
Pattern Databases for Stochastic Shortest Path Problems

Thorsten Klößner, Jörg Hoffmann
Saarland University, Saarland Informatics Campus, Germany

{kloessner, hoffmann}@cs.uni-saarland.de

Abstract
Stochastic shortest-path problems (SSP) are an important
subclass of MDPs for which heuristic search algorithms ex-
ist since over a decade. Yet most known heuristic functions
rely on determinization so do not actually take the transition
probabilities into account. The only exceptions are Trevizan
et al.’s heuristics hpom and hroc, which are geared at solving
more complex (constrained) MDPs. Here we contribute pat-
tern database (PDB) heuristics for SSPs, including an addi-
tivity criterion. These new heuristics turn out to be very com-
petitive, even when using a simple systematic generation of
pattern collections up to a fixed size. In our experiments, they
beat determinization-based heuristics, and tend to yield better
runtimes than hpom and hroc.

Introduction
Stochastic shortest-path problems (SSP) are an important
subclass of MDPs, requiring to minimize the expected cost
of reaching a goal. Costs are not discounted, and it is as-
sumed that dead-ends are avoidable, i. e., there exists a pol-
icy reaching the goal with probability 1. Heuristic search al-
gorithms for SSP are well known (Hansen and Zilberstein
2001; Bonet and Geffner 2003, 2006; Trevizan et al. 2017).
These methods require an expected-cost heuristic function
h, admissible in terms of lower-bounding the actual ex-
pected cost. Yet research on such heuristic functions h for
SSP has been limited so far.

Most work on SSP heuristic search was concerned with
the search algorithms, not the heuristic functions. In the con-
text of probabilistic planning which we address here, authors
relied on classical planning heuristics, applied to probabilis-
tic planning via the all-outcomes determinization which as-
sumes that one can choose the action outcome (e. g. (Bonet
and Geffner 2005; Teichteil-Königsbuch, Vidal, and Infantes
2011; Kolobov, Mausam, and Weld 2010, 2012)). While this
construction is elegant, the resulting heuristic functions ig-
nore the transition probabilies characterizing the probabilis-
tic setting. The only other known SSP heuristic functions are
Trevizan et al.’s (2017) LP-based occupancy measure heuris-
tics hpom and hroc. These are powerful in their native search
algorithm i-dual (Trevizan et al. 2017). Yet i-dual is designed
for the more complex setting of constrained MDPs (where

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

several objectives must be reasoned about), and may not be
the most effective way to tackle the simpler SSP case.

Here we devise a pattern database (PDB) heuristic for
SSP, taking the transition probabilities into account. PDBs
are a well-known class of heuristic functions based on prob-
lem projections (e. g. (Korf 1997; Culberson and Schaeffer
1998; Edelkamp 2001; Holte et al. 2006; Haslum et al. 2007;
Pommerening, Röger, and Helmert 2013)). PDBs for prob-
abilistic planning were previously considered (Keyder and
Geffner 2008; Klößner et al. 2021), but only for a different
class of MDPs, namely goal probability maximization in the
presence of unavoidable dead-ends.

Defining PDBs as in prior work on planning, we obtain
from Klößner et al.’s (2021) results that the resulting abstract
state spaces are still MDPs (which is not the case for state
abstractions in general as the transition probabilities may
not be well-defined (Givan, Leach, and Dean 2000; Tagorti
et al. 2013)). We show that, while these MDPs are not SSPs
anymore, they can be solved with existing methods and the
resulting heuristic functions are consistent. We also devise
an additivity criterion, which transfers directly from corre-
sponding criteria in deterministic search and classical plan-
ning (Edelkamp 2001; Korf and Felner 2002; Felner, Korf,
and Hanan 2004; Haslum et al. 2007).

These new heuristics turn out to be very competitive, even
when using a simple systematic generation of pattern col-
lections, including all patterns up to a fixed size K. We
run experiments on SSP probabilistic PDDL benchmark do-
mains from the International Probabilistic Planning Compe-
titions. The new PDB heuristics beat the corresponding de-
terminized PDB heuristics, showing that taking probabilities
into account can pay off. With small patterns of size 2, they
are similarly informative as hpom and hroc, but are faster to
compute and hence tend to yield better runtimes.

