicle capacities C ∈ {30, 40, 50}, respectively. Locations
are sampled from a uniform distribution over the unit inter-
val, and demands from a discrete uniform distribution over
{0, . . . , 10}.

102

In the online problem we introduce an arrival time in addi-
tion to the position and demand of each customer. Unlike the
offline case, here the customer parameters are sampled from
a Truncated Gaussian Mixture Model (TGMM). This sam-
pling shows the strength of RL algorithms like ours, which
take into account future customers by learning the distribu-
tion during training.

We compare our offline results to the following baselines:
a trained Neural Rewriter model (Chen and Tian), the two
strongest problem heuristic baselines reported by Nazari,
Oroojlooy, and et. al. (Savings and Sweep), Google’s OR-
Tools, and the naive Distance Proportional baseline. In the
latter baseline, each valid customer (whose demand is lower
than the current capacity) is selected with probability pro-
portional to its distance from the vehicle.

PMSP: For the offline problem we consider several cases
with 80 jobs, 3 machines, and 5 job classes. We train a model
on problems where job parameters are sampled from dis-
crete uniform distributions (more details can be found in the
supplementary material). In the online setting we run two
problems, both with 80 jobs in expectation and 5 job classes.
The first problem consists of 3 machines and jobs arrive in
16 intervals of length 130 time units each. The second prob-
lem consists of 10 machines and 60 intervals with 10 time
units. We sample job processing times, setup times and job
weights from discrete uniform distributions. Unlike the of-
fline setting, here jobs arrive according to Poisson distribu-
tions, where the frequency of the i-th class is proportional to
1/i. The problem parameters were chosen so as to not over-
load the machines in steady state, while maintaining rela-
tively low levels of idleness.

We evaluate the offline problem on a public set of bench-
mark problems which uses the same ranges for job features
(Liao, Chao, and Chen 2012). We compare to the follow-
ing baselines: a heuristic that is a variant of the weighted
shortest processing times first heuristic (WSPT), the Neural
Rewriter approach by Chen and Tian, and the solution found
after a fixed time using the IBM ILOG CPLEX CPOptimizer
(V12.9.0) constraint programming suite. More details about
the baselines can be found in the supplementary material.
In addition to the public benchmark we evaluate our solu-
tion on a smaller problem with 20 jobs, where the optimal
solution is known.

Experimental Results
For each problem we train a Q-net model and run a com-
parison on 100 seeds between our method and the baselines
mentioned above.

CVRP: Both online and offline results can be found in Ta-
ble 1, more experiments are detailed in the appendix (Oren,
Ross, and et al. 2021). In the online problem SOLO outper-
forms all the other algorithms. In addition, despite SOLO be-
ing an algorithm for online problems, it reaches decent per-
formance for the offline problem. When comparing SOLO
to NeuralRewriter, the other learning algorithm, SOLO per-
forms better and shows improved results.

We notice that the Savings algorithm achieves slightly
better results than SOLO, which is expected since it is a

Figure 4: A performance comparison of SOLO and OR-
Tools in the online CVRP50 settings.

problem specific heuristic and tailored to this problem. How-
ever, unlike SOLO, Savings does not extend to the online
problem well and performs weakly when customers arrive
over time.

When examining all the variants of our method we notice
a number of interesting results. First, Q-net alone achieves
good results compared to other algorithms, showing that the
RL algorithm with the GNN architecture provides a good so-
lution policy. Second, MCTS alone shows good results even
when combined with a random heuristic, showing the value
in online search algorithms and rollouts. Last, combining
MCTS with our Q-net model achieves the best results show-
ing the full strength of our method and necessity for both
the offline learning and online search. Note that in all CVRP
cases, SOLO with pruning did not show any improvement
on SOLO alone and we decided not to include this in the
plots.

In Figure 4 we see a comparison between SOLO and
OR-Tools for the online problem with 50 customers. Each
point above the dashed line is an instance where SOLO out-
preformed OR-Tools. We see in the figure that all instances
run in this evaluation are above the line and have better re-
sults when using SOLO.

PMSP: We evaluate the model trained on 20 jobs on a
public set of offline benchmarks where the optimal solution
quality is known (Kramer, Iori, and Lacomme 2021). The
results in Table 2 show our approach performs mostly on
par with CPLEX. In addition, our method out-performs the
other learning algorithm (Neural Rewriter) and shows good
results when evaluating on 20 and 80 jobs. Similar to CVRP,
MCTS improves the results achieved by Q-net alone, and
shows that adding an online search algorithm to the offline
learned model improves results. The scatter plot in Figure 5
shows that in the online scheduling problem, our approach
yields better solutions than WSPT in all problem instances.

To analyze whether the Q-net model actually learns to
take advantage of the arrival distribution, we apply it in a
scheduling setting where we flip the class identity of ob-
served jobs from i to 5 − i. The results shown in Figure
6 indicate that the model is indeed optimized for the arrival
distribution used during training.

103

Figure 5: A performance comparison of SOLO+Prune and
WSPT in the online setting with 10 machines and 50 random
instances.

