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Abstract
We introduce multi-goal multi agent path finding (MG-
MAPF) which generalizes the standard discrete multi-agent
path finding (MAPF) problem. While the task in MAPF is
to navigate agents in an undirected graph from their starting
vertices to one individual goal vertex per agent, MG-MAPF
assigns each agent multiple goal vertices and the task is to
visit each of them at least once. Solving MG-MAPF not only
requires finding collision free paths for individual agents but
also determining the order of visiting agent’s goal vertices so
that common objectives like the sum-of-costs are optimized.

Introduction
Mutli-agent path finding (MAPF) (Silver 2005; Ryan 2008;
Surynek 2009; Luna and Bekris 2011; Wang and Botea
2011; Ma and Koenig 2017) is an abstraction for many real-
life problems where agents need to be moved (see (Felner
et al. 2017; Ma and Koenig 2017) for a survey). The envi-
ronment in MAPF is modeled as an undirected graph where
vertices represent positions and edges define the topology.

The standard variant of MAPF assumes that each agent
starts in a specified starting vertex and its task is to reach a
specified goal vertex. While such formalization encompass
many real-life navigation tasks (Cáp et al. 2013; Ma et al.
2017a) there still exist problems especially in logistic do-
main where the standard MAPF lacks expressiveness.

Such problems that cannot be expressed as MAPF in-
clude situations where agents have multiple goals so that
instead of reaching single goal location agents need to per-
form a round-trip to service a set of goals. Having mul-
tiple goals per agent adds a significant new challenge to
the problem consisting of determining the order of visiting
agent’s goal vertices. Hence the ordering of goals as well as
non-conflicting path finding are subject to decision making
which in addition to this aims on the optimization of various
objectives such as commonly adopted sum-of-costs (Stand-
ley 2010; Sharon et al. 2013)

We introduce a problem we call a multi-goal multi-agent
path finding (MG-MAPF) and a novel solving algorithm for
MG-MAPF: a search-based Hamiltonian CBS (HCBS), a
derivative of the CBS algorithm (Sharon et al. 2015) 1.
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1This is a short version of (Surynek 2020, in press in Proceed-
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Figure 1: A MG-MAPF instance with and its sum-of-costs
optimal solution.

Background and Definitions
Agents in MAPF are placed in vertices of an undirected
graph so that there is at most one agent per vertex. Formally,
s : A 7→ V is a configuration of agents in vertices of the
graph. A configuration can be transformed instantaneously
to the next one by valid movements of agents; the next con-
figuration corresponds to the next time step. An agent can
move into another vertex across an edge provided no colli-
sion occurs. The configuration at time step t is denoted st.

Definition 1 Mutli-goal multi-agent path finding (MG-
MAPF) is a 4-tuple Θ = (G = (V,E), A, s0, g) where
G = (V,E) is an undirected graph, A = {a1, a2, ..., ak}
with k ∈ N is a set of agents where k ≤ |V |, s : A 7→ V
represents agents’ starting vertices (starting configuration),
and g : A 7→ 2V assigns a set of goal vertices to each agent.

Each agent in MG-MAPF has the task to visit its goal ver-
tices. Agent’s goal vertices can be visited in an arbitrary or-
der but each goal vertex must be visited by the agent at least
once. Various objectives can be taken into account. We de-
velop all concepts here for the sum-of-costs objective com-
monly adopted in MAPF but different cumulative objectives
can be used as well (Surynek et al. 2016).

Formally, an MG-MAPF solution is a sequence of config-
urations that can be obtained via valid moves from the start-
ing configuration s0 following the MAPF movement rules
such that each agent visits each of its goal vertices at least
once:

Definition 2 A solution to MG-MAPF Θ = (G =
(V,E), A, s0, g) is a sequence of configurations S =

ings of AAAI 2021) where in addition, a SAT-based algorithm for
MG-MAPF has been introduced
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[s0, s1, ..., stM ] such that st results from st−1 ∀t ∈ {1, 2,
..., tM} via valid MAPF movements and ∀ai ∈ A it holds
that (∀vg ∈ g(ai)) (∃t ∈ {1, 2, ..., tM}) (st(ai) = vg).

