
Learning Pseudo-Backdoors for Mixed Integer Programs

Aaron Ferber, 1 Jialin Song, 2 Bistra Dilkina,1 Yisong Yue 2

1 University of Southern California
2 California Institute of Technology

aferber@usc.edu, jssong@caltech.edu, bdilkina@usc.edu, yyue@caltech.edu

Abstract

We propose a machine learning approach for quickly solv-
ing Mixed Integer Programs (MIP) by learning to prioritize
a set of decision variables, which we call pseudo-backdoors,
for branching that results in faster solution times. Learning-
based approaches have seen success in the area of solving
combinatorial optimization problems by being able to flex-
ibly leverage common structures in a given distribution of
problems. Our approach takes inspiration from the concept
of strong backdoors, which corresponds to a small set of
variables such that only branching on these variables yields
an optimal integral solution and a proof of optimality. Our
notion of pseudo-backdoors corresponds to a small set of
variables such that only branching on them leads to faster
solve time (which can be solver dependent). A key advan-
tage of pseudo-backdoors over strong backdoors is that they
are much amenable to data-driven identification or predic-
tion. Our proposed method learns to estimate the solver per-
formance of a proposed pseudo-backdoor, using a labeled
dataset collected on a set of training MIP instances. This
model can then be used to identify high-quality pseudo-
backdoors on new MIP instances from the same distribu-
tion. We evaluate our method on the generalized independent
set problems and find that our approach can efficiently iden-
tify high-quality pseudo-backdoors. In addition, we compare
our learned approach against Gurobi, a state-of-the-art MIP
solver, demonstrating that our method can be used to improve
solver performance.

Introduction
Mixed integer programs (MIPs) are widely used mathemati-
cal models for combinatorial optimization problems (Con-
forti et al. 2014) that are generally solved to optimality
with a tree search algorithm called branch-and-bound (Land
and Doig 2010). Backdoors, initially introduced for SAT
(Williams, Gomes, and Selman 2003; Dilkina, Gomes, and
Sabharwal 2009) and then generalized to MIPs (Dilkina
et al. 2009), are defined as subsets of integer variables such
that only branching on them yields an optimal integral solu-
tion and a certificate of optimality. While their contribution
to SAT has theoretical and practical limitations (Järvisalo
and Junttila 2007; Järvisalo and Niemelä 2008; Semenov

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

et al. 2018), solve time speedup in MIPs has been ob-
served by prioritizing “backdoors” in branching (Fischetti
and Monaci 2011). We consider a subset of integer vari-
ables a pseudo-backdoor if prioritizing those variables leads
to faster MIP solve time.

We introduce a data-driven approach to predicting
pseudo-backdoors for distributions of MIPs with a scoring
model to identify high-quality pseudo-backdoors among a
sample of candidates, and a subsequent classification model
to decide whether to use a candidate pseudo-backdoor by
setting branching priority accordingly or just use the default
solver. We conduct empirical evaluations on the Generalized
Independent Set Problem (GISP) (Colombi, Mansini, and
Savelsbergh 2017) and show that our models achieve faster
solve times than Gurobi.

Learning Pseudo-Backdoors for MIP
Our goal in finding pseudo-backdoors is to quickly solve
MIPs. In a MIP we are asked to find real-valued settings for
n decision variables x ∈ Rn, which maximize a linear ob-
jective function cTx, subject tom linear constraintsAx ≤ b,
and with a subset I ⊆ [n] of the decision variables required
to be integral xi ∈ Z ∀i ∈ I . The problem can be written as
maxx{cTx : Ax ≤ b, xi ∈ Z ∀i ∈ I}.

Given a MIP, specified by P = (c, A, b, I), we want to
find a pseudo-backdoor subset B ⊆ I , of the integral deci-
sion variables such that prioritizing branching on these de-
cision variables yields fast solve times. We consider a distri-
butional setting of MIP solving where we train a model on
several MIP instances from a distribution and deploy it on
unseen instances from the same distribution.

