
Suboptimally Solving the Watchman Route Problem on a Grid
with Heuristic Search

Tamir Yaffe, Shawn Skyler, Ariel Felner
SISE Department, Ben-Gurion University, Be’er-Sheva, Israel

{tamiry,shawn}@post.bgu.ac.il, felner@bgu.ac.il

Abstract

In the Watchman Route Problem (WRP) we are given a grid
map with obstacles and the task is to (offline) find a (short-
est) path through the grid such that all cells in the map can be
visually seen by at least one cell on the path. WRP was re-
cently formalized and optimally solved with heuristic search.
In this paper we show how the previous optimal methods can
be modified (by intelligently pruning away large subtrees) to
obtain suboptimal solvers that are much faster than the opti-
mal solver without sacrificing too much the quality of the so-
lution. In particular, we derive bounded suboptimal solvers,
suboptimal solvers without bounds and anytime variants. All
these algorithms are backed up with experimental evidence
that show their benefits compared to existing approaches.

Introduction
Imagine you are in a museum and you want to see all the
exhibits on the floor. To do so, you want to take a tour
around the museum such that you can see every item in all
the rooms. Similarly, the security of the museum wants to
have a known path such that during its traversal it will be
able to see every item in the exhibit to check that it was not
damaged. This problem is called the Watchman Route Prob-
lem (WRP), where the task is to find a route that sees every
point in the environment. WRP was proven to be NP-hard
for polygons (Chin and Ntafos 1986).

In this paper we focus on WRP on grid maps although
many of our methods can be generalized to any type of
graph. We are given a grid map with obstacles and a start
state. The task is to (offline) find a path from the start state
through the grid such that all empty cells in the map were
visually covered by line-of-sight (LOS) from at least one of
the cells on the path. The LOS function determines whether
any given two cells can visually see each other and it can
be any arbitrary function. Trivial LOS functions on grids are
the cardinal lines (4-way) possibly combined with diagonal
lines (8-way). An example of a non-trivial LOS function on
a general graph is a transmission frequency function that in-
dicates for each vertex which are the vertices that can receive
the transmission. Importantly, the exact map is known in ad-
vance and our task is to search offline for the shortest path.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Seiref et al. (2020) recently worked on this problem. They
proved that the grid variant of WRP is NP-hard and then
formalized and optimally solved it with heuristic search.
They abstracted the grid map into a disjoint line-of-sight
graph (GDLS) and used this graph as a source for admis-
sible heuristics. Their best heuristic was based on a solution
to a variant of the traveling salesman problem (TSP) applied
on GDLS . Then, they executed an A*-like search with these
heuristics. We call their algorithm WRP-A*. WRP-A* opti-
mally solved the problem for grids of up to 1,500 cells in a
number of seconds. Since the problem is NP-hard, there is a
limit to the size of grids that can be solved.

In this paper we build on their work but aim to solve much
larger problems by sacrificing the optimallity of the solution.
We therefore provide different search algorithms and meth-
ods which modify WRP-A* to three search cases:

(1) Bounded Suboptimal Search. Given a bound W the
task is to find a solution path π where cost(π)≤ W × C∗,
where C∗ is the cost of the optimal solution. Here we com-
pare variants of WA* as well as of XDP and XUP (Chen
and Sturtevant 2019). Experimental results show that these
variants are much faster than WRP-A* while their solution
is much better then the bound that they guarantee.

(2) Suboptimal Search. Here the task is to find a solution
as fast as possible without any guarantee on the quality. We
introduce three methods that intelligently prune away sub-
trees that are less likely to contain a solution. When com-
bining all these methods together a solution is found orders
of magnitude faster than baseline WRP-A*. Although not
guaranteed, the quality of the solution was close to optimal.

(3) Anytime Search. Here we find a first solution fast
by applying our suboptimal solver. Then by iterating on in-
creasing costs of operators allowed (see below) we get better
and better solutions until we converge to optimal.

We experiment on mazes and maps of different size taken
from Sturtevant (2012). Our experimental results show that
we solve grids with up to 3,100 cells in less than a second
while achieving close-to-optimal solutions.

Related Work
In the field of robotics, the Simultaneous Localization And
Mapping problem (SLAM) includes an autonomous mov-
ing agent that tries to explore the environment and build a
map while simultaneously locate itself in the map (Aulinas

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

106



et al. 2008; Taketomi, Uchiyama, and Ikeda 2017). The main
differences between SLAM and WRP is that in SLAM the
environment is unknown and the task is to online explore
the environment and study the map by a moving agent. By
contrast, WRP is an offline search problem on a known map.

A reminiscent problem is the Art Gallery Problem which
was proven to be NP-hard (Garey and Johnson 1979). We
are given a map and the task is to find the minimal set of
points S on the map (to place guards) such that all points in
the map can be seen by at least one point s ∈ S. Indeed, the
shortest possible tour between these points is a solution to
WRP. But, Seiref et al. (2020) showed that such a solution
may not be optimal for WRP (while still being NP-hard).

Another related problem is inspection planning (Fu et al.
2019). A robot is equipped with a sensor and a set of Points
Of Interest (POIs) in the environment to be inspected (i.e.,
physically seen with the sensor). The solution is a motion
plan for the robot that maximizes the number of POI in-
spected and minimizes the cost of the plan. WRP can be
seen as a special case where all POIs must be seen and that
every cell of the grid is a POI. In addition, we focus on
2D grids while inspection planning works on a continuous
high-dimensional configuration space (for the actions of the
robot) which is built on top of the physical environment.