Figure 6: Performance comparison of Q-net to its perfor-
mance in the online setting with “flipped classes”. 10 ma-
chines, 60 arrival intervals, interval durations of 10, and 200
random instances.

Conclusion and Discussion
We presented a deep RL approach to combinatorial opti-
mization. Our method incorporates graph-based representa-
tion of the state-action space into Deep Q-learning to learn
an input-size agnostic policy, and we further combine it
with MCTS to significantly improve performance of our ap-
proach. We evaluated these contributions on two combinato-
rial optimization problems, PMSP and CVRP. Our pure Q-
net agent, which provides near-instantanous action selection,
outperforms popular heuristics. Conversely, our combined
approach, SOLO, makes full use of any available time for
deliberation thanks to its anytime nature, effectively decreas-
ing the gap to dedicated combinatorial optimization solvers.
As a future work direction we propose to investigate explic-
itly learning the arrival distribution of the online combinato-
rial optimization problem during training. Another direction
is to explore alternative graph representation for the states.

Offline CVRP
20 100

Uniform-Random[UR] -13.21(107.51%) -58.84 (230.13%)
Distance[D] -10.43 (63.65%) -47.59 (167.38%)
Savings -6.35 (-1.04%) -16.51 (-7.94%)
Sweep -8.89 (39.33%) -28.24 (58.11%)
OR-Tools -6.42 (0.00%) -17.96 (0.00%)
NeuralRewriter -6.95 (8.48%) -19.45 (8.57%)

Q-Net -6.84 (6.59%) -19.27 (7.62%)
MCTS+UR -7.65 (19.45%) -46.34 (160.11%)
MCTS+D -7.15 (12.01%) -44.00 (147.44%)
SOLO -6.21 (-3.18%) -17.68 (-1.24%)

Online CVRP
20 100

Uniform-Random[UR] -12.72 (31.67%) -52.73 (108.06%)
Distance[D] -9.75 (0.76%) -33.65 (32.72%)
Savings -9.90 (0.51%) -25.15 (-0.90%)
Sweep -11.16 (13.73%) -29.52 (16.16%)
OR-Tools -9.86 (0.00%) -25.40 (0.00%)
NeuralRewriter -10.00 (1.56%) -25.85 (1.90%)

Q-net -8.79 (-9.76%) -26.80 (5.70%)
MCTS+UR -7.80 (-20.27%) -28.72 (12.98%)
MCTS+D -6.78 (-30.84%) -25.58 (0.78%)
SOLO -6.63 (-32.38%) -24.80 (-2.28%)

Table 1: Offline and Online CVRP results. Each cell con-
tains the average cost and the fractional improvements over
OR-Tools (negative numbers are better than OR-Tools). Best
results and our methods are marked in bold

Offline PMSP
liao 20 liao 80

WSPT -16570.16 (5.82%) -182357.02 (4.15%)
CPLEX -15658.46 (0%) -175084.88 (0%)
NeuralRewriter -16540.28 (5.63%) -182450.02 (4.21%)

Q-net -15906.32 (1.58%) -178444.74 (1.92%)
MCTS+WSPT -15876.88 (1.39%) -176439.74 (0.77%)
SOLO -15695.94 (0.24%) -175524.34 (0.25%)
SOLO+Prune -15683.46 (0.16%) -175164.58 (0.05%)
optimal -15628.68 (-0.19%)

Online PMSP
3 machines 10 machines

WSPT -40601.34 (15.04%) -29102.5 (18.87%)
CPLEX -35294.38 (0%) -24481.9 (0%)
NeuralRewriter -38575.78 (9.3%) -27350.68 (11.72%)

Q-net -37386.9 (5.93%) -26031.5 (6.33%)
MCTS+WSPT -35489.56 (0.55%) -24724.76 (0.99%)
SOLO -35434.46 (0.4%) -24747.38 (1.08%)
SOLO+Prune -35280.2 (-0.04%) -24655.42 (0.71%)

Table 2: Scheduling results for all problem variants. Each
cell includes the average cost on 50 seeds and the fractional
improvement of each method compared to CPLEX (negative
numbers are better than CPLEX).

