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Abstract

Path planning in the presence of dynamic obstacles is chal-
lenging as the time dimension has to be considered. A promi-
nent approach to tackle this problem known to be com-
plete and optimal is the A*-based Safe-interval Path Planning
(SIPP). Bounded-suboptimal variants of SIPP employing the
ideas of Weighted A* (WSIPP) and Focal Search (FocalSIPP)
have been introduced recently, trading-off optimality for de-
creased planning time. In this paper, we revisit FocalSIPP
and design several secondary heuristics for Focal Search with
the intention to narrow the search in the direction of a pre-
planned optimal single-agent path not considering dynamic
obstacles. The experimental results on various maps show
that the designed heuristics generally outperform the hops-
to-the-goal heuristic used in the original FocalSIPP and suc-
cessfully compete with WSIPP as well.

Introduction

Path planning for an agent operating in a static environment
is a well-studied problem often reduced in AI/Robotics com-
munities to graph search. While the traditional search algo-
rithms, such as A* (Hart, Nilsson, and Raphael 1968) or
Dijkstra (Dijkstra 1959), guarantee finding optimal paths,
the problem gets challenging when other moving entities are
present in the environment as well. These can be either other
agents that are under the control of the planner, in which
case the general problem is referred to as Multi-Agent Path-
Finding (MAPF), or uncontrolled dynamic obstacles that the
agent has to avoid (e.g., pedestrians).

When planning with dynamic obstacles, the planner’s re-
quired output is not only a path in space but also the time
moments at which the transitions should be made. In con-
ventional setups, waiting in place is also considered, so the
plan may include both move and wait actions.

In many real-world applications, e.g., in mobile robotics,
the speed of finding a feasible plan might be of a higher
priority than its quality, i.e., the cost, which is typically de-
fined as the time it takes to reach the destination. On the
other hand, getting plans of extremely high costs may be
undesirable as well. Meeting both of the requirements are
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the bounded-suboptimal planners, which provide theoretical
guarantees that the cost of the resultant solution will not ex-
ceed the cost of the optimal solution by some margin (which
can be either additive or multiplicative). Meanwhile, they
typically find the solutions much faster.

In this work, we introduce several novel secondary heuris-
tics for the bounded-suboptimal FocalSIPP. These are based
on the idea of sticking to the optimal plans that do not take
the dynamic obstacles into account. We empirically compare
them with state-of-the-art methods, showing that in certain
setups, the usage of the suggested methods reduces the cost
and search complexity by up to 80%.

State of the Art

A prominent algorithm to find a feasible path in the pres-
ence of dynamic obstacles is the Safe Interval Path Planning
(SIPP), which is provably optimal and complete (Phillips
and Likhachev 2011).

An anytime version of SIPP (Anytime SIPP) finds the ini-
tial bounded-suboptimal solution and then constantly im-
proves it while the allocated computational budget per-
mits (Narayanan, Phillips, and Likhachev 2012). One of
the core components of Anytime SIPP is the bounded-
suboptimal (BS) version of SIPP that takes as a parame-
ter the suboptimality factor, w, and returns the plan, 7, s.t.
cost(m) < w - cost(r*), where 7* is the optimal solution.
The BS SIPP used in Anytime SIPP is the adaptation of the
prominent Weighted A* (Pohl 1970) algorithm that explic-
itly prohibits re-expansions by introducing two copies of the
certain states.

In (Yakovlev, Andreychuk, and Stern 2020) two other ver-
sions of BS SIPP were considered. Weighted SIPP (WSIPP)
again relies on a Weighted A*, but allows re-expansions in-
stead of duplicates (therefore WSIPPr). The second one, Fo-
calSIPP, adapts the ideas of Focal Search (FS) (Pearl and
Kim 1982). FS needs two heuristic functions: the primary
one, which has to be admissible to guarantee meeting the
suboptimality bound, and the secondary one, which is in-
tended to aid the search progress faster towards the goal and
does not have to be admissible. Designing the latter heuris-
tic is not trivial. In the considered domain, hops-to-the-goal
(HTG) heuristic (Wilt and Ruml 2014) is widely used, navi-



gating the search by the number of expected necessary steps
needed to reach the goal. In this work, we introduce several
novel secondary heuristics for FocalSIPP and study them
empirically.

