
Conflict-Free Multi-Agent Meeting

Dor Atzmon, Shahar Idan Freiman, Oscar Epshtein, Oran Shichman, Ariel Felner
Ben-Gurion University of the Negev

{dorat, freimans, oscarep, shichman}@post.bgu.ac.il, felner@bgu.ac.il

Abstract

Multi-Agent Meeting (MAM) is the problem of finding a
meeting location for multiple agents and paths to that lo-
cation. Recently, a Multi-Directional Heuristic Search algo-
rithm, called MM*, was introduced. MM* is a state-of-the-
art MAM optimal solver that searches from multiple direc-
tions (one for each agent) and is guided by a heuristic func-
tion. Practically, a solution to MAM may contain conflicting
paths. A related problem that plans conflict-free paths to a
given set of goal locations is the Multi-Agent Path Finding
problem (MAPF). In this paper, we solve the Conflict-Free
Multi-Agent Meeting problem (CF-MAM). In CF-MAM, we
find a meeting location for multiple agents (as in MAM) as
well as conflict-free paths (as in MAPF) to that location. We
introduce two novel algorithms, which combine MAM and
MAPF solvers, for optimally solving CF-MAM. We compare
both algorithms experimentally, showing the pros and cons of
each algorithm.

Conflict-Free Multi-Agent Meeting
While MAM finds a meeting location and paths for multiple
agents to that meeting location, it ignores conflicts between
the agents. Here, we define the problem of finding a meeting
location and conflict-free paths to the meeting location.

The Conflict-Free Multi-Agent Meeting problem (CF-
MAM) gets as input the tuple 〈G, S〉, where G is an undi-
rected connected graph and S is a set of start locations. We
assume that all edges have a unit cost, which is common in
other conflict-free MAPF problems (Stern et al. 2019). A
solution to CF-MAM is a meeting location m and a set of
conflict-free paths Π to the meeting location m. Let N(v)
represent the neighbors of v, i.e., ∀v′ ∈ N(v), (v, v′) ∈ E .
Each path πi ∈ Π for agent ai ∈ A consists of a se-
quence of locations, such that each two consecutive loca-
tions v1, v2 ∈ πi must either satisfy v2 ∈ N(v1) (move
action) or v1 = v2 ∈ V (wait action).

The cost of path πi is denoted by C(πi) and equals the
number of edges traversed in πi (C(πi) = |πi| − 1). We
use πi(t) to denote the t-th location in πi. Thus, πi(0) = si
and πi(|πi|) = m. Often, a set of paths that minimizes some
objective function is preferred. We focus on minimizing the
Sum-Of-Costs (SOC) objective function, which equals the

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

sum of the costs of all paths in Π (C(Π) =
∑
πi∈Π C(πi)).

We use C∗ to denote the cost of the optimal solution.
In this research, we focus on two main types of con-

flicts (Stern et al. 2019): vertex conflict and swapping con-
flict. A vertex conflict 〈ai, aj , v, t〉 occurs between two paths
πi and πj if the same vertex v ∈ V is occupied by both
agents ai and aj at the same timestep t, i.e., πi(t) =
πj(t) = v. A swapping conflict 〈ai, aj , e, t〉 occurs be-
tween two paths πi and πj if the same edge e ∈ E is tra-
versed in opposite directions by both agents ai and aj be-
tween the same two consecutive timesteps t and t + 1, i.e.,
(πi(t), πi(t+ 1)) = (πj(t+ 1), πj(t)) = e.

While agents must avoid conflicts on their path, naturally,
we define that agents can arrive at m at the same timestep.
This is practical, for example, in the case that agents disap-
pear at goal (Stern et al. 2019) (e.g., robots entering a charg-
ing station or autonomous vehicles entering a garage).

In the full paper of this research, we prove that given
a set of paths that only contains swapping conflicts, a set
of conflict-free paths (without vertex conflicts and without
swapping conflicts) with the same cost can be constructed.
In the next two sections, we introduce two algorithms for
CF-MAM. As a (conflict-free) solution can be constructed
from a set of paths that only contains swapping conflicts,
both algorithms only consider vertex conflicts.

