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Abstract

This is an extended abstract of a paper to be published at
ICAPS 2021 (Ma 2021). We study online Multi-Agent Path
Finding (MAPF), where new agents are constantly revealed
over time and all agents must find collision-free paths to their
given goal locations. We generalize existing complexity re-
sults of (offline) MAPF to online MAPF. We classify online
MAPF algorithms into different categories. We present sev-
eral complexity and competitiveness results for online MAPF
and its algorithms, which provides theoretical insights into
the effectiveness of using MAPF algorithms in an online set-
ting for the first time.

Introduction
Online Multi-Agent Path Finding (MAPF) (Švancara et al.
2019) models the problem of finding collision-free paths for
a stream of incoming agents in a given region. Its applica-
tions include autonomous intersection management (Dres-
ner and Stone 2008), UAV traffic management (Ho et al.
2019), video games (Ma et al. 2017b), and automated ware-
house systems (Wurman, D’Andrea, and Mountz 2008). Ex-
isting research has conducted empirical evaluations of sev-
eral online MAPF algorithms (Švancara et al. 2019) based
on recent techniques for (offline) MAPF (Stern et al. 2019).
However, there is still a lack of theoretical understanding of
online MAPF and its algorithms. In this paper, we thus per-
form a theoretical analysis from the points of view of com-
petitive analysis and complexity theory.

Related Work
Offline MAPF: Online MAPF is an extension of the well-
studied problem of (offline) MAPF (Ma and Koenig 2017;
Stern et al. 2019), where all agents are known and start
routing at the same time. MAPF is NP-hard to solve opti-
mally for flowtime (the sum of the arrival times of all agents
at their goal locations) minimization and to approximate
within any constant factor less than 4/3 for makespan (the
maximum of the arrival times of all agents at their goal loca-
tions) minimization (Surynek 2010; Yu and LaValle 2013b;
Ma et al. 2016). It is NP-hard to solve optimally even on
planar graphs (Yu 2015) and 2D 4-neighbor grids (Banfi,
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Basilico, and Amigoni 2017). MAPF algorithms include re-
ductions to other combinatorial problems (Yu and LaValle
2013a; Erdem et al. 2013; Surynek et al. 2016) and special-
ized algorithms (Luna and Bekris 2011; Wang and Botea
2011; Sharon et al. 2013, 2015; Boyarski et al. 2015; Cohen
et al. 2018; Ma et al. 2019a; Li et al. 2019a,b; Lam et al.
2019; Gange, Harabor, and Stuckey 2019; Li et al. 2020).

Online Problems: Ma et al. (2017a) and Ma et al. (2019b)
have considered an online version of MAPF where a given
set of agents must attend to a stream of tasks, consisting of
(sub-)goal locations to be assigned to the agents, that appear
at unknown times. This version considers the entire environ-
ment instead of a region of a system and thus does not con-
sider the appearance and disappearance of agents. Švancara
et al. (2019) and Ho et al. (2019) have considered another
online version of MAPF, similar to the setting of this pa-
per, where a stream of agents with preassigned goal loca-
tion appear at unknown times. Algorithms for solving such
online problems reduce each problem to a sequence of (of-
fline) MAPF sub-problems that are solved by a MAPF algo-
rithm. The effectiveness of these algorithms is characterized
by objective functions that measure how soon the tasks are
finished or the agents are routed to their goal locations. Ex-
isting study on online versions of MAPF has been empiri-
cal only. For example, both Ma et al. (2017a) and Švancara
et al. (2019) have experimentally shown that algorithms that
allow agents (that have paths already) to replan their paths
and reroute tend to be more effective than those that do not.
However, there is still a lack of theoretical understanding of
solving MAPF in an online setting.