WRP has been extensively researched on polygonal do-
mains in the field of computational geometry. The objective
was to find a cyclic path that sees all internal points of a
closed polygon. Two points can see each other (have LOS) if
no edge of the polygon cuts the straight line between them.
The problem was proven to be NP-hard but a polynomial-
time approximation algorithm exists with increased cost
over the optimal solution by a factor of O(log2 n), where
n is the number of vertices of the polygon (Mitchell 2013).
For simple polygons (with no internal holes) there are
polynomial-time algorithms (Chin and Ntafos 1986; Dror
et al. 2003); the best time achieved was O(n3 log n). A spe-
cific variant of WRP is to define a start point that the agent
must travel from. This is called fixed WRP or anchored
WRP (Xu 2014), as opposed to floating WRP where no such
point is required. Our setting is significantly different as as-
sume a discrete grid (not a continuous polygon) and may
accommodate any LOS function. Furthermore, we do not
require to end the path by returning to the start location but
it can end at any cell once all cells have been seen.

We next summarize how WRP was formulated and op-
timally solved as a heuristic search problem (Seiref et al.
2020) and then provide our new suboptimal algorithms.

WRP as a Heuristic Search Problem
Problem Definition: The input for our variant of WRP is a
grid-map M . The set of empty (traversable) cells is labeled
hereafter by C and un-traversable cells are denoted as ob-
stacles. We are also given a cell start ∈ C as input. In this
paper, for simplicity, we assume that only the four cardinal
moves are legal. Cells p and q are adjacent iff there is a legal
move from p to q (and vice versa). Generalizing our work
to allow diagonal moves (8-way) or other moves (such as
the 2k neighborhood moves (Rivera, Hernández, and Baier

Figure 1: Example of BresLos and Optimal Path Example

2017)) as well as to other types of graphs should not be hard
because our algorithm is defined on a general graph.

A path π = 〈s0 = start, . . . , sk〉 is a sequence of adja-
cent cells starting from start. The task is to find a watchman
path in the grid. In a watchman path π, for every cell c ∈ C
there is line-of-sight from at least one cell si ∈ π. An opti-
mal watchman path is a watchman path with minimal cost.1

The line-of-sight function (LOS) determines whether any
given two cells can visually see each other and it can be
any arbitrary function. Seiref et al. (2020) experimented
with three possible LOS functions on grids: 4-way, 8-way
and Bresenham LOS (BresLos) (Bresenham 1965). BresLos
is commonly used in computer graphics, video games and
bitmap pictures. BresLos discretizes real-world continuous
domains and simulates a continuous field of view. Comput-
ing BresLos involves many low level details. But, intuitively,
it approximates a straight line between two cells that does
not pass through any obstacles. The Gray cells in Figure 1a
have BresLos to/from the Green cell. The red arrows in Fig-
ure 1b show an optimal solution for this map.

The Search Tree of WRP
Seiref et al. (2020) formulated WRP as a search problem and
defined its corresponding search tree as follows.
Node: A node is a pair 〈location, seen〉 where location is
a cell (current location of the agent) and seen is a list of
cells (all the cells that have been seen so far by the agent).
The complement of seen is the unseen list; their union is the
entire set of cells (seen ∪ unseen = C).
Root Node: Root is a node such that Root.location =
start and Root.seen = LOS(start).
Expansion: Expanding node S = 〈location, seen〉 is to
perform all legal movements on S.location. For each child
S′ of S, S′.location is the adjacent cell of S.location de-
rived from the movement. S′.seen is first inherited from the
parent S.seen. Then, we add to S′.seen all the cells that are
now seen from S′.location and were not seen before (i.e.,
S′.seen = S.seen ∪ LOS(S′.location)). The cost of the
edge from S to S′ is the cost of the movement action.

1We assume that the watchman does not have to return to the
start cell. The importance of the problem is that all cells were seen.
The reason is that, practically, we do not want to restrict the where-
abouts of the watchman after the task is completed. It might stay
idle, it might leave through the nearest exit or might destroy itself.

107



Figure 2: A grid (a). Its GDLS (b). Its abstracted GDLS (c).

Goal Node: Goal.location may be any cell in C such that
Goal.seen = C.

Every node S in this search tree is associated with a path
π = 〈s0 = start, ..., sk = S.location〉 which is determined
by the branch of the search tree associated with S.2 S.seen
includes all the cells that have LOS to at least one of the
locations in the path associated with S. The cost of node S
(i.e., its g-value) in the tree is the sum of the costs of apply-
ing the operators along the branch from Root to S.

Seiref et al. (2020) introduced WRP-A*, a variant of A*
that works on the state-space defined for WRP. The admis-
sible heuristic used by WRP-A* is based on an abstracted
graph called GDLS which is described next.

Graph Abstraction for WRP Heuristics
A Disjoint LOS Graph, GDLS(S) = (V,E) (Seiref et al.
2020) is abstracted from the grid mapM for every node S in
Open. This graph is used to obtain several admissible heuris-
tics as discussed below. Figure 2 shows an example grid (2a)
and its corresponding GDLS (2b) assuming 4-way LOS.