Preliminaries
At the surface level, we address probabilistic planning tasks
formulated in PPDDL (Younes et al. 2005). In the planner’s
internal representation, these tasks come in a probabilistic
finite-domain (FDR) notation (Bäckström and Nebel 1995;
Trevizan, Thiébaux, and Haslum 2017), as follows. A prob-
abilistic FDR task is a tuple Π = 〈V ,A, sI ,G, c〉. V denotes
the variables, each v has a finite domain Dv . A variable
assignment is a partial function σ : V 7→

⋃
v∈V Dv with

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

131

σ(v) ∈ Dv , if defined. We write σ(v) = ⊥ in case that
σ(v) remains undefined. We denote by V(σ) the set of all
variables v with σ(v) 6= ⊥. σ is complete if V(σ) = V .
For a set of variables U ⊆ V(σ), we denote by σ|U the
projection of σ onto U . Slightly abusing notation, we de-
note the composition of two variable assignments as σ2 ◦ σ1
where (σ2 ◦ σ1)(v) = σ2(v) for all v ∈ V(σ1)∩V(σ2), and
(σ2◦σ1)(v) = σ1(v) for all v ∈ V(σ1)\V(σ2). The states S
of Π are the complete variable assignments. The initial state
sI is a state. The goal G is a variable assignment. A is the
set of actions. An action a specifies its precondition prea,
and a set of effects eff a, all variable assignments; as well as
a probability distribution Pa over the effects. c : A → R+

0 is
a non-negative cost function independent of the source state.

Π induces the MDPM = 〈S, sI , T ,SG , c〉 whose states
and initial state are those of Π. The goal states SG are all
states sG where sG(v) = G(v) for all v ∈ V(G). An ac-
tion a is applicable in state s if prea(v) = s(v) for all
v ∈ V(prea). A(s) denotes the set of all actions applica-
ble in s. We require A(s) 6= ∅ for all s ∈ S . The transition
function T : S ×A×S 7→ [0, 1] is defined for a ∈ A(s) by
T (s, a, t) =

∑
e∈eff a,t=(e◦s) Pa(e). To simplify equations,

we require that every goal state has a zero-cost self-loop.
We require that M is a stochastic shortest path problem

(SSP), precisely: (i) there is at least one policy for which the
goal probability of every state is 1 (such a policy is called
proper) and (ii) for improper policies, the total expected cost
incurred until a goal is reached is infinite for at least one
initial state. Since we consider non-negative action costs, (ii)
reduces to the absence of zero-cost cycles.

The optimal value function J∗ : S → R maps each
state to its minimal (non-discounted) expected cost-to-goal
among all proper policies. Formally, with Si denoting a ran-
dom variable representing the state in time step i:

J∗(s) := min
π proper

E

[∞∑
i=0

c(π(Si))

]
J∗ can be computed by value iteration (VI), which starts
with an initial value function J0 and iteratively applies the
Bellman update operator B defined by

(BJ)(s) = min
a∈A(s)

c(a) +
∑
s′∈S
T (s, a, s′)J(s)

until convergence. Under SSP assumptions (i) and (ii), J∗ is
the unique fixed point of B within {J | ∀s ∈ SG . J(s) = 0}.
Moreover, B is monotonic, and limk→∞ Bk(J0) = J∗ for
any initial guess J0 where J0(s) = 0 for all s ∈ SG .

A heuristic is a function h : S → R. We say that h is
admissible if h(s) ≤ J∗(s) for all s ∈ S . We say that h
is goal-aware if h(s) = 0 for all s ∈ SG . We say that h
is consistent if h ≤ Bh. Consistency and goal-awareness
imply admissibility because B is monotonic: h ≤ Bh ≤
B2h ≤ · · · ≤ limk→∞ Bkh = J∗.

