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Abstract

Various model-based diagnosis scenarios require the compu-
tation of the most preferred fault explanations. Existing algo-
rithms that are sound (i.e., output only actual fault explana-
tions) and complete (i.e., can return all explanations), how-
ever, require exponential space to achieve this task. As a rem-
edy, to enable successful diagnosis on memory-restricted de-
vices and for memory-intensive problem cases, we propose
RBF-HS, a diagnostic search based on Korf’s seminal RBFS
algorithm. RBF-HS can enumerate an arbitrary fixed num-
ber of fault explanations in best-first order within linear space
bounds, without sacrificing the desirable soundness or com-
pleteness properties. Evaluations using real-world diagnosis
cases show that RBF-HS, when used to compute minimum-
cardinality fault explanations, in most cases saves substantial
space (up to 98 %) while requiring only reasonably more or
even less time than Reiter’s HS-Tree, one of the most widely
used diagnostic algorithms with the same properties.

Model-Based Diagnosis (Reiter 1987) assumes a system
(e.g., software, circuit, knowledge base, physical device)
consisting of a set of components COMPS = {c1, . . . , cn}
(e.g., lines of code, gates, axioms, physical constituents)
which is formally described in some monotonic logical lan-
guage. Beside any relevant general knowledge about the sys-
tem, this system description SD includes a specification of
the normal behavior (logical sentence BEH(ci)) of all com-
ponents ci ∈ COMPS of the form OK(ci) → BEH(ci). As a
result, when assuming all components to be fault-free, i.e.,
OK(COMPS) := {OK(c1), . . . , OK(cn)}, conclusions about
the normal system behavior can be drawn by means of the-
orem provers. When the real system behavior, ascertained
through system observations and/or system measurements
(stated as logical sentences OBS and MEAS), is inconsistent
with the system behavior predicted by SD, the normality-
assumption for some of the components has to be retracted.
We call 〈SD, COMPS, OBS, MEAS〉 a diagnosis problem in-
stance (DPI). A (minimal / minimum-cardinality) diagnosis
is an (irreducible / minimal-cardinality) set of components
D ⊆ COMPS such that SD∪OBS∪MEAS∪OK(COMPS\D)∪
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NOK(D) is consistent where NOK(X) := {¬OK(ci) | ci ∈
X}. So, a diagnosis is a set of components whose abnormal-
ity would explain the observed incorrect system behavior.
Diagnosis Computation is often accomplished with the aid
of conflicts. A (minimal) conflict is an (irreducible) set of
components C ⊆ COMPS such that assuming all of them
fault-free, i.e., OK(C), is inconsistent with the current knowl-
edge about the system, i.e., SD∪OBS∪MEAS∪OK(C) |= ⊥.
Diagnoses and conflicts are related in terms of a hitting set
property: A (minimal) diagnosis is a (minimal) hitting set of
all minimal conflicts. (X is a hitting set of a collection of
sets S iff X ⊆

⋃
S∈S S and X ∩ S 6= ∅ for all S ∈ S.) For

complexity and efficiency reasons, diagnosis computation is
usually focused on minimal diagnoses only.

Given a DPI 〈SD, COMPS, OBS, MEAS〉, a generic (hitting-
set-based) diagnosis search algorithm works as follows:
• Start with a queue including only the root node ∅.
• While the queue is non-empty and not enough minimal

diagnoses have been found, poll the first node n from the
queue and process it. That is, compute a label L for n, and,
based on L, assign n (or potentially its successors) to an
appropriate node class (e.g., solutions, non-solutions).

Different specific diagnosis computation algorithms are ob-
tained by (re)defining (i) the sorting of the queue and (ii) the
node processing procedure (node labeling and assignment).

A prominent instance of a diagnostic search is HS-Tree
(Reiter 1987). It uses a FIFO-queue (breadth-first search),
and defines node labeling and assignment as follows:

1. If n is a non-minimal diagnosis (superset of some al-
ready found minimal diagnosis) or a duplicate (set-equal
to some other node in the queue), then it is labeled with×
(leaf node; irrelevant node; discard n).

2. Else, if there is a minimal conflict C such that n ∩ C = ∅,
then n is labeled by C (internal node). This results in |C|
successor nodes of n that are added to the queue, each
constructed as n ∪ {ci}, for all ci ∈ C. Note that the
computation of each conflict requires O(|COMPS|) theo-
rem prover calls, and can be accomplished, e.g., by the
QuickXplain algorithm (Junker 2004; Rodler 2020c).

