
Multi-Target Search in Euclidean Space with Ray Shooting

Ryan Hechenberger, Daniel D. Harabor, Muhammad Aamir Cheema,
Peter J. Stuckey, Pierre Le Bodic

Faculty of Information Technology, Monash University, Australia
{ryan.hechenberger, daniel.harabor, aamir.cheema, peter.stuckey, pierre.lebodic}@monash.edu

Abstract
The shortest path problem (SPP) asks us to find a minimum
length path between two points, usually on a graph. In a Eu-
clidean environment the points are in a 2D plane and here the
path must avoid a set of polygonal obstacles. Solution meth-
ods for this Euclidean SPP (ESPP) typically convert the con-
tinuous 2D map into a discretised representation, like a graph
or navigation mesh. RayScan is a recent and fast ESPP algo-
rithm which avoids the preprocessing step by using a combi-
nation of “ray shooting” and polygon scanning. In this paper
we improve the performance of RayScan using spatial reason-
ing and ray caching techniques. We also extend the algorithm,
from single-target search to a multi-target setting. Compara-
tive game map experiments show a substantial speedup.

Introduction
ESPP is important for applications such as video games (Al-
gfoor, Sunar, and Kolivand 2015) where the input given
is not a graph but a set of obstacles to avoid. These set-
tings are often dynamic, in the sense that obstacles can be
moved, added or removed between start-target queries. Con-
ventional methods for solving ESPP include the Visibility
Graphs (VG) (Lozano-Pérez and Wesley 1979) and Navi-
gation Meshes (Cui, Harabor, and Grastien 2017), both of
which use preprocessing to convert the Euclidean map to a
discrete form more suitable for search. One issue is that ev-
ery time the environment changes the discrete representation
must be updated and these repair costs must be paid online.

Recently we developed RayScan (Hechenberger et al.
2020), a new ESPP algorithm without any preprocessing
or repair costs. RayScan proceeds in the manner of an A*
search (Hart, Nilsson, and Raphael 1968) and can be under-
stood as discovering on-the-fly the edges of a Sparse VG
(Oh and Leong 2017) by performing ray shooting opera-
tions. In this paper we describe four performance improving
enhancements for RayScan: block, skip, bypass and cache,
which together help to reduce the number of ray shooting
operations and which can substantially improve RayScan’s
performance. We also consider multi-target settings, com-
mon in video games, where one needs to find a Euclidean
shortest path from a single starting point to a set of targets ti
simultaneously (cf. running separate start to target queries).

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

RayScan

RayScan’s core concept is ray shooting, where we shoot
(equiv. cast) a ray from some point u in a direction to de-
termine the first intersecting obstacle and the point of inter-
section. When shooting from u to v there may be no obsta-
cles between the two points. Then we have discovered an
edge of the VG and consequently v is a successor of u in
the search. Alternatively, we can discover an impeding ob-
stacle between u and v and must now consider how to get
around: either clockwise (cw) or counter-clockwise (ccw).
After finding the obstacle, we perform a scan. We scan by
rotating a scan-line: initially from the expanding node u to
the intersection point and then rotating around u, following
the edges of the obstacle in a specified orientation – cw or
ccw. The scanning process stops when we find a type of ver-
tex called a turning point. The turning point is designated v
and results in a new ray being shot, from u to v. The entire
shoot-and-scan procedure is implemented recursively and it
guarantees to eventually discover an edge of the VG.

With recursive algorithms, we need a base case to prevent
infinite looping. This is done with two methods. The first
ends the recursion when a ray that we have already shot is
proposed to be shot again. The second is by means of an
angled sector (AS). The AS has an extreme cw and ccw
angle, where any angle from the cw angle turning ccw up to
the ccw angle is considered to be inside the AS, otherwise it
is outside. Each scan is given an AS that it must stay within,
otherwise the recursion ends; we can then split the AS into
the cw and ccw parts defined from a new ray shot. These are
given as the new AS’ in the next recursive steps.

Blocking Extension

Blocking is an extension of RayScan that avoids redundant
shooting, especially in multi-target settings. Consider Fig-
ure 1a: when expanding s we first shoot to t1, which is
blocked by obstacle ABCD. When scanning cw from that
ray, the scan-line follows the edges until it reaches turning
point B. Notice the scan-line passes over t2 which is blocked
by edge AB. Meanwhile target t3 is not blocked. Once the
t1 scan is completed, we skip shooting to t2 and shoot to
t3. The blocking tests are extremely cheap compared to ray
shooting and as more targets are added the savings magnify.

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

176



A

A B

CD

u

s

t1

t2

t3

(a) Blocking extension

x

u

c
b

a

s

t
I

J

(b) Skip extension

F

G
H

I J
A

B

C
D

E

K

s

t1

t2 t3

X

(c) Bypass extension

Figure 1: Auxiliary diagrams

Skip Extension
The skip extension avoids shooting to a vertex whose path
length is worse than we already discovered. When expand-
ing u, we consider turning point v. Normally we shoot a ray
from u to v and continue. However if the g value of u plus
distance from u to v is greater than the g value of v then uv
cannot belong to any optimal path. Skip will avoid shoot-
ing the uv ray by trying to scan-past the turning point v by
continuing the scan, ignoring the orientation of the scan line
until that line passes the uv ray, in which case we skip shoot-
ing that ray and continue to the next turning point.