Since VI has to construct the entire state space, heuristic
search algorithms (Hansen and Zilberstein 2001; Bonet and
Geffner 2003, 2006; Trevizan et al. 2017) can be far more
memory-efficient. These algorithms search forward from the
initial state sI , and perform Bellman updates starting from

an admissible heuristic h, thus maintaining an approxima-
tion J of J∗. In each search step, they focus on the so-
called greedy graph, which contains only those actions that
minimize (BJ)(s). If h is accurate, many states are never
reached in a greedy graph and thus will not be generated
during search.

Expected-Cost PDBs
We follow Klößner et al. (2021) in the definition of pro-
jections of the induced MDP M onto a subset V ⊆ V of
variables also denoted a pattern. The state set SV is the set
of complete variable assignments to V . The goal states are
SGV := {sG |V | sG ∈ SG}. For the transition probabilities
between projected states σ, τ , we set TV (σ, a, τ) = 0 for
all τ if prea|V 6⊆ σ. Otherwise, we select any representa-
tive s ∈ S of σ, where σ = s|V ; and for each a ∈ A(s)
and τ , we set TV (σ, a, τ) :=

∑
t∈S. τ=t|V T (s, a, t). As

Klößner et al. (2021) show, this is well-defined, i. e., the
transition probability is the same regardless of which rep-
resentative s of σ is selected. We denote the projected MDP
byMV = 〈SV ,A, TV ,SGV 〉.

Obviously, MV can be constructed directly from Π in
time polynomial in |Π| and exponential only in |V |. Observe
though thatMV is not necessarily an SSP. Condition (i) is
satisfied since the projection can only increase goal reacha-
bility. But the projection may introduce zero-cost cycles, so
condition (ii) does not necessarily hold anymore. However,
MV falls into the class of so-called generalized stochastic
shortest path problems (GSSPs), and can be solved opti-
mally using VI starting from an upper-bounding initial value
function, or by eliminating these cycles in a preprocessing
step or during search (Kolobov et al. 2011). In our experi-
ments, we restrict ourselves to strictly positive actions costs.

We henceforth denote with J∗V the expected cost value
function J∗ ofMV , and with BV the bellman update oper-
ator w.r.t.MV . Note that J∗V is a fixed point of BV (though
not necessarily the only one). We define the expected cost
PDB heuristic for pattern V as hV (s) := J∗V (s|V). By defi-
nition of SGV , hV is goal-aware. A fundamental observation
is that hV is also consistent for any pattern V ⊆ V.

Theorem 1 hV is consistent.

Proof. Let s ∈ S. We need to prove hV (s) ≤ (BhV)(s).

We start by exploiting that J∗V is a fixed point of BV .

hV (s) = J∗V (s|V) = (BV J∗V)(s|V)

= min
a∈A(s|V)

c(a) +
∑
τ∈SV

TV (s|V , a, τ)J∗V (τ)

Next, we apply the definition of TV and only consider ac-
tions in A(s) ⊆ A(s|V).

≤ min
a∈A(s)

c(a) +
∑
τ∈SV

∑
t∈S
t|V =τ

T (s, a, t)J∗V (τ)

= min
a∈A(s)

c(a) +
∑
t∈S
T (s, a, t)J∗V (t|V)

132

= min
a∈A(s)

c(a) +
∑
t∈S
T (s, a, t)hV (t) = (BhV)(s)

This concludes the proof. �

Additivity
Given a collection (a set) C of patterns, the sum heuris-
tic hadd

C (s) :=
∑
V ∈C h

V (s) sums over the individual pat-
tern heuristics. Sufficient conditions for admissibility can
be identified based on orthogonality, aka additivity (Korf
and Felner 2002; Felner, Korf, and Hanan 2004). In par-
ticular, such a condition has been devised in classical plan-
ning (Edelkamp 2001; Haslum et al. 2007). We next show
that this orthogonality criterion can be used analogously in
the expected-cost setting.

We say that an action a ∈ A affects a pattern V ⊆ V if
MV contains non-loop a-transitions, i.e. if TV (σ, a, τ) > 0
for some σ 6= τ . Similarly to the classical case, this property
can be checked syntactically on the planning task: a affects
V if and only if there is an effect e with Pa(e) > 0 and a
variable v ∈ V for which e(v) 6= ⊥ and e(v) 6= prea(v).