We say that two cells are LOS-disjoint if there is no cell
that they both see. We say that a set of cells P is LOS-
disjoint if every pair of cells in P are LOS-disjoint.
GDLS is built by first identifying a set of LOS-disjoint
cells P ⊆ S.unseen. Each cell in P is called a pivot and
is added as a vertex to GDLS . Pivots are colored Red in
our figures. For each pivot p ∈ P we also add all cells in
LOS(p) as watcher vertices to the graph (colored Yellow).
The edges in GDLS between pivot p and its watchers have
weight of 0. A pivot p and its watchers are referred to as the
component of p (circled in light blue) and the cost of trav-
eling inside a component is therefore 0.3 Frontier watchers
are watchers of pivot p that have at least one neighboring
cell that does not have LOS to p. For example, cell A is a
frontier watcher but cell B is not. Frontier watchers are con-
nected with frontier watchers of other pivots if the shortest

2Two nodes are duplicates if their current location and seen list
are identical. This enables to prune nodes which have the same
location and the same seen list as they represent exactly the same
situation for the search task.

3Our pivot selection policy (Seiref et al. 2020) iteratively takes
a cell P ∈ S.unseen with the fewest watchers and adds it to GDLS

until no cell can be added to the set of LOS-disjoint pivots. This
is a greedy policy that balances the pivots selection time and the
quality of the heuristic derived from the GDLS that is formed.

path between them does not pass through other components
in GDLS . For example, A is connected to D but not to J
(because the components of F and X are in between). The
weight of edges between frontier watchers of different pivots
is the cost of the true distance between them. For example,
the weight between A and D is 2. The current location of
the agent, S.location (X , colored Green) is also added as a
component to GDLS . Note that watchers of X (Gray cells)
as well as all the rest of the cells (White cells, only one which
is present in Figure 2a) are not added to GDLS .

Two additional abstractions are done on GDLS (Fig-
ure 2c). First, non-frontier watchers (e.g., cellsB,E and I in
Figure 2a) are removed from GDLS since all the edges con-
necting them have weight 0. Second, we define that compo-
nent P is redundant with respect to componentQ if all paths
in GDLS(S) from S.location to Q pass through component
P . We similarly say that the pivot of a redundant compo-
nent P is a redundant pivot. In that case, component P can
be deleted from GDLS(S) because that component must be
passed when traveling to Q. For example, the component of
F is redundant with respect to the component of C. Neigh-
bors of redundant components are then directly connected to
cover the removal. For example, X is now connected to A
with weight 4 as shown in Figure 2c. Components that are
not redundant are called cardinal and they remain in GDLS .

TSP Heuristic
Seiref et al. (2020) provided several admissible heuristics
based on GDLS . We only describe and use their best heuris-
tic - the TSP heuristic. A solution to Traveling Salesman
Problem (TSP) on a graph G = (V,E) is a cycle that passed
through all the vertices of V . Finding optimal (minimum-
cost) solutions to TSP is NP-hard (Held and Karp 1970).

When GDLS(S) is present we are interested in the
minimum-cost Hamiltonian path from X that visits all other
vertices in GDLS . Since edges between pivots and their
watchers are of weight 0 then this is a lower bound on the
path that will see all vertices in S.unseen. Seiref et al.
(2020) slightly modified a TSP solver to find the minimal
path that starts at location X and passes in all pivots of
GDLS . In our example in Figures 2b and 2c, the path col-
ored Blue (X,J,X,A) is the required minimum-cost Hamilto-
nian path from X that visits all other components in GDLS .
Its cost 12 is used as the TSP heuristic.

For more implementation details and specific data struc-
tures (such as the all-pairs shortest-path table) forGDLS and
the TSP heuristic, see Seiref et al. (2020).

Reducing the Size of the Search Tree
We next cover an additional enhancement introduced for
WRP-A*. Trivially, when node S is expanded, then new
nodes are generated for all the cells that are adjacent to
S.location. However, Seiref et al. (2020) significantly re-
duced the size of the search tree by using edges of the ab-
stracted GDLS(S) (Figure 2c) to generate the children of S.
An optimal path must include at least one frontier watcher
for each pivot in GDLS(S). To have a complete search (and
not lose any possible path) we add all of the frontier watch-
ers as children of S in the search tree. Formally, when ex-

108



Figure 3: (a) Maze 21X21 (b) Den405d (c) Den020d

panding a node S, we generate one child C for each edge
in GDLS(S) that connects S.location to a frontier watcher
W as follows: C.location =W . The cost of edge (S,C) in
the search tree is set to the cost of the corresponding edge
in GDLS(S). C.seen is updated to also include LOS(p) for
each cell p ∈ π(S.location,W ). For example, in Figure 2b
X is connected to D with cost 2 and to J with cost 3 and
thus two children will be generated. This method is denoted
as Jump to Frontier expansion (JF) and the neighbors gener-
ated with JF are called jump points (inspired by Jump Point
Search (Harabor et al. 2019)).

To guarantee optimality we also need to take care of the
possibility that the optimal path passes via a cell which is not
in GDLS . Such cells are colored White in Figure 2a (only
one such cell is present in the figure above cell J). To do so,
we artificially build components for the White cells and add
them to GDLS as follows. We iterate over all White cells.
Given a White cell x we add x as a pivot (Red) and add all
the other White cells with LOS to x as its watchers. We then
add this artificial component to GDLS in the same manner
as real pivots. We continue this process until all White cells
are taken care of. We then add the frontier watchers of the
White cells as children of S. Importantly, these components
are not considered by the TSP heuristic because their pivots
are not LOS-disjoint with the other pivots. They are only
added later (after the heuristic computation) for the branch-
ing process of JF. We use GDLSJ to denote the resulting
GDLS after White cells were added. In Section below, we
further discuss the pros and cons of adding White cells to
GDLS and also give illustrative examples.