Problem Statement

Consider a graph representing a grid-like workspace com-
posed of the adjacent tiles. The vertices of the graph match
the centers of the tiles, and edges fit the transitions between
them (we assume the grid is either 4- or 8-connected). Each
edge has a weight corresponding to the duration of the tran-
sition. We assume that the agent moves with constant speed
and the duration is 1 for transition between orthogonally-
adjacent cells and /2 for the diagonally-adjacent ones.

Certain vertices/edges are blocked for certain time inter-
vals due to the moving obstacles that populate the environ-
ment. Consequently, safe intervals are defined as the inver-
sions of the blocked ones. A plan required from the planner
is a set of the move and wait actions that reaches the pre-
defined goal vertex from the predefined start vertex while
avoiding collisions with the dynamic obstacles by visiting
all vertices and edges only in their respective safe intervals.

The cost of a plan is the time moment by which the agent
reaches the goal (we assume that the timeline starts at 0). In
this work, we are interested in getting bounded-suboptimal
solutions, i.e., the plans which cost is not greater than the
cost of the optimal plan multiplied by a user-defined factor
w (the suboptimality bound).

Algorithm

In this section, we shortly summarize the function of Safe In-
terval Path Planning (SIPP). Then we build on its bounded-
suboptimal modifications, the WSIPP and FocalSIPP, and
propose several new suboptimal heuristics to be used with
them to improve some aspects of the search.

The search space for SIPP is comprised of the elements
defined as n = (v, [t,t]), where v is the graph vertex and
[t,7'] is the safe time interval (thus different search nodes
that correspond to the same graph vertex might be encoun-
tered). For each search node SIPP stores its predecessor,
p(n), and the g-value, which is the earliest time by which
n can be reached via p(n). Indeed, g(n) € [t, t']. The search
frontier, OPEN, is maintained and at each iteration the node
with minimum f-value is extracted from OPEN for the ex-
pansion, where f(n) = g(n)+ h(n), where h(n) is the con-
sistent heuristic estimating time to reach the goal from n.
When expanding the node and generating successors, SIPP
takes care that their safe intervals are properly aligned, and
the transition is valid w.r.t. dynamic obstacles (this involves
augmenting the transition with the preceding wait action if
needed). Overall, SIPP can be seen as the A*-search in the
complex search space composed of the vertex-time interval
pairs augmented with an involved procedure for successor
generation. Indeed, SIPP is provably complete and optimal.

There are two existing bounded-suboptimal versions of
SIPP: WSIPP and FocalSIPP. WSIPP inflates the heuristic
for the underlying A* and must either allow re-expansions
(WSIPPr) or introduce duplicate states (WSIPPd) to avoid
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Figure 1: An example of an optimal single-agent path (blue)
that only needs a local update (purple) when being applied
to an area with a dynamic obstacle (green).

them. FocalSIPP maintains the so-called FOCAL list (be-
sides OPEN) and chooses the nodes for expansion from it
utilizing the secondary heuristic, which does not have to be
consistent or even admissible. In (Yakovlev, Andreychuk,
and Stern 2020) HTG was used as the secondary heuristic
for FocalSIPP. While both WSIPP and FocalSIPP provide
the bounded-suboptimal solutions faster than SIPP by skip-
ping several search tree branches, we want to motivate the
suboptimal search more purposefully.

For that, we take motivation from the D*Lite (Koenig
and Likhachev 2005) algorithm, which is an effective tool
for updating a single-agent path based on new knowledge
about the search space. To achieve similar behavior in a dy-
namic environment, we want to narrow the search to a pre-
planned optimal single-agent path and only modify its parts
that could lead to collisions. An example is shown in Fig-
ure 1, where we consider the 4-neighborhood and a speed of
one tile per discrete timestep. At ¢t = 4, the optimal single-
agent path from A to B (blue) reaches a collision interval
with a dynamic obstacle (green). Our target is to quickly
find a local detour (purple) with minimum new expansions.