Definition 1 (Orthogonality) A pattern collection C is or-
thogonal if every action in A affects at most one V ∈ C.

We next show that, just like in classical planning, hadd
C

is admissible if C is orthogonal. Observe first that hadd
C is

trivially goal-aware, as every individual heuristic is. Further-
more, hadd

C is consistent:

Theorem 2 If C is orthogonal, then hadd
C is consistent.

Proof. Let s ∈ S . We need to show hadd
C (s) ≤ (Bhadd

C)(s).
Let a ∈ A(s) be an arbitary action. Since C is orthogonal,

there is a pattern Wa ∈ C dependent on a such that all other
patterns V ∈ C \ {Wa} are unaffected by a. We know that
hWa(s) ≤ c(a) +

∑
t∈S T (s, a, t)hWa(t) because hWa is

consistent as previously shown. Therefore

hadd
C (s) ≤

(
c(a) +

∑
t∈S
T (s, a, t)hWa(t)

)
+
∑

V ∈C\{Wa}

hV (s)

Now we rewrite the right summand by multiplying with∑
t∈S T (s, a, t) = 1. Acknowledge that T (s, a, t) > 0 im-

plies s|V = t|V and in particular hV (s) = hV (t) for any
V ∈ C \ {Wa} since a does not affect V .

= c(a) +
∑
t∈S
T (s, a, t)hWa(t) +

∑
t∈S
T (s, a, t)

∑
V ∈C\{Wa}

hV (t)

= c(a) +
∑
t∈S
T (s, a, t)hadd

C (t)

This inequality holds for all actions, hence

hadd
C (s) ≤ min

a∈A(s)
c(a) +

∑
t∈S
T (s, a, t)hadd

C (t) = (Bhadd
C)(s)

This concludes the proof. �

Given a pattern collection C, we exploit orthogonality
analogously to Haslum et al. (2007) in the classical setting,
maximizing over all maximal orthogonal subcollections of
C. The resulting heuristic is called the canonical heuristic,
defined as hcanC (s) := maxD∈Q

∑
V ∈D h

D(s) where Q is
the set of maximal orthogonal subcollection of C.

Experiments
Our implementation is based on the probabilistic extension
of Fast Downward (Helmert 2006; Steinmetz, Hoffmann,
and Buffet 2016), with PPDDL as the input language. The
experiments were run on a cluster of Intel Xeon E5-2650
v3 processors @2.30 GHz, using a memory limit of 4 GB
and a time limit of 30 minutes. The LP solver we use is So-
plex 3.1.1. All experiments are run using the Downward Lab
toolkit (Seipp et al. 2017). In the following, we shortly de-
cribe the algorithms we tested as well as the benchmarks
used, before summarizing our empirical results.

Heuristics & Search Algorithms Compared
We experimented with LAO∗and LRTDP as the underlying
heuristic search algorithms. As LRTDP conducts its trials
probabilistically, we run each LRTDP search configuration
with 10 different random seeds and average the results. The
results for both search algorithms are qualitatively very sim-
ilar, so we report the data only for LRTDP below.

We experiment with both the additive and non-additive
variant of expected-cost PDBs (ecpdbs). To compare against
the analogous determinization-based approach, we also ex-
periment with canonical PDBs (cpdbs) on the determiniza-
tion. To solve projections (i. e. to construct expected-cost
PDBs), we use focused topological value iteration (Dai et al.
2011). All algorithms are run until ε-convergence, i. e. the
difference between successive Bellman backups becomes
less than ε. We fix ε = 10−5 throughout our experiments.

