
Metareasoning for Interleaved Planning and Execution

Amihay Elboher, Shahaf S. Shperberg, Solomon E. Shimony
Dept. of Computer Science, Ben-Gurion University

Beer-Sheva, Israel
{amihaye,shperbsh}@post.bgu.ac.il, shimony@cs.bgu.ac.il

Abstract

Agents that plan and act in the real world must deal with the
fact that time passes as they are planning. In the presence of
tight deadlines, there may be insufficient time to complete
the search for a plan before it is time to act. One can gain
additional time to search by starting to act before a complete
plan is found, incurring the risk of making incorrect action
choices. This tradeoff between opportunity and risk, inherent
in interleaving planning and execution, is a non-trivial metar-
easoning problem addressed in this paper.

1 Introduction and Background
The idea of starting to perform actions in the real world
(called base-level actions) before completing the search goes
back as far as real-time A* (Korf 1990). However, our set-
ting is more flexible, as we do not have a predefined time at
which actions must be done. Rather, the agent must reason
about when base-level actions should be executed in order
to maximize the probability of successful and timely execu-
tion. We assume in this work that the world is deterministic,
the only uncertainty is at the meta-level, due to uncertainty
about how long planning will take and about the time exe-
cuting the (unknown at search time) resulting plan will take.

This work defines the above tradeoffs as a formal metar-
easoning problem of decision-making under uncertainty,
which we then attempt to solve optimally in the sense of
(Russell and Wefald 1991). Doing so for an actual planning
or search algorithm is far too complicated. Instead we use an
abstract model handling such issues called Allocating Effort
when Actions Expire (AE)2 (Shperberg et al. 2019), and ex-
tend it to allow for action execution before plan completion.

2 Metareasoning Problem Definition
In traditional planning, the plan is fully generated before its
first action is executed. In situated temporal planning (Cash-
more et al. 2018), actions have deadlines (that can be repre-
sented by Timed Initial Literals (TIL) (Cresswell and Cod-
dington 2003; Edelkamp and Hoffmann 2004)) which in-
duce a (possibly unknown) deadline by which planning must
conclude. For a partial plan available at a search node i in the
planner, a random variable di models the unknown deadline

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

by which a potential plan expanded from node imust be gen-
erated. This induces a metareasoning problem of deciding
which nodes on the open list to expand in order to maximize
the chance of finding a plan before its deadline.

The (AE)2 model and its simplified, discrete-time version,
S(AE)2 abstract away from the planning problem and as-
sume n independent processes, each attempting to solve the
problem under time constraints. We extend (AE)2 to allow
base-level action execution in parallel with the search.

As in (Shperberg et al. 2019), we assume a known prob-
abilistic performance profile (Zilberstein and Russell 1996)
Mi for each process i, whereMi(t) is the probability of pro-
cess i completing its computation within processing time t.
Each process also has a distribution Di over deadlines by
which time the process must complete its computation.

Our extension of (AE)2, called interleaving planning and
execution when actions expire (IPAE for short), assumes
each process i has already computed a base-level action se-
quence Hi, a prefix of the actions in the potential solution
being computed by process i. Actions from any action se-
quence Hi may be executed even before having a complete
plan. However, we assume that actions are irreversible, thus
any process where the already executed action sequence are
not a prefix of its Hi becomes invalid. Upon termination,
process i delivers the rest of the plan action sequence, βi. A
valid (timely) execution is one where: (a) process i termi-
nates before starting execution of βi, and (b) βi is executed
to completion before the overall deadline.

Given distributions of the unknown overall deadline and
the length of βi, it suffices to consider only the time by
which process i must terminate and all actions in Hi must
be executed: the induced deadline. In IPAE we use the ran-
dom variableDi to denote the induced deadline distribution.

IPAE is thus defined as follows. Given n processes, each
with a (possibly empty) action sequence Hi ⊆ B, the set
of base-level actions with known durations; a performance
profile Mi, and induced deadline distribution Di, find a pol-
icy for allocating computation time to the n processes and
legally executing base-level actions from someHi, such that
the probability of executing a timely solution is maximal.

3 Special Case: Known Induced Deadlines
Even in the case of known deadlines, S(AE)2 was shown
to be NP-hard (Shperberg et al. 2019) (proven by reduction

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

167



Figure 1: Success Probability (left) and Runtime (right) as a function of number of processes

from the optimization version of knapsack (Garey and John-
son 1979, problem MP9)). This result carries over into IPAE,
because any S(AE)2 problem can be cast as an IPAE prob-
lem with all action prefixes Hi being empty. Still, it was
shown (Shperberg et al. 2019) that for known deadlines di it
is sufficient to examine linear contiguous allocation policies
sorted by a non-decreasing order of deadlines.