Given a solution S = [s0, s1, ..., stM ], tM is the
makespan, denoted Make(S). We define the sum-of-costs
as the sum of costs for individual agents: SoC (S) =∑k

i=1 Cost(ai), where the individual cost for agent ai is
defined as: Cost(ai) = min {tc | (∀vg ∈ g(ai)) (∃t ∈
1, 2, ..., tc) (st(ai) = vg)}.

Hamiltonian Conflict-based Search: HCBS
We suggest a novel algorithm called Hamiltonian Conflict-
based Search (Hamiltonian CBS, HCBS) which shares the
high level structure with the CBS algorithm (Sharon et al.
2015).

When trying to use CBS for MG-MAPF, the significant
challenge is represented by the fact that at the low level there
is no longer search for a minimum cost path with respect to
the set of conflicts, a polynomial-time problem, but rather
the search for a minimum cost Hamiltonian path.
Definition 3 A Hamiltonian path (HP) in G starting at u ∈
V covering a subset of vertices U ⊆ V is a sequence of
vertices denoted HP (u, U) = [h0, h1, ..., htH ] such that
h1 = u, {ht, ht+1} ∈ E for t ∈ {0, 1, ..., tH − 1}, and
for each v ∈ U ∃t ∈ {0, 1, ..., tH} such that ht = v. The
cost of Hamiltonian path corresponds to the number of its
edges: Cost(HP (u, U)) = tH − 1.

The key to adapt CBS for MG-MAPF is to decouple the
goal vertex ordering from conflict avoidance. The search for
a Hamiltonian path going through agent’s goal vertices with
respect to a set of conflicts is done in two level fashion.
At the high-level (of this low level) we are trying to deter-
mine optimal ordering of agent’s goal vertices. To this pur-
pose we made use of the A* algorithm (Hart, Nilsson, and
Raphael 1968) that searches the space of possible permuta-
tions of agent’s goals. After determining the next goal vertex
to visit, the algorithm searches for the shortest path observ-
ing the conflicts that interconnects the next goal vertex with
the current one. The search for the shortest path is done by
another instance of A*. Another important factor for the per-
formance of the decoupled approach are the heuristics.

We define a variant of spanning tree with respect to a sub-
set of vertices of undirected graph G = (V,E).
Definition 4 A spanning tree (ST) of an undirected graph
G = (V,E) with respect to a subset of vertices U ⊆ V ,
denoted TS(U) = (VU , EU ) is a tree covering U , that is,
U ⊆ VU ⊆ V and EU ⊆ E. The cost of a spanning
tree is defined as the number of edges included in the tree:
Cost(TS(U)) = |EU |. A minimum spanning tree (MST)
with respect to U is a spanning tree with minimum cost.

Observe that TS(U) may contain other vertices in addi-
tion to U to keep it connected. We use the notation TS(u, U)
for u ∈ V denoting a spanning tree covering {u} ∪ U .

The important property of MST is that it can be found in
polynomial time with respect to G (Boruvka 1926; Nesetril,
Milková, and Nesetrilová 2001) and can serve as the lower
bound for the cost of shortest Hamiltonian path.