Pattern generation for the expected cost setting is in it-
self a non-trivial research question, which remains open for
future work. For our experiments, we adopt a simple sys-
tematic pattern generation procedure previously suggested
in classical planning (Pommerening, Röger, and Helmert
2013). We enumerate pattern collections up to a fixed pat-
tern size K (pruning ones that can easily be recognized to

K = 2 K = 3

Domain N - hlmc hpom hroc cpdb ecpdb add.
ecpdb cpdb ecpdb add.

ecpdb

blocksw 30 9 9 21 21 12 9 18 12 9.7 17
elevators 15 13 14 14 14 14 14 14 14 14 11
random 15 3 4 7 8.8 4 7 7 4 7 7
schedule 30 7 9 7 7 9 9 9 9 9 9
tri-tirew 10 5 5 5 5 5 6 6 5 6 6
zenotrvl 30 8 8 8 8 8 8 8 8 8 8
Σ 130 45 49 62 63.8 52 53 62 52 53.7 58

Table 1: Coverage for LRTDP. Highest coverage highlighted
in boldface. K denotes the size bound of the systematic pat-
tern generator.

133

K = 2 K = 3

Domain N hlmc hpom hroc cpdb ecpdb add. ecpdb cpdb ecpdb add. ecpdb
blocksworld 9 1,067.9 200.7 196.8 956.2 940.7 270.7 950.6 462.5 258.3
elevators 11 9,473.3 26,755.4 26,755.4 21,174.0 32,447.2 21,508.0 21,053.0 29,923.7 20,164.1
random 4 42,731.7 778.7 778.7 60,772.3 59,931.8 59,931.8 961.7 778.7 778.7
schedule 7 9,904.7 233,382.1 231,562.4 9,932.3 10,092.4 9,323.4 8,109.7 7,804.3 7,804.3
tri-tireworld 5 461,472.6 212,439.0 212,439.0 486,091.5 303,349.7 303,349.7 461,472.6 201,582.5 201,582.5
zenotravel 8 139,947.2 119,216.7 119,216.7 157,196.0 105,067.2 71,946.7 147,117.6 27,485.1 18,554.1
Mean 44 110,766.2 98,795.4 98,491.5 122,687.0 85,304.9 77,721.7 106,610.9 44,672.8 41,523.7

Table 2: Evaluated States. Mean taken over instances covered by all competing configurations (and over ten random seeds for
LRTDP). Lowest values highlighted in boldface. N is the number of common instances, K is the size bound of the systematic
pattern generator.

not be useful, e. g. not containing a goal variable). We ex-
periment with K ∈ {2, 3}. For K > 3, PDB construction is
infeasible due to the number of patterns. The pattern collec-
tion is identical across all PDB configurations.

We compare against hroc and hpom, the only prior SSP
heuristic that take transition probabilities into account. As
a canonical representative of the determinization-based ap-
proach, we compare against LM-cut (hlmc) (Helmert and
Domshlak 2009).

Benchmarks
We run experiments on benchmarks from the International
Probabilistic Planning Competitions (IPPC). Specifically,
we use the subset of benchmarks that are stochastic short-
est path problems, and that are formulated in our in-
put language PPDDL (Younes et al. 2005). These bench-
marks are from the IPPC editions 2006 and 2008 as later
IPPCs switched to RDDL (Sanner 2010).1 The bench-
mark domains are blocksworld, elevators, schedule, random,
triangle-tireworld, and zenotravel. In all these domains, the
SSP conditions are met because dead-ends are avoidable and
action costs are unit 1.

Results
Tables 1 and 2 show coverage (number of problem instances
solved) and search space size data. Consider first the com-
parison of our new heuristics to determinization-based ap-
proaches. LM-cut hlmc lags behind almost consistently (the
exception being elevators), and the same is true for deter-
minized PDBs (cpdb) vs. their expected-cost counterparts
(add. ecpdb). The data hence provides strong evidence that
taking probabilities into account is important. The extent of
the advantage varies per domain as one would expect, with
dramatic improvements in blocksworld and random, signifi-
cant improvements in triangle-tireworld and zenotravel, and
more moderate improvements elsewhere.