WRP-A* with reasonable memory and time resources
cannot solve large problems. We therefore introduce subop-
timal (bounded and unbounded) and anytime algorithms.

Bounded Suboptimal Algorithm
It is common, especially in NP-hard problems, to trade the
quality of the solution with running time. A common set-
ting for this is that of Bounded Suboptimal Search (BSS).

W Alg. Exp Gen Time Cost
1 A* 840 3,662 20,608 99.69

1.1
WA* 203 859 6,285 99.76
XUP 201 897 5,486 99.76
XDP 206 906 6,134 99.76

2
WA* 40 247 1,599 101.14
XUP 53 283 2,101 101.21
XDP 91 498 3,113 99.83

5
WA* 26 178 813 106.59
XUP 27 178 668 107.07
XDP 34 229 1,366 103.07

10
WA* 25 173 653 107.07
XUP 25 172 790 107.07
XDP 38 252 1,597 104.79

Table 1: Results of WA*, XDP and XUP on Den405d map

Given a bound W the task is to find a solution with cost
≤ W × C∗. Many BSS algorithms exist but, there is no
universal winner and each algorithm has pros and cons. We
studied a number of variants of Weighted A* (WA*) (Pohl
1970). WA* is simple and performs relatively robust across
domains (Gilon, Felner, and Stern 2016).4 WA* is a best-first
search algorithm that prioritizes nodes in Open according to
fW (n) = g(n)+W ·h(n) where W ≥ 1. The solution cost
returned by WA* is guaranteed to be≤W×C∗ (Pohl 1973).

New members of the WA* family have been introduced
recently (Chen and Sturtevant 2019). When placing the g-
value on the x-axis and the h-value on the y-axis then with
WA* the set of states with the same fW -value form a straight
diagonal line. Convex Downward Parabola (XDP) modifies
WA* by changing the straight line to a parabola as follows:

fXDP =
1

2w
· (g + (2w − 1)h+

√
(g − h)2 + 4wgh)

XDP focuses the search on nodes with near-optimal g-values
(with respect to the optimal path) near the start and nodes
with g-values are up to (2w − 1)× C∗ near the goal. Over-
all the paths found are still bounded suboptimal (with w),
and re-openings are not required. Convex Upward Parabola
(XUP) is similar to XDP but focuses on nodes with near-
optimal g-values near the goal and nodes with g-values are
up to (2w − 1) × C∗ near the start. XUP is defined as:

fXUP =
1

2w
· (g + h+

√
(g + h)2 + 4w(w − 1)h2)

We experimented with WA*, XDP and XUP on the
Den405d map (Sturtevant 2012) (Figure 3b) with different
values for W . Here, and in our experiments and explana-
tions below we exclusively use the BresLos function. Table 1
provides the results (time in msec, number of expanded and

4We did not experiment with Explicit Estimation Search
(Thayer and Ruml 2011) and Dynamic Potential Search (Gilon,
Felner, and Stern 2016) because they re-order their open lists every
time the minimal f -value changes. This is very costly and can be
done effectively only if nodes that have the same g- and h-values
are clustered together in g-h-buckets and if there is a small num-
ber of unique g- and h-values. This is valid mostly in permutation
puzzles but not in WRP where valid paths are very long.

109



Figure 4: Suboptimality of Ignoring White cells

generated nodes and the solution cost) averaged over 30 ran-
dom start states. Chen and Sturtevant (2019) report that XDP
tends to expand fewer nodes on the domains they tested. By
contrast, our results are mixed. XDP tends to provide better
quality of solutions but tends to expand more nodes. Fur-
ther study and comparison on the general behavior of these
three variants is needed but is beyond the scope of this pa-
per. But, one can see that all variants expand up to 34 times
fewer nodes than WRP-A* while the solutions they return
are never larger than 1.075×C∗ (7.5%) which is much bet-
ter than the bounds they guarantee which are up to W = 10.

Suboptimal Algorithm
In BSS, there is a guarantee of W on the suboptimality In
this section we describe a sub-optimal algorithm without a
suboptimality bound. To do so, we modify WRP-A* (Seiref
et al. 2020) by adding three techniques that reduce the size
of the search tree produced by WRP-A* by pruning subtrees
that are less likely to contain the optimal path: (1) Ignoring
white cells (those who do not have LOS to any of the pivots
or the agent), thus reducing the branching factor of the tree.
(2) A greedy method to remove pivots from GDLS that are
on the way to other pivots. This method is less strict than the
removal of redundant pivots. (3) Bounding the jump points
of JF to be distanced no more than a constant more than the
distance of the nearest neighbor. We cover these next.

Ignoring White Cells
Consider Figure 2a again. Recall that White cells are unseen
cells that do not have LOS to any of the pivots (Red cells)
in GDLS . As explained in section to ensure the optimality
of the solution, given a node S we build (artificially) com-
ponents for the White cells for the JF expansion (but not for
the TSP heuristic computation) resulting in GDLSJ .

We now suggest to ignore the White cells and not add
White components thus applying JF on the original GDLS

(and notGDLSJ ). Cutting those components out will reduce
the size of the search tree (no edges to frontier watchers of
White cells). This will lose the guarantee of an optimal so-
lution because in rare cases the optimal path passes through
these white cells before any other cell from the other compo-
nents as we now demonstrate using Figure 4a with BresLos.

