
Adversary Strategy Sampling for Effective Plan Generation

Lukáš Chrpa, Pavel Rytı́ř, Rostislav Horčı́k, Jan Čuhel, Anastasiia Livochka, Stefan Edelkamp
Faculty of Electrical Engineering, Czech Technical University in Prague
{chrpaluk,rytirpav,xhorcik,cuheljan,livocana,edelkste}@fel.cvut.cz

Abstract

Effective plan generation in adversarial environments has to
take into account possible actions of adversary agents, i.e.,
the agent should know what the competitor will likely do.
In this paper we propose a novel approach for estimating
strategies of the adversary, sampling actions that interfere
with the agent’s ones. The estimated competitor strategies are
used in plan generation by considering that agent’s actions
have to be applied prior to the ones of the competitor, whose
estimated times dictate the agent’s deadlines. Missing these
deadlines entails additional plan cost.

Introduction
The concept of plan generation in adversarial environment is
not new (Applegate, Elsaesser, and Sanborn 1990). Succinct
symbolic representations of state sets helped generating op-
timistic and strong cyclic adversarial plans (Jensen, Veloso,
and Bowling 2001; Cimatti et al. 2003), a setting concep-
tually related to FOND planning (Kissmann and Edelkamp
2009). Such a setting, however, has to explore most if not
all alternatives (in analogy to traditional game-tree methods
such as minimax). Monte-Carlo Tree Search (MCTS) and
Online Evolutionary Planning have been applied in adver-
sarial environments such as the Hero Academy game (Juste-
sen et al. 2018), or Starcraft (Justesen and Risi 2017). Deep
Reinforcement Learning (DRL) has shown impressive re-
sults in Starcraft (Vinyals et al. 2019) and other (adver-
sarial) domains such as the games of Chess or Go (Sil-
ver et al. 2018). The game-theoretical Double-Oracle algo-
rithm (McMahan, Gordon, and Blum 2003) incrementally
generates mixed strategies for each agent which are in a
Nash Equilibrium if in each iteration each agent generates
best response to the other agent’s current strategy. Recent
works (Rytı́ř, Chrpa, and Bošanský 2019; Chrpa, Rytı́ř, and
Horčı́k 2020) incorporate automated planning into Double
Oracle in a sub-class of zero-sum games in which two agents
compete for the same set of (soft) goals, where each (soft)
goal can be achieved by at most one of the agents.

In this paper, we present a heuristic method for estimat-
ing (mixed) strategies of an adversary in the aforementioned

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

subclass of zero-sum games. Leveraging a heuristic for esti-
mating earliest action application time, developed by Chrpa,
Rytı́ř, and Horčı́k (2020), we propose a “sampling” method
which provides potential application times of actions of the
adversary that interfere with agent’s actions. The sampling
method, hence, provides deadlines for those agent’s actions
(later called critical actions) the agent has to take into con-
sideration while it generates its plan.

Background
We assume a restricted form of Temporal Planning in a
static, deterministic and fully observable environment. The
environment is represented via state variables, where each
variable has its own domain. We consider durative actions,
where preconditions can be specified “at start”, “at end” and
“over all” and effects can be specified “at start” and “at end”
such as in PDDL 2.1 (Fox and Long 2003).

Two-player zero-sum games consider sets of pure strate-
gies (plans in our case) for each of the players and the sum
of utility values of each player’s strategy profile is zero. By
a mixed strategy we mean a probability distribution over a
set of pure strategies.

Planning in Zero-sum Games
With the presence of an adversary, the quality of plans de-
pends on opponent actions that might interfere with agent’s
actions. Adversary’s actions might invalidate preconditions
of the agent’s actions rendering them no longer applicable.
Consequently, the agent might no longer achieve some (soft)
goals which will be achieved by the adversary agent.

Inspired by the MA-STRIPS formalism (Brafman and
Domshlak 2008), used in Multi-agent planning, we consider
two (competing) agents, shared (soft) goals and durative ac-
tions. Let ZP = (V,A1, A2, I, G) be a zero-sum game
planning task, where V is a set of variables, A1 and A2 are
disjoint sets of (durative) actions for the respective agent, I
is an initial state and G is a set of soft goals.

We assume plans for both agents are executed simultane-
ously. We consider only problems where one action can in-
validate a precondition of an action of the other agent which
has not (yet) started. If conflicting actions are scheduled at
the same time, then one action is randomly selected to be
applied (with an equal chance) while the other become in-

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

164



applicable. Inapplicable actions are skipped during plan ex-
ecution. After both plans are executed, the cost of the plan
for each agent is determined as the sum of costs of soft goals
the agent failed to achieve.

