
Solving Sokoban with Forward-Backward Reinforcement Learning

Yaron Shoham, Gal Elidan
Google Research, Israel

yaronsh,elidan@google.com

Abstract

Despite seminal advances in reinforcement learning in recent
years, many domains where the rewards are sparse, e.g. given
only at task completion, remain quite challenging. In such
cases, it can be beneficial to tackle the task both from its
beginning and end, and make the two ends meet. Existing ap-
proaches that do so, however, are not effective in the common
scenario where the strategy needed near the end goal is very
different from the one that is effective earlier on.
In this work we propose a novel RL approach for such settings.
In short, we first train a backward-looking agent with a simple
relaxed goal, and then augment the state representation of the
forward-looking agent with straightforward hint features. This
allows the learned forward agent to leverage information from
backward plans, without mimicking their policy.
We demonstrate the efficacy of our approach on the challeng-
ing game of Sokoban, where we substantially surpass learned
solvers that generalize across levels, and are competitive with
SOTA performance of the best highly-crafted systems. Impres-
sively, we achieve these results while learning from a small
number of practice levels and using simple RL techniques.

Introduction
Many RL domains are challenging because the rewards are
sparse, e.g., given only at task completion. Intuitively, the
only thing we can leverage in such scenarios is the fact that
the target goal is known and that we can somehow backtrack
from this goal in order to assist the learning of the forward
looking agent. Building on this intuition, two recent works
use data augmentation or imitation, with the inherent assump-
tion that the agent’s behavior or policy near the goal is similar
to the one at the beginning of the task (Edwards, Downs, and
Davidson 2018; Goyal et al. 2019). In reverse curriculum
learning (Florensa et al. 2017), we implicitly assume that
the policy near the goal can be slowly transformed into the
policy of the original problem. Such assumptions do not hold
in general and the effective policy near the goal state can be
quite different from the one that is beneficial earlier on.

We suggest a straightforward approach to cope with the
above scenario. Instead of trying to imitate the policy of an
agent that starts at the goal state and faces backwards, we use
simple hint features of trajectories of that agent to augment

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(a) Start (b) Intermediate (c) Goal

Figure 1: Sokoban level LOMA04-04. The strategy near the
goal, pushing boxes towards targets and blocking pathways,
is different from the strategy required at the beginning.

the state representation when learning the forward looking
agent. For example, a hint-feature can be the distance to the
backward plan. If this feature is minimized to zero then a
solution has been found. Thus, this feature can serve as a
useful signal for the forward facing agent.

There are two important benefits to using these informed
features instead of the backward policy itself. First, instead of
imitating a specific (possibly sub-optimal) policy, we allow
the forward procedure to "discover" advantageous properties
of the backward experiences via the learned value function.
Second, this decoupling of the forward and backward policies
allows us to learn a backward-facing agent even in difficult
settings, by using a relaxed backwards goal.

We apply our approach to the challenging puzzle game of
Sokoban, where a player needs to push boxes into storage
positions (see Figure 1). Solution paths in Sokoban are much
longer than in Chess or Go, the agent faces the danger of
irreversible moves, and the number of relevant training levels
is limited. As a consequence, Sokoban remains a game where
human performance far surpasses that of automated solvers.

Quite remarkably, using a small training set of just 155
beginner levels and simple RL and search algorithms, we
are able to achieve state of the art results and solve 88 of
the 90 benchmark XSokoban (Myers 1995) levels. To put
this in perspective, without relying on the backward agent
we solve only 60 levels, similarly to previously published
works (Junghanns and Schaeffer 2001; Demaret, Van Lishout,
and Gribomont 2008). In fact, using our approach we do not
only dramatically surpass other ML-based attempts, but also
improve the results of non-academic highly crafted systems.

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

191



Look Back Before Forward RL
As discussed, instead of mimicking the trajectories of a back-
ward agent, we build simple hint features extracted from
backward trajectories, and use these to augment the state
representation of the forward agent. We now briefly describe
these different components. For a more detailed exposition,
see the full version of the paper in (Shoham and Elidan 2021).

The Backward Agent and Backward Trajectories
The backward model is learned by starting the agent in the
goal position(s) where rewards are received. The first step is
thus to design a reversed task via the construction of reversed
rewards. Importantly, since we do not plan to imitate the
policy of the backward agent, the reverse task is decoupled
from the forward one and we can use a relaxed objective.
This can be crucial in domains where the original reverse task
is as difficult as the forward one.

As an example, in the case of Sokoban, the forward objec-
tive is to push boxes to target squares and the (hard) reverse
task to to bring the boxes back to their original positions. A
much simpler goal is defined by giving the backward agent
a single reward for simply pulling all boxes away from their
target locations, but not necessarily to their initial squares.

The learned backward value function VB can now be used
both at forward-learning and at inference time to generate
a backward trajectory T : for a particular (train or test) in-
stance the agent is initialized at goal state(s), and a planning
algorithm is used to find T that maximizes VB .

The Forward Agent and Hint-Features
To learn a forward-facing value function VF , we use any
standard RL algorithm with the original rewards and original
starting position. The key difference is that we augment the
state-space of the agent with hint features that are computed
based on the current state s and the instance specific back-
ward trajectory T . Intuitively, such features are informed (by
the backward agent) hints that can point the forward agent in
the right direction, both at learning and inference time. The
forward learning procedure assigns the appropriate weights
to these features, in the context of the original forward task.
Importantly, as we shall see below, extremely simplistic hint
features that involve minimal domain understanding can lead
to substantial performance improvements.