CBS-Based Solution for CF-MAM
Conflict-Based Search (CBS) (Sharon et al. 2015) is a
prominent, state-of-the-art MAPF solver. It plans a set of
paths that may contain conflicts and iteratively resolve them
by imposing constraints on the agents and replanning new
paths for the constrained agents. Here, we introduce the
CFM-CBS algorithm for solving CF-MAM, which uses the
framework of the CBS algorithm. CFM-CBS has two levels.
The high level of CFM-CBS searches the binary constraint
tree (CT). Each node N ∈ CT contains: (1) a set of con-
straints imposed on the agents (N.constraints); (2) a set of
paths (N.Π) that satisfies all constraints in N.constraints ;
and (3) the cost of N.Π (N.cost). A constraint is a tu-
ple 〈ai, v, t〉 that prohibits agent ai to occupy location v at
timestep t. We use such constraints for resolving conflicts, as
explained below. The root node of CT contains an empty set
of constraints. The high level searches the CT in a best-first
manner, prioritizing nodes with lower cost.

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

147

Generating a CT node. Given a node N , the low level of
CFM-CBS solves the given CF-MAM problem instance as a
MAM problem that satisfies all constraints of node N . Such
a solution can be achieved using any MAM solver, such as
MM* (Atzmon et al. 2020). However, to support constraints,
as well as wait actions, MM* needs to be slightly modified
to CF-MM*. Thus, instead of the pair (ai, v), a node in CF-
MM* is a tuple of (ai, v, t) representing an agent and its
location at timestep t. In CF-MM* an invalid node (ai, v, t)
is a node that violates the constraint 〈ai, v, t〉. CF-MM* may
generate invalid nodes as such nodes may be meeting loca-
tions. However, if an invalid nodeN is chosen for expansion,
CF-MM* discards N and does not expand it.

Expanding a CT node. Once CFM-CBS has chosen a
node N for expansion, it checks its paths N.Π for conflicts.
If it is conflict-free, then node N is a goal node and CFM-
CBS returns its solution. Otherwise, CFM-CBS splits node
N on one of the conflicts 〈ai, aj , v, t〉 by generating two
children for nodeN . Each child node has a set of constraints
that is the union of N.constraints and a new constraint.
One of the two children adds the new constraint 〈ai, v, t〉
and the other child adds the new constraint 〈aj , v, t〉.

Iterative Meeting Search for CF-MAM
The Iterative Meeting Search algorithm (IMS) for CF-MAM
also has two levels. The high level of IMS iteratively exam-
ines possible meeting locations until the optimal meeting lo-
cation can be determined. This is done by a best-first search
on possible meeting locations. The low level (not fully de-
scribed here) sets each possible meeting location as a meet-
ing location and applies a reduction to Network Flow.

First, IMS initializes OPEN, CLOSED, and an upper bound
on the cost of the optimal solution U (U ≥ C∗) with in-
finity. The high level performs a best-first search, starting
from only one of the start locations si ((ai, si) is inserted
to OPEN). While OPEN is not empty, an expansion cycle
is performed. Each expansion cycle starts by extracting the
node (ai, v) with the lowest f -value (the same f -value as in
MM*) from OPEN. As MAM is a relaxed problem of CF-
MAM, for the same input 〈G, S〉, the cost C ′ of the optimal
solution for MAM is a lower bound on the cost C∗ of the
optimal solution for CF-MAM, i.e., C ′ ≤ C∗. Thus, since
f is a lower bound on C ′, it is also a lower bound on C∗.
For each node (ai, v) selected for expansion, the high level
calls the low level to calculate the cost of meeting at loca-
tion v. Then, U is updated with the lowest cost found. As U
is an upper bound on the cost of the optimal solution C∗, if
fmin ≥ U then IMS halts and the optimal solution is found
(C∗ = U), where fmin is the lowest f in OPEN. Other-
wise, in case the optimal solution is still not found, for each
neighbor v′ of v, the high level inserts (ai, v

′) to OPEN and
moves (ai, v) to CLOSED. The node (ai, v

′) is not inserted
to OPEN in case it is either in CLOSED or in OPEN with a
lower or equal cost.