We adopt the following notions from Chrpa, Rytı́ř, and
Horčı́k (2020). A critical fact (for the first agent) is a fact
that is required by critical actions (from A1) while it can be
deleted by adversary actions (from A2).

To achieve a given soft goal the agent might have to ap-
ply relevant critical actions which are part of a disjunctive
action landmark for that goal (Hoffmann, Porteous, and Se-
bastia 2004). Adversary actions, however, set deadlines for
corresponding critical actions as they delete critical facts re-
quired by these critical actions.

For a given mixed strategy S of the adversary we de-
fine response planning task PS = (V,A1, I, G) with a cost
function assigning cost to critical actions (from A1) as a sum
of pa(S, t)∗Mi, where pa(S, t) is the probability of missing
the deadline of the critical action a in time t and Mi is the
cost for failing a soft goal Gi (a is relevant to Gi).

If for each soft goal at most one critical action has to be
applied and the critical fact cannot be (re)achieved by any
agent, the cost optimal plan for the response planning task
accounts for the best response strategy.

Estimating Earliest Action/Fact Time
We adopt the algorithm for estimating lower bounds of ac-
tion application time and fact occurrence time proposed
by Chrpa, Rytı́ř, and Horčı́k (2020) which is inspired by the
hmax heuristics from classical planning (Bonet and Geffner
2001). Each iteration involves selection of an action with the
smallest application time that has not yet been processed.
Determining action application time is done as maximum
across the times of its “at start” and “over all” precondi-
tions (while relaxing “at end” preconditions). Determining
fact occurrence time is done as minimum of the current fact
time and the time when the fact in the selected action effects
takes place.

Note that occurrence times for some non-initial facts
might be initially known as well as application times for
some actions. If application times of some actions are
known, then only the latest value of variables appearing in
these actions is considered as an occurred fact.

Estimating Adversary Strategy
We propose a heuristic method that estimates times of ad-
versary actions because such information is important for
setting the deadlines for agent’s critical actions and thus for-
mulating the (best) response planning task. That said, we do
not need to compute whole plans of the adversary.

Initially, the adversary actions are arranged into “clusters”
such that each cluster corresponds to a critical fact (note that
one adversary action can be in more clusters). The idea of
estimating adversary action application times for a possible
(single) plan of the adversary is based on iterative selection
of adversary actions until all clusters are covered. Initially,
the set of selected adversary actions is empty and the ini-
tial facts occurrence time is set to 0. Then, in the interme-
diate step, we estimate an action application/fact occurrence

time while considering the selected adversary actions (see
the previous subsection) and then we select an adversary ac-
tion from a cluster that has not yet been considered.

We consider two variants of adversary action selection.
The first variant considers all reachable adversary actions
from not yet processed clusters. The rationale behind this
variant is in assuming the adversary will tend to apply its
adversary actions as early as possible. The second variant
takes into account interference between selected and “to be
selected” adversary actions such that we select an adver-
sary action with the least interference with the already se-
lected adversary actions. The rationale behind this variant
is in assuming that the adversary will try to maximise par-
allel execution of its actions to minimise their application
time. Probability of selecting a particular adversary action
depends on their estimated application time such that those
with lower application time are preferred analogously to the
roulette wheel selection in genetic programming.

As adversary actions are selected randomly (according to
the probability), different runs of the method produce differ-
ent outcomes. The k outcomes of the method, or “samples”,
are then “arranged” into adversary strategy S.

Evaluation
For experiments, we used the Resource Hunting do-
main (Rytı́ř, Chrpa, and Bošanský 2019) and the Taxi
domain, which represents a scenario of two taxi compa-
nies competing for passengers. We compared the sam-
pling method to the naive one (generating make-span op-
timal plans without considering the adversary) and Nash
Equilibria generated with the use of the Double Oracle
method (Rytı́ř, Chrpa, and Bošanský 2019). As an opti-
mal classical planner, we used the Fast Downward plan-
ner (Helmert 2006) with the potential heuristic (Pommeren-
ing et al. 2015) optimised by the diversification method pro-
posed by Seipp, Pommerening, and Helmert (2015). As an
optimal temporal planner we used CPT4 (Vidal 2011). We
ran the experiments on Linux with 2.10GHz Intel Xeon CPU
E5-2620 v4 with 32GB RAM.

The both variants of the action selection in the sampling
method achieved very similar results. The utility value of
the sampling method is 0.97, 0.997, 0.998 of the equilibrium
value for the number of samples k = 4, 256, 16384, respec-
tively. The utility value of the sampling method against the
Naive method is 1.12, 1.15, 1.17 of the equilibrium value
for k = 4, 256, 16384, respectively. The exploitability, nor-
malised by the total game value, is 0.19 for the Naive ap-
proach. For a uniform strategy of 10 plans generated by
the sampling method, the normalised exploitability is 0.086,
0.094, 0.124 for k = 4, 256, 16384, respectively. Since the
sampling method is randomised it is harder to exploit.