Algorithm 1: HCBS algorithm for MG-MAPF.
1 HCBSconflicts (Θ = (G = (V,E), A, s0, g))
2 N.constraints← ∅
3 N.circuits← {circuit∗(ai) a shortest Hamiltonian

path from s0(ai) covering g(ai) | i = 1, 2, ..., k}
4 N.SoC ←

∑k
i=1 Cost(N.circuits(ai))

5 insert (SoC , N) into OPEN
6 while OPEN 6= ∅ do
7 (key,N)← min-Key(OPEN)
8 remove-Min-Key(OPEN)
9 collisions← validate(N.circuits)

10 if collisions = ∅ then
11 return N.circuits

12 let (ai, aj , v, t) ∈ collisions
13 for each a ∈ {ai, aj} do
14 N ′.constraints←

N.constraints ∪ {(a, v, t)}
15 N ′.circuits← N.circuits
16 N ′.circuits(ai)← HCBSordering (Θ, a,

N ′.constraints)

17 SoC ′ ←
∑k

i=1 Cost(N
′.circuits(ai))

18 insert (SoC ′, N ′) into OPEN

This enables us to use the concept of MST as a basis for
a consistent A* heuristic (proof omitted). The HCBS algo-
rithm is described using pseudo-code as Algorithm 1. The
algorithm consists of thee levels of search in three different
spaces: (i) space of conflicts, (ii) goal ordering space, and
(iii) path space.

Related Work
The most closely related problem to MG-MAPF is multi-
agent pickup and delivery (MAPD) (Ma et al. 2017b; Liu
et al. 2019), defining a set of tasks T = {t1, t2, ...tm} where
each task tj = (pj , dj) is characterized by a pickup location
pj ∈ V and a delivery location dj ∈ V . Agents can freely
select tasks to fulfill. The contemporary solving approaches
for MAPD first assign tasks to agents and followed by deter-
mining the ordering of tasks per agent ignoring collisions.
Then collision free paths are planned according to the task
ordering. As there is no feedback between the phases the
resulting plan is sub-optimal.

Conclusion
HCBS introduces three level search in which conflict reso-
lution is done at the high level and goal vertex ordering and
path planning are done at the low level. The key technique
is decoupling the vertex ordering from collision-free path
planning. CBS framework also provides great room for inte-
grating heuristics that we made use of when adapting it for
MG-MAPF.
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Boruvka on minimum spanning tree problem Translation of
both the 1926 papers, comments, history. Discret. Math.
233(1-3): 3–36.

Ryan, M. R. K. 2008. Exploiting Subgraph Structure in
Multi-Robot Path Planning. J. Artif. Intell. Res. 31: 497–
542.

Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artif. Intell. 219: 40–66.

Sharon, G.; Stern, R.; Goldenberg, M.; and Felner, A. 2013.
The increasing cost tree search for optimal multi-agent
pathfinding. Artif. Intell. 195: 470–495.

Silver, D. 2005. Cooperative Pathfinding. In Proceedings of
the First Artificial Intelligence and Interactive Digital En-
tertainment Conference, 117–122. AAAI Press.
Standley, T. S. 2010. Finding Optimal Solutions to Coop-
erative Pathfinding Problems. In Fox, M.; and Poole, D.,
eds., Proceedings of the Twenty-Fourth AAAI Conference on
Artificial Intelligence, AAAI 2010. AAAI Press.
Surynek, P. 2009. A novel approach to path planning for
multiple robots in bi-connected graphs. In 2009 IEEE In-
ternational Conference on Robotics and Automation, ICRA
2009, Kobe, Japan, May 12-17, 2009, 3613–3619. IEEE.
Surynek, P. 2020, in press in Proceedings of AAAI 2021.
Multi-Goal Multi-Agent Path Finding via Decoupled and In-
tegrated Goal Vertex Ordering. CoRR abs/2009.05161.
Surynek, P.; Felner, A.; Stern, R.; and Boyarski, E. 2016.
An Empirical Comparison of the Hardness of Multi-Agent
Path Finding under the Makespan and the Sum of Costs Ob-
jectives. In Proceedings of the Ninth Annual Symposium
on Combinatorial Search, SOCS 2016, Tarrytown, NY, USA,
July 6-8, 2016, 145–147. AAAI Press.
Wang, K. C.; and Botea, A. 2011. MAPP: a Scalable Multi-
Agent Path Planning Algorithm with Tractability and Com-
pleteness Guarantees. J. Artif. Intell. Res. 42: 55–90.

199