Map Alg Exp Time BF Depth Cost

M
az

e
21

X
21

Opt 8,146 143,008 4.5 20.4 182.52
IW 2,448 30,662 5 11.8 182.52
WR 1,064 46,819 11 5.4 183.48
Both 1,020 43,506 11 5.4 183.29

D
en

40
5d Opt 840 20,608 9 11.2 99.69

IW 46 792 9 4.3 99.69
WR 26 818 13 2.4 100.17
Both 10 238 15 1.9 100.17

Table 2: IW and WR Results

Assume that the current node is S, that S.location is the
green cell X and that the gray cells are in S.seen. When
we build GDLS(S) we find two LOS-disjoint pivots —
cells A and B, each has a component of watchers colored
Yellow which are surrounded by a Blue border. With JF we
add cells N1 and N2 as children of S. Note that cell C is
White, i.e., it is not LOS-disjoint with the other pivots be-
cause cell D has LOS both to pivot B and to cell C. Next,
based on the former method of Seiref et al. (2020) we fur-
ther add (artificial) components for White cells too resulting
in GDLSJ . So, the White cell C becomes a pivot (marked
with red circle on top) and all the cells with yellow circle on
top are its watchers. This new component is surrounded by a
Light-blue border. The frontier watchers of C are cells N3,
N4 and D which are also added as neighbors of S to a total
of 5 neighbors: {N1, N2, N3, N4, D}5. It turns out that the
optimal path (colored Red in Figure 4a) first jumps to the
new child N3 (adding the two rightmost columns to seen).
Then, it jumps left to N1 (adding pivot B to seen). Finally,
it jumps to N2 covering the left side of the figure and halts.
This is the optimal path of length 8.

By contrast, when we ignore the White cells and not add
White components to GDLS we do not add C as an artifi-
cial pivot. As a consequence, N3, N4 and D are not added
as a children of S which now only has two children: N1 and
N2. In this setting the minimal path first jumps to N1. The
situation after this is shown in Figure 4b and the correspond-
ing node is denoted by S′. Now, S′.location = N1 (N1 is
colored Green) and B and some of its watchers are covered
(i.e., added to S′.Seen, colored gray). GDLS(S

′) now in-
cludes A as a pivot but C also becomes a pivot because it
is LOS-disjoint with A. So, now three cells are added as
children of S′: N2 (LOS to A),N3 and N4 (LOS to C). The
minimal path from N1 will go to N4 and cover the right side
of the map and then will go toN2 to cover the left side of the
map and halt. The path returned (from the original location
X) when ignoring White cells is of length 10.

Here we gave an example where building components of
White cells is crucial for finding the optimal solution. Ignor-
ing the white cells reduces the search tree but optimality is
not guaranteed. We note that this example was very carefully
handcrafted. In practice, however, such cases are very rare.

Table 2 presents results on a 21x21 maze (Figure 3a) and

5Strictly speaking, there are two other white cells in the figure
that are being treated in the same way. But, for simplicity of the
description we omit these from the discussion.

110



Figure 5: Suboptimality of weakly redundant pivots

on the Den405d (Figure 3b) map averaged over 30 instances.
One can see that Ignore Whites (IW) reduced the number of
expanded nodes and the time by up to a factor of 30 over
WRP-A* (Opt). We also added the average branching fac-
tor (BF) and average depth of the leaves of the final search
tree (Depth). One can see that the search tree is much shal-
lower compared to the optimal tree. Indeed, BF is larger but
the depth of the search is significantly smaller causing fewer
nodes to be expanded as the table shows. In almost all in-
stances the optimal path was returned, even though it was
not formally guaranteed. Thus, the phenomenon of losing
optimality as presented in Figure 4 happened very rarely in
these instances. This suggests that IW is practically effective
and that the quality of the solution will not be hurt too much.

Removing Likely Redundant Pivots
One of our goals is to solve larger problem instances. The
number of pivots will increase accordingly because we will
be able to identify more LOS-disjoint pivots to GDLS .
This will increase the TSP heuristic values because they are
based on GDLS . But, it will also increase the size of GDLS

as well as the branching factor of the main search because
there will be more frontier watcher jump points that will
be added as children of a node. We next reduce the size of
GDLS by removing some of the pivots from it. To do so in-
telligently, we want to remove pivots with minimal effect on
the quality of the solution returned.

Above, we defined redundant components and suggested
to completely delete them from GDLS keeping only cardi-
nal components. This results in two important positive ef-
fects. First, the depth of the search tree is reduced. Fron-
tier watchers of redundant pivots will not be added as jump
points. Instead, we add jump points directly to frontier
watchers of the cardinal pivots which were connected to
those redundant pivots that were deleted. Second, this may
improve the quality of the TSP heuristic. Recall that GDLS

is built from components of pivots and their watchers, and
that to have an admissible heuristic all inner edges of a com-
ponent have weight of 0. Thus, the additional cost of passing
through a component is 0. But, when redundant components
are removed the cost of the paths inside these components
is accumulated when jumping to the cardinal component be-
cause we take the true shortest path along an edge.

The definition of redundant components is strict — All
paths to a cardinal component Q must pass through com-
ponent P to make P a redundant component. We next pro-
vide a greedy method that relaxes the notion of redundant
component to weakly-redundant component to be deleted.

Figure 6: Suboptimality of Bounded Jump

Now, more components will be deleted and the search tree
will be smaller but optimality might be sacrificed. Let Q
be a component with q as its pivot. A component P is
weakly redundant with respect to Q if one shortest path in
the map from S.location to q passes through component P .
Practically, when building GDLS and finding a new LOS-
disjoint pivot p we also find a shortest path to p.6 If that
path includes a watcher of q then component Q is weakly-
redundant. So, Q is removed from GDLS .