Our approach uses two learned models: one that scores
subsets of variables according to performance as pseudo-
backdoors, and another that classifies whether to use a given
pseudo-backdoor over a standard solver. The score model
S(P,B; θS) is parametrized by neural network parameters
θS which takes as input the MIP specification P , and a can-
didate subset B, then predicts a score that characterizes if
B is a good pseudo-backdoor. The classifier C(P,B; θC) is
parametrized by neural network parameters θC and predicts
whether prioritizing B in branching would produce a smaller
runtime than a standard solver. Our models use Graph Atten-
tion Network (Veličković et al. 2018) to perform message
passing followed by global attention pooling (Li et al. 2016)

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

170



dataset solver mean stdev 25 pct median 75 pct win / tie / loss vs grb

gisp easy grb 611 182 488 580 681 0 / 100 / 0
gisp easy scorer 960 755 515 649 915 41 / 0 / 59
gisp easy scorer + cls 601 247 481 568 663 24 / 70 / 6

gisp hard grb 2533 939 1840 2521 2976 0 / 100 / 0
gisp hard scorer 2373 855 1721 2262 2926 47 / 0 / 53
gisp hard scorer + cls 2326 855 1654 2215 2866 47 / 27 / 26

Table 1: Runtime comparison in seconds of standard gurobi (grb), the score model (scorer), and the score model with subsequent
classification (scorer+cls) on the test set for 2 hardness settings of gisp.

to represent the graph as a single feature vector, which is
then fed into a fully connected network to produce scalar
predictions. The MIP is represented as a bipartite graph as
in (Gasse et al. 2019) for permutation invariance and param-
eter sharing. Each MIP has two sets of nodes, one with with
nodes representing variables and another representing con-
straints. Variable nodes have features of the variable’s ob-
jective coefficient, and root LP status. Constraint nodes have
features of the right hand side constant bj , root LP dual vari-
ables, and sense (≤,≥ or =). There is an edge between a
variable i and a constraint j with attribute Aij if variable i
appears in constraint j. The candidate pseudo-backdoor set
B is represented as an additional binary feature for each vari-
able node with value 1 if the variable is in B and 0 otherwise.
Encoding the input (P,B) as a graph allows us to leverage
state-of-the-art techniques in making predictions on graphs.

We train the score model S by learning to score sub-
sets of integer variables based on their quality (i.e. run-
time) as pseudo-backdoors. The training data contains mul-
tiple pseudo-backdoor candidates for each train MIP in-
stance. For a MIP P and two candidate subsets of in-
teger variables B1,B2 of P , we compute the marginal
ranking loss (Tsochantaridis et al. 2005) loss(s1, s2, y) =
max(0,−y(s1−s2)+m) for a given margin valuem, where
s1 = S(P,B1; θS), s2 = S(P,B; θS) are the scalar score
estimates and y is the ranking label (−1 if B1 leads to a
smaller runtime than B2, 1 othewise). Using the ranking loss
trains the model to focus on distinguishing between relative
performance per-instance rather than accurately modeling
the absolute performance. At test time, we sample pseudo-
backdoor candidate sets, score them using our model, and
use the one with the best score to set branching priorities.

We learn a subsequent classifier module to determine
whether to use the candidate subset or the default MIP
solver. The classifier has the same architecture as the scor-
ing model, taking as input the bipartite graph representation
of the MIP P and a candidate subset B, and outputting a
scalar logit for binary classification. The training data con-
tains the most promising pseudo-backdoor for each MIP in-
stance, with a binary label indicating whether the pseudo-
backdoor solved the MIP faster than the standard solver.

Experiment Results
We evaluate our method’s two components on MIP instances
sampled from two hardness settings of the Generalized Inde-

pendent Set Problem (GISP) (Hochbaum and Pathria 1997).
Each hardness setting has 3 sets of 100 MIPs each, Ds for
fitting the score model, Dc for the classification model, and
Dt for testing results. For each of the 300 MIPs, we sample
50 candidate pseudo-backdoors containing 1% of the inte-
ger variables in a given MIP, with variable selection proba-
bility proportional to the variables’ root LP fractionality as
in (Dilkina et al. 2009).