The comparison to hpom and hroc is more subtle. Our
heuristics have a substantial advantage in schedule, hpom and
hroc have a substantial advantage in blocksworld. Elsewhere,
both coverage and number of evaluated states are roughly on

1The first IPPC edition in 2004 also used PPDDL, but had very
limited benchmarks (20 instances in total), of which most were re-
used/extended in 2006 anyway.

par (except for zenotravel with K = 3 which we discuss be-
low). Our heuristics are faster to compute however, as eval-
uating them does not involve solving an LP. Figure 1 shows
that they pay off in runtime almost consistently.

Considering again search space size as a measure of in-
formedness, it appears that both types of heuristics often
capture similar structure. This indeed makes sense for very
small patterns of size K = 2, as hpom and hroc are based
on individual-variable (K = 1) projections augmented with
constraints over variable pairs. It is interesting to observe in
this context the substantial reduction in evaluated states on
zenotravel for K = 3; this gives evidence that, with larger
patterns, expected-cost PDBs can reach beyond hpom and
hroc as one would expect. More targeted pattern-selection
strategies are required for this as the overhead of our simple
strategy for K = 3 already outweighs this advantage.

10−1 100 101 102 103
10−1

100

101

102

103

hroc

10−1 100 101 102 103
10−1

100

101

102

103

hpom

Figure 1: Total Time (in seconds) for LRTDP. Additive
expected-cost PDBs with K = 2 (y-axis in both plots) vs.
hroc and hpom (x-axes).

Conclusion
Considering the amount of work that has gone into pattern
databases, and the attention that has been devoted to heuris-
tic search on stochastic shortest path problems, it is surpris-
ing that the two have not been put together before. We do
so here and the results clearly point to the potential benefits.
Major questions for future work are more clever strategies
for pattern collection as already discussed, as well as the use
of cost partitioning (Katz and Domshlak 2010; Seipp, Keller,
and Helmert 2020) for more powerful additivity.

134

Acknowledgments
This work was funded by DFG grant 389792660 as part of
TRR 248 (see https://perspicuous-computing.science).

References
Bäckström, C.; and Nebel, B. 1995. Complexity Results for
SAS+ Planning. Computational Intelligence 11(4): 625–
655.
Bonet, B.; and Geffner, H. 2003. Labeled RTDP: Improving
the Convergence of Real-Time Dynamic Programming. In
Proc. ICAPS’03, 12–21.
Bonet, B.; and Geffner, H. 2005. mGPT: A Probabilistic
Planner Based on Heuristic Search. JAIR 24: 933–944.
Bonet, B.; and Geffner, H. 2006. Learning Depth-First
Search: A Unified Approach to Heuristic Search in Deter-
ministic and Non-Deterministic Settings, and Its Applica-
tion to MDPs. In Proc. ICAPS’06, 142–151.
Culberson, J. C.; and Schaeffer, J. 1998. Pattern Databases.
Computational Intelligence 14(3): 318–334.
Dai, P.; Mausam; Weld, D. S.; and Goldsmith, J. 2011. Topo-
logical Value Iteration Algorithms. JAIR 42: 181–209.
Edelkamp, S. 2001. Planning with Pattern Databases. In
Proc. ECP’01, 13–24.
Felner, A.; Korf, R.; and Hanan, S. 2004. Additive Pattern
Database Heuristics. JAIR 22: 279–318.
Givan, R.; Leach, S. M.; and Dean, T. 2000. Bounded-
parameter Markov decision processes. AI 122(1–2): 71–109.

Hansen, E. A.; and Zilberstein, S. 2001. LAO*: A heuristic
search algorithm that finds solutions with loops. AI 129(1-
2): 35–62.
Haslum, P.; Botea, A.; Helmert, M.; Bonet, B.; and Koenig,
S. 2007. Domain-Independent Construction of Pattern
Database Heuristics for Cost-Optimal Planning. In Proc.
AAAI’07, 1007–1012.
Helmert, M. 2006. The Fast Downward Planning System.
JAIR 26: 191–246.
Helmert, M.; and Domshlak, C. 2009. Landmarks, Critical
Paths and Abstractions: What’s the Difference Anyway? In
Proc. ICAPS’09, 162–169.
Holte, R. C.; Felner, A.; Newton, J.; Meshulam, R.; and
Furcy, D. 2006. Maximizing over multiple pattern databases
speeds up heuristic search. AI 170(16-17): 1123–1136. doi:
10.1016/j.artint.2006.09.002.
Katz, M.; and Domshlak, C. 2010. Optimal admissible com-
position of abstraction heuristics. AI 174(12–13): 767–798.
Keyder, E.; and Geffner, H. 2008. The HMDP Planner for
Planning with Probabilities. In IPC 2008 planner abstracts.