Using the single-agent path as a lead, we want to speed up
the search by skipping the potentially uninteresting branches
of the search tree. Since we try to stick to a path that is opti-
mal in a less crowded area, we expect the approach to not in-
crease the plan cost extensively. Moreover, when the search
space would be too crowded and the original optimal path
would require extensive waiting, the architecture of Focal-
SIPP allows finding a cheaper solution elsewhere.

Heuristics

FocalSIPP uses two heuristics to compute the cost of the
states and sort the OPEN and FOCAL lists. The OPEN list
uses the standard f-value based on the cost of the path g(n)
to the node n and an admissible heuristic estimate to goal

h(n):
f(n) = g(n) + h(n) (1)

Since SIPP works with time, the cost-so-far element g(n)
represents the time of reaching the vertex n. The estimate
h(n) is computed as the Manhattan distance (for connectiv-
ity set to 4) or an octile distance (for connectivity set to 8) to
goal divided by the constant agent speed, which is assumed
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Figure 2: The number of expanded states by different approaches for sorting the FOCAL list in FocalSIPP.

unitary. This notion of time cost is proved to maintain the
heuristic’s consistency and admissibility (Yuan et al. 2017).

For the FOCAL list, we propose two new heuristics which
aim to narrow the search to the optimal single-agent path
7* not considering the dynamic obstacles and two different
ways of sorting the list itself. The first heuristic works by
evaluating the expanded nodes by their distance d (Manhat-
tan or octile, according to the connectivity) from 7*, i.e., the
distance § from the closest node in the path.

@

The second heuristic computes the distance from the node
7*(t) at which the agent would be at the time ¢ at which it
reaches n.

dp(’ﬂ,ﬂ' ) = 516117}1 J(n,v)

dr(n,m*,t) = §(n,7*(t)) 3)
For comparison, we take the HTG heuristic used in Focal-
SIPP. That estimates the number of nodes dgr¢ (n) the plan
would pass on the shortest path from n to the goal if no dy-
namic obstacles are encountered.
Analogically to HTG in the original FocalSIPP, the values
from Eq. (2) and Eq. (3) can be directly used to sort the
nodes in FOCAL list.

hrocar(n) = d(n,7*,t), 4)
where d equals dp, dr or dgrg and takes only the argu-
ments required by the corresponding version.

Additionally, we further reduce the suboptimal relaxation
by adding the admissible f-value of n to the three heuristics:

hrocar(n) = d(n,7*,t) + f(n), (5)
where d equals dp, dr or dyra (with the corresponding
arguments) and it is transformed to time under the same as-
sumption of unit speed as the admissible & value.

Experiments

In the experimental part, we mainly evaluate the impact of
the allowed suboptimality bound w on the planning results
combined with different heuristics. We compare the pro-
posed sorting methods for FocalSIPP to the optimal SIPP
planner, the suboptimal WSIPPr, and the original Focal-
SIPP with the hops-to-goal (HTG) heuristic. The particu-
lar version of WSIPP was chosen based on its better per-
formance with lower suboptimality, which is also the goal
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of our approach. Finally, we try to apply the HTG esti-
mate to goal for WSIPPr as well, using the inflated f-value
f(n) =g(n) +w-durc(n).

For the experiments, we use the Moving Al benchmark
maps (Stern et al. 2019) Room (64 x 64), Warehouse (161 x
63) and den520d (256 x 257). Due to the limited space, we
present results on maps using an 8-connected grid, as the
4-connected variants showed similar trends. For Room and
Warehouse, we work with 250 dynamic obstacles; den520d
was filled with 1000 of these. We evaluated 100 unique in-
stances on each of the maps and display the average values.

The different versions of FocalSIPP are labeled as fol-
lows, based on the hrpoc ar used to sort the FOCAL list:

o A*P - the distance from the optimal single-agent path ac-
cording to Eq. (2)

e A*T - the distance from the node in the optimal single-
agent path visited at the same time according to Eq. (3)

e HTG - the estimated number of steps to reach the goal

These are additionally labelled A*P+, A*T+ and HTG+
when the h;oc 4z, 1s used according to Eq. (5). The opti-
mal single-agent paths (for A*P and A*T), as well as the
shortest path node count from each vertex (for HTG), are
precomputed prior to the planning.