Note that a linear contiguous policy is one where each
process i is allocated all its computation time contiguously,
and process i + 1 starts only if process i fails to terminate.
Such a policy is fully defined by assigning each process i a
start time si and a computation duration length li. We use
the notation of logarithm probability of failure to terminate:
LPFi(t) = log2(1−Mi(t)). Overall we need to find (si, li)
pairs so as to minimize: LPF =

∑n
i=1 LPFi(li), subject to

the constraint (for all i): si+li ≤ di, and no overlap, i.e. no j
such that si < sj < si + li. The ordering enabled a pseudo-
polynomial time dynamic programming (DP) scheme for
such S(AE)2 instances (Shperberg et al. 2021):
Theorem 1. For known deadlines, DP according to
OPT (t, l) = max

0≤j≤dl−t
(OPT (t+j, l+1)−LPFl(j)) (1)

finds optimal S(AE)2 schedules in time polynomial in n, dn.
For IPAE with known deadlines (IPAEK) linear optimal

policies also suffice. But for a DP scheme to work we also
need a consistent ordering, and there we falter since in IPAE
the ordering depends on the times at which base-level ac-
tions are executed. Attempting to alleviate this problem, we
define a lazy policy as one where execution of base-level
actions is delayed as long as possible. We proved that:
Theorem 2. In IPAEK there exists an optimal policy that is
linear, contiguous, and lazy.

3.1 Bounded Length Prefixes
Fixing the time when base-level actions are executed we get:
Theorem 3. Among the set of linear contiguous policies for
a specific Hi and with given action execution times, there
exists an optimal policy where the processes are allocated
in order of non-decreasing effective deadlines.

The number of such possible settings is exponential in
the maximum size of the Hi prefixes. Thus, assuming that
this length is bounded by a constant K, we get a pseudo-
polynomial time algorithm, by using the DP for S(AE)2

with appropriate effective process deadlines.

3.2 The Equal Slack Case
Denote SLi = di−dur(Hi), the slack of process i. If all
the SLi are equal, then for each Hi sequence it is sufficient
to consider the actions in Hi to be executed contiguously,
starting at SLi. Now the effective deadline deff

i of process
j equals the time at which the first action b ∈ Hi which is
incompatible with Hj occurs, or di otherwise. So need to
run the DP only n times, regardless of the length of the Hi.

4 General Algorithms and Empirical Results
IPAE instances were constructed by running A* on 15-
puzzle instances, with process i defined for each node i in
the open list. Hi is the path to node i, and Mi, Di based on
statistics over heuristics from solving 10, 000 instances.

The following algorithms were examined:
S(AE)2 algorithms: the basic greedy scheme (BGS) (Shper-
berg et al. 2019), delay-damage aware (DDA), and dynamic
programming (DP) from (Shperberg et al. 2021).

IPAE demand-execution adaptation to S(AE)2 algo-
rithms: eBGS, eDDA. When the S(AE)2 algorithm allocates
time to process i, but a base-level action b is required to
make the allocation non-tardy, then execute b first. We have
also tested most promising process (eMPP), that allocates
time to the process most likely to succeed, adapted as above.

A Monte-Carlo tree search (MCTS) algorithm (Browne
et al. 2012) using UCT (Kocsis and Szepesvári 2006), based
on UCB1 (Auer, Cesa-Bianchi, and Fischer 2002).

Max-LETBGS : For each process i fix the actions in Hi at
the Latest Execution-Time w.r.t the minimal value in the
support ofDi. Using the induced effective deadlines we now
have a S(AE)2 instance, solved using BGS.

Preliminary results (Figure 1) indicate that demand-
execution versions of S(AE)2 algorithms significantly out-
perform their basic versions. MCTS demonstrates poor per-
formance. MAX-LETBGS seems promising. Additional ex-
periments and adaptation to actual online search and plan-
ning are the next steps on our research agenda.

Acknowledgements
Supported by BSF Grant #2019730, NSF Grant #2008594,
ISF grant #844/17, and the Frankel center for CS at BGU.

168



References
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learn-
ing 47(2): 235–256.
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte-
Carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games 4(1): 1–43.
Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal Planning While
the Clock Ticks. In ICAPS, 39–46. AAAI Press.
Cresswell, S.; and Coddington, A. 2003. Planning with
Timed Literals and Deadlines. In Proceedings of 22nd Work-
shop of the UK Planning and Scheduling Special Interest
Group, 23–35.
Edelkamp, S.; and Hoffmann, J. 2004. PDDL2.2: The Lan-
guage for the Classical Part of the 4th International Planning
Competition. Technical Report 195, University of Freiburg.
Garey, M. R.; and Johnson, D. S. 1979. Computers and In-
tractability, A Guide to the Theory of NP-completeness, 190.
W. H. Freeman and Co.
Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In ECML, volume 4212 of Lecture Notes in
Computer Science, 282–293. Springer.
Korf, R. E. 1990. Real-Time Heuristic Search. Artif. Intell.
42(2-3): 189–211.
Russell, S. J.; and Wefald, E. 1991. Principles of Metarea-
soning. Artif. Intell. 49(1-3): 361–395.
Shperberg, S. S.; Coles, A.; Cserna, B.; Karpas, E.; Ruml,
W.; and Shimony, S. E. 2019. Allocating Planning Effort
When Actions Expire. In AAAI, 2371–2378. AAAI Press.
Shperberg, S. S.; Coles, A.; Karpas, E.; Ruml, W.; and
Shimony, S. E. 2021. Situated Temporal Planning Using
Deadline-aware Metareasoning. In ICAPS.
Zilberstein, S.; and Russell, S. J. 1996. Optimal Composi-
tion of Real-Time Systems. Artif. Intell. 82(1-2): 181–213.

169