Klößner, T.; Torralba, Á.; Steinmetz, M.; and Hoffmann, J.
2021. Pattern Databases for Goal-Probability Maximization
in Probabilistic Planning. In Proc. ICAPS’21, 201–209.
Kolobov, A.; Mausam; and Weld, D. S. 2010. Classical Plan-
ning in MDP Heuristics: with a Little Help from Generaliza-
tion. In Proc. ICAPS’10, 97–104.

Kolobov, A.; Mausam; and Weld, D. S. 2012. Discovering
Hidden Structure in Factored MDPs. Artificial Intelligence
189: 19–47.
Kolobov, A.; Mausam; Weld, D. S.; and Geffner, H. 2011.
Heuristic Search for Generalized Stochastic Shortest Path
MDPs. In Proc. ICAPS’11.
Korf, R. E. 1997. Finding Optimal Solutions to Rubik’s
Cube Using Pattern Databases. In Kuipers, B. J.; and Web-
ber, B., eds., Proc. the 14th National Conference of the
American Association for Artificial Intelligence (AAAI’97),
700–705. Portland, OR: MIT Press.
Korf, R. E.; and Felner, A. 2002. Disjoint pattern database
heuristics. AI 134(1–2): 9–22.
Pommerening, F.; Röger, G.; and Helmert, M. 2013. Getting
the Most Out of Pattern Databases for Classical Planning. In
Proc. IJCAI’13.
Sanner, S. 2010. Relational Dynamic Influence Dia-
gram Language (RDDL): Language Description. http://
users.cecs.anu.edu.au/∼ssanner/IPPC 2011/RDDL.pdf. Ac-
cessed: 2021-05-26.
Seipp, J.; Keller, T.; and Helmert, M. 2020. Saturated Cost
Partitioning for Optimal Classical Planning. JAIR 67: 129–
167.
Seipp, J.; Pommerening, F.; Sievers, S.; and Helmert, M.
2017. Downward Lab. https://doi.org/10.5281/zenodo.
790461.
Steinmetz, M.; Hoffmann, J.; and Buffet, O. 2016. Goal
Probability Analysis in MDP Probabilistic Planning: Ex-
ploring and Enhancing the State of the Art. JAIR 57: 229–
271.
Tagorti, M.; Scherrer, B.; Buffet, O.; and Hoffmann, J. 2013.
Abstraction Pathologies in Markov Decision Processes. In
Proceedings of the 8th Journées Francophones Planifica-
tion, Décision, et Apprentissage (JFPDA-13).
Teichteil-Königsbuch, F.; Vidal, V.; and Infantes, G. 2011.
Extending Classical Planning Heuristics to Probabilistic
Planning with Dead-Ends. In Burgard, W.; and Roth, D.,
eds., Proc. the 25th National Conference of the American
Association for Artificial Intelligence (AAAI’11). San Fran-
cisco, CA, USA: AAAI Press.
Trevizan, F. W.; Thiébaux, S.; and Haslum, P. 2017. Oc-
cupation Measure Heuristics for Probabilistic Planning. In
Proc. ICAPS’17, 306–315.
Trevizan, F. W.; Thiébaux, S.; Santana, P. H.; and Williams,
B. 2017. I-dual: Solving Constrained SSPs via Heuristic
Search in the Dual Space. In Proc. IJCAI’17, 4954–4958.
Younes, H. L. S.; Littman, M. L.; Weissman, D.; and As-
muth, J. 2005. The First Probabilistic Track of the Interna-
tional Planning Competition. JAIR 24: 851–887.

135