Take Figure 1b for example, where expanding u, our scan
ccw goes from I to turning point a. Path s− u− a is longer
than s − x − a, thus we do not need to consider edge ua,
and will attempt to skip the ray shot by continuing the scan,
ignoring the ccw orientation requirements. Since this scan
does succeed at passing the ua ray when it passes point J ,
the skip succeeds and we continue to find turning point b.
If we were unable to skip a turning point, we will resort to
shooting a ray and progress to the next scan(s).

Bypass Extension
The bypass extension avoids shooting rays from expanding
vertex u to vertex v in cases where v leads to a dead end. We
explain by example with Figure 1c. Let u = E and v = C.
We consider C for bypass by attempting to scan-past C; in
this case passing the EC ray at point X . Being able to scan-
past C is the first requirement of bypass. The second is that
the scan-past must stay within the scan’s AS. The third is
dependent on the target’s location: if the scan-past scan-line
intersects the target then we cannot bypass, if it does not
then the third condition is met. For this example, if t1 is our
target, then the scan-line intersects t1 and we cannot bypass
C. Meanwhile if t2 is our target then bypass is possible; we
avoid a ray shot from C and continue scanning from X .

This leads to the possibility of considering the same ver-
tex twice, where first we bypass but second time we do not.
For example, let t = t3, u = F and v = H , the first time
reaching H is by a cw scan from FH . Here bypass succeeds
and we find turning point J , leading into a ccw scan from
ray FJ to find turning point K, followed by a cw scan from
ray FK to again find H . This time when considering H for
bypass the scan-past will leave the AS and thus fail. In this
case we shoot FH and generate v = H as a successor.

Single Target (µs) Multi Target (ms)
Algs S1 S2 S3 Algs M1 M2

R 400 2548 2689 R 18.83 321
RB 388 2492 2627 RB 16.02 99.42
RS 375 2392 2090 - - -
RP 262 1638 1859 - - -
R+ 248 1560 1395 - - -
RC 150 736 683 RC 8.53 235.1

R+C 132 723 625 RBC 5.634 48.56

Table 1: Average runtime comparison of extensions for Star-
craft 2 maps; S1 Aftershock; S2 Aurora; S3 ArcticStation;
M1 Aurora (5,20,50 targets); M2 Aurora (500,1000,2000
targets); Algs lists extensions: R RayScan; B blocking; S
skip; P bypass; R+ RBSP; C ray caching

Caching Extension
Caching is an extension that aims to speed up ray shooting
by storing the results of previously shot rays (excluding rays
from the start or to the target). The cache works by exploit-
ing the fact that the search space of previous queries often
overlap with the search space of the current query. Imple-
menting the cache requires additional memory and its con-
tents are invalidated each time the environment changes.

Results
Table 1 shows an ablation study of our extension meth-
ods (source code1). We experiment on maps from the well
known StarCraft benchmark set (Sturtevant 2012). We see
the Blocking extension has large speedups for multi-target
queries. Skip and Bypass help, while Caching has the most
significant impact. In experiment M2 blocking helps more
than caching as most rays shot are towards targets and there-
fore not in the cache. Our full paper (Hechenberger et al.
2021) has more details and experiments and includes com-
parisons with leading mesh-based planners.

Acknowledgements
This work is supported by the Australian Research Council
(ARC) under grant numbers DP190100013, DP200100025
and FT180100140 as well as a gift from Amazon.

1https://bitbucket.org/ryanhech/rayscan/

177



References
Algfoor, Z. A.; Sunar, M. S.; and Kolivand, H. 2015. A
comprehensive study on pathfinding techniques for robotics
and video games. International Journal of Computer Games
Technology 2015: 1–11. ISSN 1687-7047.
Cui, M. L.; Harabor, D.; and Grastien, A. 2017.
Compromise-free Pathfinding on a Navigation Mesh. In
Proceedings of the 26th International Joint Conference on
Artificial Intelligence, 496–502. AAAI Press.
Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A formal
basis for the heuristic determination of minimum cost paths.
IEEE transactions on Systems Science and Cybernetics 4(2):
100–107. ISSN 0536-1567.
Hechenberger, R.; Harabor, D.; Cheema, M. A.; Stuckey,
P. J.; and Bodic, P. L. 2021. Multi-Target Search
in Euclidean Space with Ray Shooting (Full Ver-
sion). URL https://people.eng.unimelb.edu.au/pstuckey/
papers/rayscanm.pdf. arXiv preprint 2021.
Hechenberger, R.; Stuckey, P. J.; Harabor, D.; Le Bodic, P.;
and Cheema, M. A. 2020. Online Computation of Euclidean
Shortest Paths in Two Dimensions. In Proceedings of the
30th International Conference on Automated Planning and
Scheduling, 134–142. AAAI Press.
Lozano-Pérez, T.; and Wesley, M. A. 1979. An algorithm
for planning collision-free paths among polyhedral obsta-
cles. Communications of the ACM 22(10): 560–570. ISSN
0001-0782.
Oh, S.; and Leong, H. W. 2017. Edge N-Level Sparse Vis-
ibility Graphs: Fast Optimal Any-Angle Pathfinding Using
Hierarchical Taut Paths. In Proceedings of the Tenth Inter-
national Symposium on Combinatorial Search (SoCS 2017).
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI
in Games 4(2): 144 – 148. URL http://web.cs.du.edu/
∼sturtevant/papers/benchmarks.pdf.

178