104

References
Battaglia, P. W.; Hamrick, J. B.; and et al. 2018. Relational
inductive biases, deep learning, and graph networks. arXiv
preprint arXiv:1806.01261 .
Bello, I.; Pham, H.; Le, Q. V.; Norouzi, M.; and Bengio,
S. 2016. Neural combinatorial optimization with reinforce-
ment learning. arXiv preprint arXiv:1611.09940 .
Bengio, Y.; Lodi, A.; and Prouvost, A. 2021. Machine learn-
ing for combinatorial optimization: A methodological tour
d’horizon. EJOR 290(2): 405–421.
Chen, X.; and Tian, Y. 2019. Learning to Perform Local
Rewriting for Combinatorial Optimization. In NeurIPS.
Dantzig, G. B.; and Ramser, J. H. 1959. The Truck Dis-
patching Problem. Manage. Sci. 6(1).
Garey, M. R.; and Johnson, D. S. 1990. Computers and
Intractability; A Guide to the Theory of NP-Completeness.
USA: W. H. Freeman & Co.
Gonzalez, T. F. 2007. Handbook of Approximation Algo-
rithms and Metaheuristics. Chapman & Hall/CRC.
Hall, N.; and Posner, M. 2004. Sensitivity Analysis for
Scheduling Problems. J. Scheduling 7: 49–83.
He, L.; de Weerdt, M.; and Yorke-Smith, N. 2019.
Tabu-based large neighbourhood search for time/sequence-
dependent scheduling problems with time windows. In
ICAPS.
Hessel, M.; Modayil, J.; and et al. 2018. Rainbow: Combin-
ing improvements in deep reinforcement learning. In AAAI.
Jaillet, P.; and Wagner, M. R. 2008. Online Vehicle Routing
Problems: A Survey. The Vehicle Routing Problem: Latest
Advances and New Challenges 45.
Joe, W.; and Lau, H. C. 2020. Deep Reinforcement Learning
Approach to Solve Dynamic Vehicle Routing Problem with
Stochastic Customers. In ICAPS.
Khalil, E.; Dai, H.; and et al. 2017. Learning Combinatorial
Optimization Algorithms over Graphs. In NeurIPS.
Khalil, E. B.; Dilkina, B.; and et al. 2017. Learning to Run
Heuristics in Tree Search. In IJCAI.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In ECML, 282–293. Springer.
Kool, W.; van Hoof, H.; and Welling, M. 2019. Attention,
Learn to Solve Routing Problems! In ICLR.
Korte, B. H.; Vygen, J.; Korte, B.; and Vygen, J. 2011. Com-
binatorial optimization, volume 1. Springer.
Kramer, A.; Iori, M.; and Lacomme, P. 2021. Mathemat-
ical formulations for scheduling jobs on identical parallel
machines with family setup times and total weighted com-
pletion time minimization. EJOR 289(3): 825–840.
Kruber, M.; Lübbecke, M. E.; and Parmentier, A. 2017.
Learning when to use a decomposition. In CPAIOR.
Laterre, A. L.; Fu, Y.; and et al. 2018. Ranked Reward: En-
abling Self-Play Reinforcement Learning for Combinatorial
Optimization. In CoRR.

Liao, C. J.; Chao, C. W.; and Chen, L. C. 2012. An improved
heuristic for parallel machine weighted flowtime scheduling
with family set-up times. Computers & Mathematics with
Applications 63(1): 110–117.
Mao, H.; Schwarzkopf, M.; and et al. 2019. Learning
Scheduling Algorithms for Data Processing Clusters. In
SIGCOMM.
Mnih, V.; Kavukcuoglu, K.; and et al. 2013. Playing atari
with deep reinforcement learning. arXiv: 1312.5602 .
Nazari, M.; Oroojlooy, A.; and et. al. 2018. Reinforce-
ment Learning for Solving the Vehicle Routing Problem. In
NeurIPS.
Nicolo, G.; Ferrer, S.; and et al. 2019. A multi-agent
framework to solve energy-aware unrelated parallel machine
scheduling problems with machine-dependent energy con-
sumption and sequence-dependent setup time. In ICAPS.
Oren, J.; Ross, C.; and et al. 2021. SOLO: Search On-
line, Learn Offline for Combinatorial Optimization Prob-
lems. CoRR abs/2104.01646. URL https://arxiv.org/abs/
2104.01646.
Peters, J.; Stephan, D.; and et al. 2019. Mixed Integer Pro-
gramming versus Evolutionary Computation for Optimizing
a Hard Real-World Staff Assignment Problem. In ICAPS.
Puterman, M. L. 1994. Markov Decision Processes. Wiley
and Sons.
Silver, D.; Schrittwieser, J.; and et al. 2017. Mastering the
game of go without human knowledge. Nature 550(7676):
354–359.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learn-
ing: An introduction. MIT press.
Toth, P.; and Vigo, D. 2014. Vehicle routing: problems,
methods, and applications. SIAM.
Waschneck, B.; Reichstaller, A.; and et al. 2018. Optimiza-
tion of Global Production Scheduling with Deep Reinforce-
ment Learning. Procedia CIRP 72: 1264–1269.
Williams, R. J. 1992. Simple statistical gradient-following
algorithms for connectionist reinforcement learning. ML
8(3-4): 229–256.
Williamson, D. P.; and Shmoys, D. B. 2011. The Design of
Approximation Algorithms. Cambridge university press.
Winter, F.; Musliu, N.; and et al. 2019. Solution Approaches
for an Automotive Paint Shop Scheduling Problem. In
ICAPS.
Wolsey, L. A.; and Nemhauser, G. L. 1999. Integer and com-
binatorial optimization. John Wiley & Sons.
Zhuwen, L.; Qifeng, C.; and Vladlen, K. 2018. Combinato-
rial Optimization with Graph Convolutional Networks and
Guided Tree Search. In NeurIPS.

105