Application to Sokoban
To apply our approach to the the game of Sokoban, we use
linear approximation for both VB and VF with the following
base features: : Targets (number of boxes already on target),
Distance (between the boxes and the nearest target) and Con-
nectivity (the number of distinct regions on the board).

Given the trajectory of the backward agent, we augment the
base features set with two additional hint features: Overlap
(distance of the state to the closest backward state) and Perm
(packed boxes according to the order implied by the backward
trajectory). The planning algorithm for maximizing VB and
VF is a search tree with an ε-greedy traversal from the root.
During the learning phase, expanding a leaf updates the value
function using standard TD(0).

Figure 2: Summary performance on the 90 XSokoban test
levels. The graph shows the number of solved levels as a
function of the search tree size at inference time.

Experimental Evaluation
We train both the forward and backward agents using only
the 155 Microban levels (Skinner 2000) which have been
developed as "a good set for beginners and children".

We evaluate performance on the standard 90 XSokoban
levels (Myers 1995). Each test level is processed at inference
time as follows. We first let the backward agent tackle it,
starting from the goal state. We then use the trajectory of that
agent to compute hint features, and then apply the forward
facing agent with these features.

We compare our solver to a baseline trained in an identical
manner but without the hint features that are generated by
the backward agent. We also compare to a baseline based
on reverse curriculum learning (Florensa et al. 2017) by aug-
menting the training data with easier instances.

The results are summarized in Figure 2. Using our look
backward before forward approach (solid black line), we
solve 88 of the 90 XSokoban levels. This surpasses the highly
crafted solvers Sokolution (Diedler 2017), Takaken (Taka-
hashi 2008) and YASS (Damgaard 2000), and is second only
to the Festival solver (Shoham and Schaeffer 2020).

The added value of the hint features is obvious and without
them we are only able to solve 60 levels. Further, augmenting
the experiences of the forward solver with near-goal trajec-
tories leads only to a minor improvement. This emphasizes
the importance of deriving features from the backward agent
rather than trying to mimic it.

Summary
We presented a novel RL approach for sparse-reward sce-
narios where the effective policy near the goal state is quite
different from the policy that is beneficial earlier on. Our
approach relies on the idea of using hint features constructed
from backward trajectories to help guide the forward facing
agent, both at training and inference time.

Using this forward-backward RL approach, we were able
to achieve SOTA results on the challenging game of Sokoban,
while training only on a small set of practice levels, with a
naive linear function approximation for the value function,
and using straightforward RL and search techniques.

192



References
Damgaard, B. 2000. YASS Sokoban solver. https://
sourceforge.net/projects/sokobanyasc/. Accessed: 2021-05-
28.
Demaret, J.-N.; Van Lishout, F.; and Gribomont, P. 2008.
Hierarchical planning and learning for automatic solving of
sokoban problems. Belgian/Netherlands Artificial Intelli-
gence Conference 57–64.
Diedler, F. 2017. Sokolution Sokoban solver. http://
codeanalysis.fr/sokoban/. Accessed: 2021-05-28.
Edwards, A. D.; Downs, L.; and Davidson, J. C. 2018.
Forward-Backward Reinforcement Learning. CoRR .
Florensa, C.; Held, D.; Wulfmeier, M.; Zhang, M.; and
Abbeel, P. 2017. Reverse Curriculum Generation for Re-
inforcement Learning. In Levine, S.; Vanhoucke, V.; and
Goldberg, K., eds., Proceedings of the 1st Annual Confer-
ence on Robot Learning, 482–495.
Goyal, A.; Brakel, P.; Fedus, L.; Singhal, S.; Lillicrap, T.;
Levine, S.; Larochelle, H.; and Bengio, Y. 2019. Recall
Traces: Backtracking Models for Efficient Reinforcement
Learning. In International Conference on Learning Repre-
sentations.
Junghanns, A.; and Schaeffer, J. 2001. Sokoban: Enhanc-
ing General Single-Agent Search Methods Using Domain
Knowledge. Artificial Intelligence 129(1–2): 219–251.
Myers, A. 1995. XSokoban home page. http://www.cs.
cornell.edu/andru/xsokoban.html. Accessed: 2021-05-28.
Shoham, Y.; and Elidan, G. 2021. Solving Sokoban with
Forward-Backward Reinforcement Learning. https://arxiv.
org/abs/2105.01904. Accessed: 2021-05-28.
Shoham, Y.; and Schaeffer, J. 2020. The FESS Algorithm:
A Feature Based Approach to Single-Agent Search. In 2020
IEEE Conference on Games (CoG), 96–103. doi:10.1109/
CoG47356.2020.9231929.
Skinner, D. 2000. Microban puzzle pack. https://www.
sokobanonline.com/play/web-archive/david-w-skinner. Ac-
cessed: 2021-05-28.
Takahashi, K. 2008. Takaken Sokoban solver. http://www.ic-
net.or.jp/home/takaken/e/soko/. Accessed: 2021-05-28.

193