Consider the example in Figure 5. Assume we are at node
S where S.location = X and that S.seen already contains
all the gray cells. Figure 5b showsGDLS(S) which has two
pivots A and D. It is important to note that the component
of D is not fully redundant because there exists a path to the
component of A that does not pass through watchers of D
(the topmost path of cost 8). The optimal path (colored Red
in Figure 5a) is to jump to watcher F of pivot D and then
jump to watcher B of pivot A with solution cost of 10.

Now, observe that the shortest path from X to pivot A
passes through E which is a watcher of pivot D. So, in this
case, the component of D (which includes E, the cell to its
right and F as frontier watchers) is a weakly redundant com-
ponent and we remove D and its watchers from GDLS(S)
as seen in Figure 5c. Removing the component of D will
lose the optimality of the solution. There are now two possi-
ble solutions: (1) Jump to watcher C of pivotA while seeing
pivotD on the path toC with cost of 11. (2) Jump to watcher
B of pivot A and then jump to watcher F of pivot D (which
will become a pivot again) also with solution cost of 11.

Table 2 also presents our greedy method to detect and
prune weakly-redundant pivots (WR). A reduction in nodes
and in time is seen when compared to the Optimal WRP-A*
(Opt) at a cost of a small loss in the quality of the solution.
IW tends to be slightly faster in time than WR although it
expanded slightly more nodes. Also, IW always preserved
the optimality of the solution (even though it was not guar-
anteed). When adding WR on top of IW (the Both line) we
see that in the maze, results were not improved by a large
margin. But, in Den405d there is a total reduction of a factor
of 80 in nodes and of 86 in time over Opt. Again this was
at a negligible loss (∼0.4%) in the quality of the solution.

6There might be many such shortest paths. But, in order to re-
duce the computation, we chose the first one that we find with an
A* search on the grid. Or, we can use the all pairs shortest paths
database if one is built as suggested by Seiref et al. (2020).

111



Map DF Exp Gen Time BF Cost
M

az
e

21
X

21
1 130 134 629 1.04 207.48

1.2 167 183 763 1.13 206.14
1.5 597 723 3,421 1.32 191.67

2 4,312 6,493 31,314 1.92 186.90
4 6,075 12,766 60,114 2.84 182.52

Opt 8,146 27,658 143,008 4.48 182.52

D
en

40
5d

1 200 213 1,253 1.45 115.97
1.2 306 375 1,287 2.20 109.10
1.5 441 755 3,729 3.29 102.66

2 698 1,530 7,220 4.78 101.10
4 780 2,373 12,432 6.83 99.69

Opt 840 3,662 20,608 9.29 99.69

Table 3: Bounded Jump Operator

We also report the average branching factor and depth of the
search tree and as can be seen all these algorithms reduce
the depth significantly by up to a factor of 6.

Bounding the Jump Points

Observe the following two attributes in the search tree rooted
at S when JF is applied. (1) Edges going out from S can
have different costs. (2) All leaves of the search tree are goal
nodes because the algorithm will keep generating children
as long as there are unseen cells in the graph.

We would like to further reduce the branching factor of
the search tree of JF. Inspired by the nearest neighbor heuris-
tic in TSP (Hurkens and Woeginger 2004) we only con-
nect S.location to nearby jump points but prune away jump
points that are far from S.location. This is done as follows.
Let ε(S) be the cost of the edge of the closest jump point
from S.location. Let distance factor (DF) be a constant fac-
tor. We connect S.location only to jump points that their
edges have weights w such that w ≤ DF × ε(S). For ex-
ample, with DF = 1 only the closest jump points will be
generated. WhenDF = 2 only jump points that the distance
between them and S.location is at most twice than ε(S) will
be generated. This algorithm will be complete (because of
attribute 2 above), but the solution might be suboptimal.

The optimal path in Figure 6a is the Red arrow
(X,D,A,B,C) and its cost is 30. The correspondingGDLS

is shown in Figure 6b. When DF = 2 is applied on
X (S.location) the watcher of pivot A is the only child.
Any of the frontier watchers of other pivots are with dis-
tance ≥ 9 which is more than twice than the nearest child
which is at distance 4 from X . Thus, the Blue path path
(X,A,B,C,D) of cost 31 is returned.

Table 3 presents results for the DF technique on our two
domains (without applying IW and WR). Indeed, in both do-
mains smaller values of DF resulted in smaller branching
factors and therefore faster solutions times and fewer node
expansions. For the maze the improvement was up to ×60
in nodes and up to ×240 in time while for Den405d it was
up to ×4 in nodes and up to ×20 in time. The quality of the
solution was never more than 15% over Opt (DF =∞).

Map DF Exp Gen Time BF Cost

M
az

e
21

X
21

1 29 30 647 1.08 218.48
1.1 33 37 709 1.20 215.71
1.2 84 104 1,118 1.52 204.05
1.5 365 660 4,052 2.61 187.76

2 503 1,403 10,112 4.43 183.29
4 932 4,434 31,585 8.78 183.29
∞ 1,020 5,678 43,506 10.83 183.29

Opt 8,146 27,658 143,008 4.48 182.52

D
en

40
5d

1 4 5 14 1.14 107.83
1.1 6 24 65 7.00 101.21
1.2 7 34 227 8.87 100.59
1.5 8 54 155 12.50 100.45

2 9 60 297 13.01 100.45
4 9 74 211 13.52 100.17
∞ 10 84 238 14.93 100.17

Opt 840 3,662 20,608 9.29 99.69

Table 4: All improvements

Figure 7: Different densities for the 13x13 maze

Combining All Methods
Table 4 shows the results when combining all our three tech-
niques. Different rows are for different DF values. Dramatic
improvements are seen. The maze can be solved in less than
a second and the map can be solved in less than 15 msec.
This comes at an increased cost above the optimal solution
of 20% for the maze and 8% for Den405d.