Acknowledgements
This research was funded by AFOSR award
FA9550-18-1-0097, by the OP VVV project
CZ.02.1.01/0.0/0.0/16 019/0000765 “Research Center
for Informatics” and by the Czech Science Foundation
(18-07252S).

165



References
Applegate, C.; Elsaesser, C.; and Sanborn, J. C. 1990. An
architecture for adversarial planning. IEEE Trans. Systems,
Man, and Cybernetics 20(1): 186–194.

Bonet, B.; and Geffner, H. 2001. Planning as heuristic
search. Artif. Intell. 129(1-2): 5–33.

Brafman, R. I.; and Domshlak, C. 2008. From One to Many:
Planning for Loosely Coupled Multi-Agent Systems. In The
Eighteenth International Conference on Automated Plan-
ning and Scheduling, ICAPS 2008, 28–35.

Chrpa, L.; Rytı́ř, P.; and Horčı́k, R. 2020. Planning Against
Adversary in Zero-Sum Games: Heuristics for Selecting and
Ordering Critical Actions. In The Thirteenth International
Symposium on Combinatorial Search, SOCS 2020, 20–28.

Cimatti, A.; Pistore, M.; Roveri, M.; and Traverso, P. 2003.
Weak, strong, and strong cyclic planning via symbolic
model checking. Artif. Intell. 147(1-2): 35–84.

Fox, M.; and Long, D. 2003. PDDL2.1: An Extension to
PDDL for Expressing Temporal Planning Domains. J. Artif.
Intell. Res. 20: 61–124.

Helmert, M. 2006. The Fast Downward Planning System.
Journal of Artificial Intelligence Research 26: 191–246.

Hoffmann, J.; Porteous, J.; and Sebastia, L. 2004. Ordered
Landmarks in Planning. J. Artif. Intell. Res. 22: 215–278.

Jensen, R.; Veloso, M.; and Bowling, M. 2001. OBDD-
based optimistic and strong cyclic adversarial planning. In
ECP, 265–276.

Justesen, N.; Mahlmann, T.; Risi, S.; and Togelius, J. 2018.
Playing Multiaction Adversarial Games: Online Evolution-
ary Planning Versus Tree Search. IEEE Trans. Games 10(3):
281–291.

Justesen, N.; and Risi, S. 2017. Continual online evolution-
ary planning for in-game build order adaptation in StarCraft.
In The Genetic and Evolutionary Computation Conference,
GECCO 2017, 187–194.

Kissmann, P.; and Edelkamp, S. 2009. Solving Fully-
Observable Non-deterministic Planning Problems via Trans-
lation into a General Game. In KI, volume 5803, 1–8.
Springer.

McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the Presence of Cost Functions Controlled by an Ad-
versary. In ICML, 536–543.

Pommerening, F.; Helmert, M.; Röger, G.; and Seipp, J.
2015. From Non-Negative to General Operator Cost Par-
titioning. In Proc. AAAI’15, 3335–3341.

Rytı́ř, P.; Chrpa, L.; and Bošanský, B. 2019. Using Classical
Planning in Adversarial Problems. In Proceedings of the
31st IEEE International Conference on Tools with Artificial
Intelligence (ICTAI), 1327–1332.

Seipp, J.; Pommerening, F.; and Helmert, M. 2015. New
Optimization Functions for Potential Heuristics. In Proc.
ICAPS’15, 193–201.

Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai,
M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Grae-
pel, T.; et al. 2018. A general reinforcement learning al-
gorithm that masters chess, shogi, and Go through self-play
362(6419): 1140–1144.
Vidal, V. 2011. CPT4: An Optimal Temporal Planner Lost in
a Planning Competition without Optimal Temporal Track. In
Proceedings of the 7th International Planning Competition
(IPC-2011), 25–28. Freiburg, Germany.
Vinyals, O.; Babuschkin, I.; Czarnecki, W.; Mathieu, M.;
Dudzik, A.; Chung, J.; Choi, D.; Powell, R.; Ewalds, T.;
Georgiev, P.; Oh, J.; Horgan, D.; Kroiss, M.; Danihelka, I.;
Huang, A.; Sifre, L.; Cai, T.; Agapiou, J.; Jaderberg, M.;
and Silver, D. 2019. Grandmaster level in StarCraft II us-
ing multi-agent reinforcement learning. Nature 575. doi:
10.1038/s41586-019-1724-z.

166