Experiments
For CFM-CBS, we used CF-MM* as a low-level solver. For
IMS, we used for solving the Minimum-Cost Flow problem

#Agents Solver 10× 10 50× 50
Cost Time Succ. Cost Time

3 CFM-CBS 11 0.0 50 59 0.0
IMS 0.0 50 0.3

5 CFM-CBS 23 0.0 50 106 0.5
IMS 0.0 50 8.3

7 CFM-CBS 34 0.1 50 155 3.9
IMS 0.1 49 40.9

9 CFM-CBS 45 0.3 49 204 26.3
IMS 0.4 46 126.4

11 CFM-CBS 56 9.5 39 245 50.5
IMS 0.8 23 200.2

13 CFM-CBS 67 30.2 29 - -IMS 1.2 3

15 CFM-CBS 79 57.3 21 - -IMS 1.7 1

Table 1: Results for 10x10 and 50x50 grids with 20% Obs.

(MCFP) an efficient implementation of the cost–scaling al-
gorithm of Goldberg and Tarjan (1990; 1997), which runs in
polynomial time. For both, we used the clique heuristic as
an admissible heuristic for a meeting location and Manhat-
tan distance as admissible heuristic between two locations.

We compared CFM-CBS and IMS on 10x10 and
50x50 grids with 20% randomly placed obstacles, and
3, 5, 7, 9, 11, 13, and 15 randomly allocated agents. We cre-
ated 50 problem instances for each combination and mea-
sured the success rate (for timeout of 5min for each in-
stance), average cost, and average time (seconds). Table 1
presents the results for this experiment. Each row shows the
number of agents. The results for the 10x10 grids and for the
50x50 grids are in columns 3-4 and 5-7, respectively.

For the 10x10 grids, both CFM-CBS and IMS solve all
problem instances and hence we do not present the suc-
cess rate in the table. As expected, larger number of agents
increases the average cost and the average time for both
solvers. However, the influence of this increase is greater
for CFM-CBS than for IMS. For example, for 7 agents, both
solvers ran for ∼ 0.1s, and for 15 agents, CFM-CBS ran
∼ 57.3s while IMS ran only ∼ 1.7s. The runtime of CBS-
based solutions is exponential in the number of conflicts it
resolves. Thus, CFM-CBS does not perform well in dense
environments, such as small grids with many agents.

For the 50x50 grids, as the number of agents increased,
both solvers solved fewer instances within the 5min time-
out. However, CFM-CBS solved more instances than IMS.
For 13 agents, CFM-CBS solved 29 problem instances while
IMS only solved 3. The same trend can be seen for the time:
CFM-CBS was faster than IMS. For 11 agents, CFM-CBS
and IMS ran ∼ 50.5s and ∼ 200.2s, respectively. The aver-
age cost and average time in the table were calculated from
instances that were solved by both solvers. Here, the envi-
ronment is sparser and fewer conflicts occur. Thus, CFM-
CBS can perform better than observed above.

Our experiments provide the following general rule.
CFM-CBS should be used in sparse environments while
IMS should be used in dense environments.

148

References
Atzmon, D.; Li, J.; Felner, A.; Nachmani, E.; Shperberg,
S. S.; Sturtevant, N.; and Koenig, S. 2020. Multi-Directional
Heuristic Search. In IJCAI, 4062–4068.
Goldberg, A. V. 1997. An efficient implementation of a scal-
ing minimum-cost flow algorithm. Journal of algorithms
22(1): 1–29.
Goldberg, A. V.; and Tarjan, R. E. 1990. Finding minimum-
cost circulations by successive approximation. Mathematics
of Operations Research 15(3): 430–466.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
AIJ 219: 40–66.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Barták, R.; and Boyarski, E. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In SoCS, 151–159.

149