In Figure 2 we show the number of states expanded by
FocalSIPP using each of the secondary heuristics. The ex-
periments were performed with the suboptimality bound w
ranging from 1.01 to 5, but we focus on the lower values for
better readability, as the ongoing trends do not significantly
change later.

The first difference can be seen in the way the heuristic es-
timate is applied, i.e., if we sort the FOCAL list only by the
value itself or if we add the admissible f-value as well. While
in the first approach, the number of expansions quickly rises
for w < 1.3, for the latter, the maximal increase is about
50% lower and stops with a lower w. This is most probably
caused by the f-value immediately navigating the search to-
wards the goal, while the estimate alone leads to a broader
search for low suboptimality bounds until the greedy aspect
takes over with higher w.

The proposed approaches penalizing the distance from an
optimal single-agent path lead to a faster decrease of the per-
formed expansions, especially for lower w. They work the
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Figure 3: The number of expanded states (first row) and the ratio between achieved and optimal cost (second row) by the

selected bounded-suboptimal versions of SIPP.

fastest in combination with the f-value until they get outper-
formed by HTG+ around w = 1.4. In most cases, standard
HTG requires the most expansions, while it benefits the most
from adding the admissible f-value in HTG+.

In Figure 3 we compare the selected best performing Fo-
calSIPP secondary heuristics to the optimal solution pro-
duced by SIPP and two versions of the bounded-suboptimal
WSIPPr planner using either octile distance or HTG to esti-
mate the cost to the goal. The cost of the resulting plans is
compared based on their cost ratio to the cost of the optimal
solution. We focus on the most dynamic range of w values
for the plots.

The WSIPPr versions greedily aim for the goal, and with
w < 2, they usually need half of the expansions to find it
compared to SIPP, while the cost of their results rises propor-
tionally. For WSIPPr, the HTG cost estimate returns overall
better results in both the number of expanded states and plan
cost, which is natural in less connected grids.

Among the FocalSIPP versions, the proposed heuristics
aiming to follow the single-agent optimum generally com-
pete better with WSIPPr in the number of expansions when
the bound w is lower, with better results achieved by A*T.
For higher w, A*P and A*T maintain a constant near-
optimal cost while reducing the number of expansions of
SIPP by 20-30%. The speed-up of the other solvers grows
higher, but the cost of their solutions keeps rising by units
to tens of percent. The main reason for the near-optimal cost
achieved by the new heuristics is probably in the application
of the admissible f-value, and since HTG does not utilize
that nearly as well, there is also a strong impact of the navi-
gation towards the single-agent optimum.

In all presented methods, the runtime corresponds to the
number of performed expansions and is therefore not dis-
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played. Also, all secondary heuristics used in FocalSIPP re-
quire an initialization phase prior to planning. For HTG, the
initialization stands for precomputing the expected number
of steps to a goal from all nodes of the graph using Dijkstra,
while for the proposed heuristics, it is finding the optimal
single-agent path with A*. These are generally lower by one
order than the overall planning time, and for HTG, the value
is about 4-5 times larger than for the A*P and A*T versions.

Conclusions

In this paper, we present a comparison of several meth-
ods for finding a path in an area with dynamic obstacles.
Bounded-suboptimal Safe Interval Path Planning algorithm
proves to be a powerful tool for quickly retrieving a solution
in the given situation, while there are still ways of improving
its performance.

Motivated by the single-agent path updates in D* Lite,
we propose new heuristics for the FOCAL list in FocalSIPP.
A*P and A*T show overall better results than the original
method used in FocalSIPP, the hops-to-goal estimate. Even
with a low suboptimality bound, the new methods quickly
reduce the number of expanded states, while with higher w,
they reasonably compete with Weighted SIPP in the cost of
the results. Although the choice of the algorithm depends on
the application, WSIPP maintains its overall top position, es-
pecially with the newly applied HTG estimate, which proves
its quality in less-connected grids.

Additionally, we show that further limiting the subopti-
mal relaxation by adding the optimal f-value improves the
performance of bounded-suboptimal solvers, especially for
lower suboptimality bounds.
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