Assumptions and Contributions
We follow most of the notations of Švancara et al. (2019)
and consider the setting where new agents can wait infinitely
long before entering a given region and agents disappear
upon exiting from the region because (1) existing online
MAPF algorithms have been designed and tested only for
this setting (Ho et al. 2019; Švancara et al. 2019), although
other settings concerning what happens before agents en-
ter the region and after agents leave the region have (only)
been mentioned (briefly) by Stern et al. (2019); Švancara
et al. (2019) and (2) queuing at entrances and exits of
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such an intersection region is handled by a task-level plan-
ner/scheduler with reserved queuing spaces (for example,
queues in inventory stations and along the single-lane cor-
ridors in the storage region) in automated warehouses (Wur-
man, D’Andrea, and Mountz 2008; Kou et al. 2020) and
many other real-world systems. We view the problem from
the point of view of competitive analysis and thus assume
that the algorithms have no knowledge of future arrivals of
agents, as in the case of all existing online MAPF algorithms
(Ho et al. 2019; Švancara et al. 2019), although such knowl-
edge might be learned in practice.

As our first contribution, we formalize online MAPF as an
extension of (offline) MAPF and demonstrate how to gen-
eralize existing NP-hardness and inapproximability results
Ma and Pineau (2015); Ma et al. (2018) for MAPF to on-
line MAPF. Specifically, we show that online MAPF is NP-
hard to approximate within any constant factor less than 4/3
for makespan minimization, to solve optimally for flowtime
minimization, and to approximate within any factor for la-
tency minimization.

As our second contribution, we classify online MAPF al-
gorithms based on (1) different controllability assumptions,
namely at what time the system can plan paths for which
sets of agents, into three categories: PLAN-NEW-SINGLE
that plans only a path for one newly-revealed agent at a
time, PLAN-NEW that plans paths only for newly-revealed
agents, and PLAN-ALL that plans paths for all known
agents and thus allows rerouting and (2) different rational-
ity, namely how effective the planned paths are: optimally-
rational algorithms that plan optimal paths for the given set
of agents and rational algorithms (which are, in our opinion,
the only algorithms worth considering, assuming no knowl-
edge of future arrivals of agents) that plan paths at least
asymptotically as effective as the naive baseline algorithm
SEQUENCE that routes newly-revealed agents one at a time
in sequence. These classifications cover all existing online
MAPF algorithms in Švancara et al. (2019) and different
settings, for example, where rerouting of robots is always
allowed (Ma et al. 2017a) or disallowed (Ho et al. 2019), in
real-world systems. The relationships between these algo-
rithms are summarized in Figure 1.

As our third contribution, we study online MAPF algo-
rithms under the competitive analysis framework. Specif-
ically, we demonstrate how an arbitrary online MAPF al-
gorithm can be rationalized and show that the competitive
ratios of all rational online MAPF algorithms with respect
to flowtime and makespan are both bounded from above by
O(m) for an input sequence of m agents. We then show
that (1) the bounds are tight for all rational algorithms in
PLAN-NEW-SINGLE and PLAN-NEW, (2) the competitive
ratio is at least 4/3 with respect to flowtime and 3/2 with re-
spect to makespan for all rational algorithms in PLAN-ALL,
and (3) the competitive ratio is infinite with respect to la-
tency for all rational algorithms. The results hold even for
optimally-rational algorithms and on 4-neighbor 2D grids.
Therefore, for the first time, we provide theoretical insights
into the effectiveness of using MAPF algorithms in an on-
line setting (Salzman and Stern 2020) and address some of
the long-standing open questions such as whether planning
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Figure 1: Relationships between online MAPF algorithms.
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Table 1: Summary of main competitiveness results.

for multiple agents is more effective than planning for only
one agent at a time in an online setting, whether algorithms
that allow rerouting are more effective than those that dis-
allow, and whether acting optimally rationally can improve
the effectiveness. The results are summarized in Table 1.

Conclusions
We conducted a theoretical study of online MAPF for the
first time. Our results suggest that, if rerouting is disallowed,
then planning for multiple agents is asymptotically (only)
as effective as planning for one agent at a time and acting
optimally rationally is asymptotically (only) as effective as
acting rationally, which is also asymptotically (only) as ef-
fective as following the naive algorithm SEQUENCE. How-
ever, allowing rerouting can potentially result in high effec-
tiveness, as indicated by the gap between the competitive
ratio upper and lower bounds.

We refer the reader to the original paper (Ma 2021) for the
detailed theoretical results.
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