We also studied the effect of increasing density of obsta-
cles. We experimented on a 13x13 maze with 71 obstacles,
from which we built 71 instances (1 . . . 71) where instance

112



DF W Alg Exp Gen Time BF Cost

1
1 A* 21 23 488 1.17 532.11
2 WA* 14 18 646 1.25 532.11

10 WA* 14 18 652 1.25 532.11

1.2
1 A* 105 154 4,292 3.85 514.22
2 WA* 15 55 746 3.72 520.67

10 WA* 15 57 1,147 3.83 523.33

1.5
1 A* 243 421 10,357 5.97 506.89
2 WA* 16 106 2,309 6.62 514.00

10 WA* 18 98 2,627 5.70 535.56

2
1 A* 422 998 43,195 8.90 506.22
2 WA* 19 139 4,934 7.77 517.56

10 WA* 22 136 6,172 6.60 543.89

∞
1 A* 761 5,246 175,221 25.75 492.00
2 WA* 18 465 7,860 28.34 523.71

10 WA* 16 400 8,831 26.56 681.71

Table 5: WA* variants with our algorithm on Den020d

#n only had n obstacles randomized from the 71 obstacle
set. The full maze as well as the halfway point in which only
35 obstacles are present are shown in the topleft corner of
Figure 7a. Results for all 71 instances averaged over 25 tri-
als that randomly chose the subset of obstacles. Figures 7a
and 7b present the solution length and the CPU time, re-
spectively, (y-axis) as a function of increasing number of
obstacles (x-axis). DF = 1 is for the DF technique only.
All = 1 is for all three improvements where DF = 1 (simi-
larly All = 2 has DF = 2) Five of our variants obtained
almost-optimal solutions except All = 1 and DF = 1
which were a little larger but never off by more than 20%.
As for runtime, one can observe an easy-hard-easy behav-
ior for all variants. All = 1 was best on time – significantly
better (almost an order of magnitude) than all other vari-
ants. All = 2 produced the best balance between solution
quality (almost optimal) and running time (only worse than
All = 1). Importantly, these trends can be seen for all den-
sities of obstacles implying the robustness and generality of
our improvements.

Finally, Table 5 compares combining WA* with all our
methods tested on Den020d which is a complex large map
with 3,100 free cells shown in Figure 3c. Both IW and WR
are used and the tested parameters are DF and W for WA*.
Increasing W speeds up the search at a cost of a longer so-
lution. Reducing DF also speeds up the search but tends to
better preserve the solution quality. When both are combined
we get better quality solutions in less time which implies that
the combination is beneficial.

Anytime DF
In many cases the amount of time given to problem solver is
limited or unknown. Anytime algorithms are used for such
cases (Zilberstein 1996). A first (usually low quality) solu-
tion is found as fast as possible. Then, as time allows better
and better solutions are found. Usually, anytime algorithms
converge to the optimal solution if enough time is given.

Anytime heuristic search (AWA*) (Hansen and Zhou
2007) is a simple, general anytime search framework. AWA*
executes WA* until a first solution is found. Then, the ex-

Figure 8: Anytime Algorithms Comparison

ecution continues on the remaining open list until more
solutions are found. An alternative formulation is that of
ARA* (Likhachev, Gordon, and Thrun 2003). The main idea
is to execute iterations of WA*. The first iteration starts with
a high value of W and then W is reduced from iteration to
iteration according to some reducing schedule. If that sched-
ule has W = 1 as its last value then it will converge to opti-
mal because the last iteration is identical to A*. An enhanced
version of ARA* can pass information from iteration to iter-
ation thereby expanding each node only once.

Here, we propose an anytime search algorithm based on
operator costs which we call Anytime DF (ADF). ADF iter-
ates over increasing values of DF. We start withDF = 1 and
find a first solution. Then, we increase DF according to an
increasing schedule. When the scheduled value converges to
∞ the entire search tree is generated and an optimal solution
will be at hand. A basic implementation starts each run of a
new DF value from scratch. Similar to ARA*, an enhanced
method may maintain special data structures that enable to
pass information from iteration to iteration (such as nodes
that were pruned in the previous iteration). This will allow
to expand each node only once.

We compared basic ADF, AWA* (W = 2), basic ARA*
and a combination of ADF and ARA* where both W and
DF are iteratively changed. IW and WR were always used in
this specific experiment. Therefore, the algorithms will con-
verge to the solution length of IW+WR. Start points were
taken from different regions of the Den20d map (figure 3c).
Figure 8 plots the cost of the solution achieved (y-axis) as
a function of the runtime in seconds (x-axis). As could be
expected, at first all algorithms find high cost solutions and
as time passes solution costs are improved. At the begin-
ning AWA* finds better solutions than ARA*. But, given
our time limit, AWA* is unable to further improve the qual-
ity of the solution beyond 590. After 90 seconds ARA* out-
performs AWA* and finds better solutions. Clearly, our new
algorithms ADF and ADF+ARA* are superior to the WA*
variants. They find first solution faster with lower cost than
ARA* and AWA* and converge faster to a low cost solu-
tion. We note that the optimal solution is unknown as the
optimal solver could not solve these instances. ADF+ARA*
finds the first solution with better quality than and converge

113



to its minimum faster than ADF. But in the range between 2
to 80 seconds ADF finds better solutions, which means that
there is a tradeoff between them.