3. Else, n is labeled with X (leaf node; minimal diagnosis;
add n to the list of solutions D).

After the tree is completed (queue is empty), D includes ex-
actly all minimal diagnoses for the given DPI, sorted by car-
dinality. Other sortings of D (e.g., based on diagnosis prob-
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ability) can be obtained by sorting the queue using suitable
cost functions (uniform-cost HS-Tree (Rodler 2015)).
Properties of Diagnostic Algorithms. Literature covers a
wide variety of diagnosis computation algorithms with very
different properties. This heterogeneity is motivated by dif-
ferent problem cases, domains and requirements. Desirable
and sometimes also necessary properties of diagnostic al-
gorithms are that only and all minimal diagnoses are found
(soundness and completeness), that diagnoses are enumer-
ated in order as per some preference criterion, e.g., maximal
probability or minimal cardinality (best-first property), and
that the algorithm is applicable to any DPI regardless of the
particular logic and theorem prover used (generality). Un-
fortunately, however, all existing diagnosis algorithms fea-
turing these four properties require a worst-case exponential
amount of memory. This can prevent their successful use
on memory-intensive problem cases (Shchekotykhin et al.
2014) or on memory-limited (e.g., IoT) devices.
New Approach: RBF-HS. As a remedy to this issue, we
propose a diagnostic search called Recursive Best-First Hit-
ting Set Search (RBF-HS) based on Korf’s seminal RBFS
algorithm (Korf 1993). RBFS is a path-finding search that
implements a scheme that can be synopsized as
• (complete and best-first): always expand current globally

best node while storing current globally second-best node,
• (undo and forget to keep space linear): backtrack and ex-

plore second-best node if none of the child nodes of best
node is better than second-best,

• (remember utility of forgotten subtrees to keep the search
progressing): before deleting a subtree in the course of
backtracking, store cost of subtree’s best node,

• (restore utility at regeneration to avoid redundancy):
when re-exploring a subtree, use this stored cost value to
update node costs in the subtree.
To devise RBF-HS, we first analyzed which general as-

pects make diagnosis searches different from path-finding
searches. In this regard, we identified, e.g., the necessity of
defining a suitable node labeling and assignment strategy,
that solutions are sets and not paths, that multiple solutions
are generally sought, that different conditions on the cost
functions have to apply, and that certain provisions are nec-
essary to guarantee diagnostic soundness and completeness.
We then modified RBFS accordingly to account for all these
differences. So, roughly, RBF-HS integrates the search strat-
egy of RBFS with the general principles of hitting-set-based
diagnosis searches discussed above. As a result, RBF-HS is
sound, complete, best-first, general, and linear-space; a com-
bination of features no existing diagnostic technique offers.
More specifically, RBF-HS allows to generate an arbitrary
fixed number of minimal diagnoses in best-first order within
linear space bounds, can be used out of the box for diagnosis
problems expressed in any monotonic knowledge represen-
tation language, and can operate with any theorem prover.
Evaluation. We conducted extensive experiments on a
benchmark of 12 real-world DPIs from the knowledge-based
systems domain. In this field, soundness and completeness
are required to guarantee the localization of the actually
faulty knowledge in often critical (e.g., medical) applica-
tions; generality is pivotal to deal with a myriad of differ-
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Figure 1: Experiment Results: (y-axis) memory reduction
and time overhead factors of RBF-HS vs. HS-Tree. (x-axis)
12 studied DPIs (sorted from low to high space savings) for
each number of computed diagnoses k ∈ {2, 6, 10, 20}.

ent logics and theorem provers that are used to optimally
trade off expressivity against reasoning complexity (Baader
et al. 2007); and best-first computation is desired to mon-
itor the most relevant fault explanations in order to termi-
nate the debugging early if the actual fault is recognized,
and, moreover, can boost the overall diagnostic efficiency
(Rodler and Elichanova 2020). For these reasons, HS-Tree,
which is a state-of-the-art method featuring these properties,
is the commonly used method in this application area.

In our experiments, we thus compared RBF-HS against
HS-Tree. We considered two algorithm application scenar-
ios: single-shot and sequential diagnosis. In the single-shot
tests, each algorithm had to compute the k best diagnoses for
each DPI. In the sequential diagnosis (de Kleer and Williams
1987) tests, per DPI, each algorithm had to compute k best
diagnoses multiple times in an iterative diagnosis session,
each time for a different version (including one more mea-
surement) of the given DPI. Each session was executed until
all but one minimal diagnosis were ruled out by the measure-
ments; these were selected based on the well-known infor-
mation gain heuristic. We used k ∈ {2, 6, 10, 20}, defined
the “best” diagnoses to be the ones of minimal cardinality,
and adopted Pellet (Sirin et al. 2007) as a theorem prover.

Fig. 1 shows the results for the sequential diagnosis tests
(we got almost identical results for the single-shot tests). The
insights are: (i) Whenever a DPI was non-trivial to solve,
RBF-HS traded space favorably for time compared to HS-
Tree (blue bars higher than orange ones). (ii) Space savings
(blue bars) of RBF-HS were significant, amounting to an
avg. / max. of 93 % / 98 % of the memory consumed by HS-
Tree. Time overheads (orange bars) of RBF-HS, in contrast,
remained reasonable in all cases. (iii) In 38 % of the cases,
RBF-HS in fact exhibited both a lower runtime and a lower
space consumption than HS-Tree. We even observed 85 %
runtime along with 98 % memory savings in one case.
Conclusions. We have proposed a novel diagnostic search
based on Korf’s seminal RBFS algorithm which gives theo-
retical guarantees (soundness, completeness, best-first prop-
erty, generality, linear space complexity) no other diagnos-
tic method does. In experiments on real-world cases, our ap-
proach proved to be significantly more efficient wrt. memory
consumption and almost on par wrt. runtime, compared to a
widely used diagnosis algorithm with the same properties.
Hence, this work once again shows that ideas and concepts
from the heuristic search domain can be fruitfully exploited
beyond the boundaries of classic search applications.
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