Table 1 shows that the score model alone performs well
on many instances. On the hard instances, scorer performs
well, having 6% faster runtimes than gurobi on average, and
winning in 47 instances. However, scorer has 57% slower
runtimes on the easy instances, but still outperformed gurobi
on 41 instances, demonstrating that while it has poorer per-
formance on average, it has potential for yielding fast solve
times on many instances. Additionally, we can see that the
score model alone has much higher variability than Gurobi
on the easy instances. This undesired property further mo-
tivates the inclusion of the classifier model to improve the
overall performance. The scorer + cls model outperforms
Gurobi across both MIP distributions in terms of the time
distribution for MIP solving. It performs well across distri-
butions of instances, having the lowest solve times on aver-
age and at different quantiles. The score + cls pipeline out-
performs gurobi by 2%, 8% on average for easy, and hard in-
stances respectively. In terms of win / tie / loss, the scorer’s
losses against gurobi are reduced by the classifier while its
wins are retained. Furthermore, the variability on the gisp
easy instances is reduced to be on par with Gurobi.

Conclusion
In this extended abstract, we have presented a flexible
method for learning and using pseudo-backdoors to improve
MIP solving. Inspired by previous work on backdoors in
MIPs, our method is comprised of two parts: an initial rank-
ing model which scores candidate pseudo-backdoors ac-
cording to how fast they will solve a given MIP, and a sub-
sequent classification module to determine whether the se-
lected pseudo-backdoor will indeed result in faster runtime
compared with a base solver. Across varying difficulty levels
of GISP distributions, our method finds high-quality pseudo-
backdoors on unseen MIP instances. Furthermore, we find
that the combination of the score model and the classifi-
cation model yields consistently faster solution times com-
pared to a state-of-the-art solver.

171



References
Colombi, M.; Mansini, R.; and Savelsbergh, M. 2017. The
generalized independent set problem: Polyhedral analysis
and solution approaches. European Journal of Operational
Research 260(1): 41–55.

Conforti, M.; Cornuéjols, G.; Zambelli, G.; et al. 2014. In-
teger programming, volume 271. Springer.

Dilkina, B.; Gomes, C. P.; Malitsky, Y.; Sabharwal, A.; and
Sellmann, M. 2009. Backdoors to combinatorial optimiza-
tion: Feasibility and optimality. In International Conference
on AI and OR Techniques in Constriant Programming for
Combinatorial Optimization Problems, 56–70. Springer.

Dilkina, B.; Gomes, C. P.; and Sabharwal, A. 2009. Back-
doors in the context of learning. In International Conference
on Theory and Applications of Satisfiability Testing, 73–79.
Springer.

Fischetti, M.; and Monaci, M. 2011. Backdoor branching.
In International Conference on Integer Programming and
Combinatorial Optimization, 183–191. Springer.

Gasse, M.; Chételat, D.; Ferroni, N.; Charlin, L.; and Lodi,
A. 2019. Exact Combinatorial Optimization with Graph
Convolutional Neural Networks. In Advances in Neural In-
formation Processing Systems 32.

Hochbaum, D. S.; and Pathria, A. 1997. Forest harvesting
and minimum cuts: a new approach to handling spatial con-
straints. Forest Science 43(4): 544–554.

Järvisalo, M.; and Junttila, T. 2007. Limitations of restricted
branching in clause learning. In International Conference on
Principles and Practice of Constraint Programming, 348–
363. Springer.

Järvisalo, M.; and Niemelä, I. 2008. The effect of structural
branching on the efficiency of clause learning SAT solving:
An experimental study. Journal of Algorithms 63(1-3): 90–
113.

Land, A. H.; and Doig, A. G. 2010. An automatic method
for solving discrete programming problems. In 50 Years of
Integer Programming 1958-2008, 105–132. Springer.

Li, Y.; Zemel, R.; Brockschmidt, M.; and Tarlow, D. 2016.
Gated Graph Sequence Neural Networks. In Proceedings of
ICLR’16.

Semenov, A.; Zaikin, O.; Otpuschennikov, I.; Kochemazov,
S.; and Ignatiev, A. 2018. On cryptographic attacks using
backdoors for SAT. In Proceedings of the AAAI Conference
on Artificial Intelligence.

Tsochantaridis, I.; Joachims, T.; Hofmann, T.; Altun, Y.; and
Singer, Y. 2005. Large margin methods for structured and in-
terdependent output variables. Journal of machine learning
research 6(9).

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In-
ternational Conference on Learning Representations URL
https://openreview.net/forum?id=rJXMpikCZ. Accepted as
poster.

Williams, R.; Gomes, C. P.; and Selman, B. 2003. Backdoors
to typical case complexity. In Proceedings of the 18th in-
ternational joint conference on Artificial intelligence, 1173–
1178.

172