Conclusions and Future Work
We presented algorithms that solve WRP for bounded and
unbounded suboptimal solutions. We also presented an any-
time framework based on these. In general, significant re-
duction is shown in the search effort with a relatively low
increase in the cost of the solution.

Future work will solve this problem in a multi agent set-
ting where multiple agents need to find watchman routes
while combining their efforts. In addition, ADF is a general
framework which can be applied to other domains such as
TSP and other graph problems.

Acknowledgments
The research was supported by Rafael Advanced Defense
Systems, by Israel Science Foundation (ISF) grant #844/17
to Ariel Felner and by the Cyber grant by from the Prime
Minister office.

References
Aulinas, J.; Petillot, Y. R.; Salvi, J.; and Lladó, X. 2008. The
SLAM problem: a survey. CCIA 184(1): 363–371.

Bresenham, J. E. 1965. Algorithm for computer control of a
digital plotter. IBM Systems journal 4(1): 25–30.

Chen, J.; and Sturtevant, N. R. 2019. Conditions for Avoid-
ing Node Re-expansions in Bounded Suboptimal Search.
In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao,
China, August 10-16, 2019, 1220–1226.

Chin, W.-P.; and Ntafos, S. 1986. Optimum watchman
routes. In Proceedings of the second annual symposium on
Computational geometry, 24–33. ACM.

Dror, M.; Efrat, A.; Lubiw, A.; and Mitchell, J. S. 2003.
Touring a sequence of polygons. In Proceedings of the
thirty-fifth annual ACM symposium on Theory of computing,
473–482. ACM.

Fu, M.; Kuntz, A.; Salzman, O.; and Alterovitz, R. 2019. To-
ward Asymptotically-Optimal Inspection Planning via Effi-
cient Near-Optimal Graph Search. CoRR abs/1907.00506.
URL http://arxiv.org/abs/1907.00506.

Garey, M. R.; and Johnson, D. S. 1979. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
New York, NY, USA: W. H. Freeman & Co. ISBN
0716710447.

Gilon, D.; Felner, A.; and Stern, R. 2016. Dynamic Poten-
tial Search - A New Bounded Suboptimal Search. In Pro-
ceedings of the Ninth Annual Symposium on Combinatorial
Search (SoCS), 36–44.

Hansen, E. A.; and Zhou, R. 2007. Anytime heuristic search.
Journal of Artificial Intelligence Research 28: 267–297.

Harabor, D. D.; Uras, T.; Stuckey, P. J.; and Koenig, S.
2019. Regarding Jump Point Search and Subgoal Graphs.
In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI-19, 1241–1248.
doi:10.24963/ijcai.2019/173. URL https://doi.org/10.24963/
ijcai.2019/173.
Held, M.; and Karp, R. M. 1970. The traveling-salesman
problem and minimum spanning trees. Operations Research
18(6): 1138–1162.
Hurkens, C. A.; and Woeginger, G. J. 2004. On the nearest
neighbor rule for the traveling salesman problem. Opera-
tions Research Letters 32(1): 1–4.
Likhachev, M.; Gordon, G. J.; and Thrun, S. 2003. ARA*:
Anytime A* with provable bounds on sub-optimality. Ad-
vances in neural information processing systems 16: 767–
774.
Mitchell, J. S. 2013. Approximating watchman routes. In
Proceedings of the twenty-fourth annual ACM-SIAM sym-
posium on Discrete algorithms, 844–855. SIAM.
Pohl, I. 1970. First results on the effect of error in heuristic
search. Machine Intelligence 5: 219–236.
Pohl, I. 1973. The avoidance of (relative) catastrophe,
heuristic competence, genuine dynamic weighting and com-
putational issues in heuristic problem solving. In IJCAI, 12–
17.
Rivera, N.; Hernández, C.; and Baier, J. A. 2017. Grid
Pathfinding on the 2k Neighborhoods. In Proceedings of
the Thirty-First Conference on Artificial Intelligence AAAI,
891–897.
Seiref, S.; Jaffey, T.; Lopatin, M.; and Felner, A. 2020. Solv-
ing the Watchman Route Problem on a Grid with Heuristic
Search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 30, 249–257.
Sturtevant, N. R. 2012. Benchmarks for Grid-Based
Pathfinding. IEEE Trans. Comput. Intellig. and AI in Games
4(2): 144–148. doi:10.1109/TCIAIG.2012.2197681. URL
https://doi.org/10.1109/TCIAIG.2012.2197681.
Taketomi, T.; Uchiyama, H.; and Ikeda, S. 2017. Visual
SLAM algorithms: a survey from 2010 to 2016. IPSJ Trans-
actions on Computer Vision and Applications 9(1): 16.
Thayer, J. T.; and Ruml, W. 2011. Bounded Suboptimal
Search: A Direct Approach Using Inadmissible Estimates.
In IJCAI 2011, Proceedings of the 22nd International Joint
Conference on Artificial Intelligence, Barcelona, Catalonia,
Spain, July 16-22, 2011, 674–679.
Xu, N. 2014. On The Watchman Route Problem and Its
Related Problems. Dissertation Proposal .
Zilberstein, S. 1996. Using anytime algorithms in intelligent
systems. AI magazine 17(3): 73–73.

114


