
Multi-Agent Pickup and Delivery with Task Deadlines

Xiaohu Wu,1 Yihao Liu,1 Xueyan Tang,1 Wentong Cai,1
Funing Bai,2 Gilbert Khonstantine,1 Guopeng Zhao2

1Singtel Cognitive and Artificial Intelligence Lab for Enterprises, Nanyang Technological University, Singapore
2NCS Group, Singapore

xiaohu.wu@ntu.edu.sg, yihao002@e.ntu.edu.sg, {asxytang,aswtcai}@ntu.edu.sg,
eliza.bai@ncs.com.sg, gkhonsta001@e.ntu.edu.sg, leo.zhao@ncs.com.sg

Abstract

We study the multi-agent pickup and delivery problem with
task deadlines, where a team of agents execute tasks with
individual deadlines to maximize the number of tasks com-
pleted by their deadlines. We take an integrated approach that
assigns and plans one task at a time taking into account the
agent states resulting from all the previous task assignments
and path planning. We define metrics to effectively determine
which agent ought to execute a given task and which task is
most worth assignment next. We leverage the bounding tech-
nique to greatly improve the computational efficiency.

Introduction
Multi-Agent Path Finding (MAPF) is a classical problem
that aims to find collision-free paths for a group of agents
to move from their current locations to their respective
target locations with some metric optimized (Stern et al.
2019). Deadlines have been considered in the MAPF prob-
lem where there is a common deadline for all agents and
the objective is to maximize the number of agents that can
reach their target locations by the deadline. This problem is
NP-hard. Optimal solutions can be derived via search-based
approaches or integer linear programming (Ma et al. 2018).

Multi-Agent Pickup and Delivery (MAPD) is an exten-
sion to the MAPF problem where a set of delivery tasks are
to be assigned to the agents for execution. A MAPD so-
lution needs to determine the tasks as well as their order
to be executed by each agent and plan collision-free paths
for the agents to complete their assigned tasks. Heuristic
approaches have been proposed to optimize the makespan
metric for MAPD (Liu et al. 2019; Li et al. 2020; Farinelli,
Contini, and Zorzi 2020). Deadline requirements, however,
have not been considered in the MAPD problem.

In reality, there are many scenarios where tasks have in-
dividual deadlines. Each task has to be completed (i.e., the
agent executing the task arrives at the delivery location) by a
specific deadline, in order to satisfy distinct customers with
the delivered services/items in a timely manner. In this pa-
per, we study MAPD with task deadlines. We adopt an in-
tegrated approach that conducts task assignment and path
planning together. In each task assignment, a favorable agent

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

is chosen to execute the next task that is currently the most
urgent according to the paths already planned for the tasks
previously assigned. We define a metric called the flexibil-
ity of a task as the task deadline minus the earliest possible
completion time among all the agents to execute the task.
This metric allows us to effectively determine which task is
most worth assignment next. Based on this metric, we pro-
pose a priority-based framework for joint task assignment
and path planning.

Problem Definition
Consider an undirected connected graph G = (V,E) where
the nodes in V correspond to locations and each edge in
E corresponds to a connection between two locations along
which agents can move. There are a set of M agents A =
{a1, . . . , aM}, and a set of N tasks T = {t1, . . . , tN}. All
tasks are available at timestep 0. Each task tj has a pickup
location sj ∈ V , a delivery location gj ∈ V and a dead-
line dj . To execute a task tj , an agent has to move from its
current location via the pickup location sj to the delivery lo-
cation gj . Each agent has a unit carrying capacity and can
execute only one task at a time. Each agent ai has a unique
parking location pi ∈ V where it initially stays at timestep
0 and it can exclusively access at any time. After an agent
completes all its tasks, it returns to its parking location. We
would like to assign tasks to agents and plan paths for agents
to execute them. Our objective is to maximize the number
of tasks completed by their deadlines. At each timestep, an
agent can execute either a move action to move to an adja-
cent location or a wait action to stay at its current location.
Collisions may occur among agents at a location or along
an edge. To avoid collisions, the following constraints are
imposed in path planning: (i) two agents cannot occupy the
same location at the same timestep, and (ii) two agents can-
not traverse the same edge in opposite directions at the same
timestep. We refer to our problem as Multi-Agent Pickup
and Delivery with Task Deadlines (MAPD-TD).

Algorithms for MAPD-TD
We propose a priority-based framework to perform task as-
signment and path planning in an integrated manner. Each
task assignment decision is made based on the paths already
planned for the tasks previously assigned. Once a task gets

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

206



assigned, the path for executing the task is planned immedi-
ately. We start by defining metrics to decide which task and
which agent to choose for an assignment.

To decide which task to assign next, we define a metric
called the flexibility. Let ci,j denote the timestep at which an
unassigned task tj can be completed by an agent ai after fin-
ishing all its assigned tasks so far. The flexibility fj of a task
tj is given by the task deadline minus the earliest possible
completion time among all the agents to execute this task:

fj = dj − min
ai∈A

ci,j . (1)

The flexibility metric measures the urgency of the task. A
lower flexibility value indicates that there is less time buffer
and the task is more urgent to execute. Among all the unas-
signed tasks with non-negative flexibility values, we choose
the task tj∗ with the lowest flexibility value to assign next:

j∗ = argmin
fj≥0

fj . (2)

Agents differ in when they become available and where
they become available for executing new tasks. Thus, they
can have different costs to complete the task tj∗ . Suppose an
agent ai takes τi timesteps to finish all its assigned tasks ac-
cording to the planned path. That is, ai arrives at the delivery
location of the last assigned task at timestep τi. To improve
the resource efficiency, among all the agents that can com-
plete the task tj∗ by its deadline dj∗ , we choose the agent
ai∗ that has the lowest cost to execute tj∗ :

i∗ = argmin
ci,j∗≤di

(ci,j∗ − τi). (3)

The high-level idea of our priority-based framework is as
follows. In each task assignment, we first compute the com-
pletion time of executing each unassigned task by each agent
and then derives the flexibility of each task by (1). After that,
we choose the task tj∗ satisfying (2) and assigns tj∗ to the
agent ai∗ satisfying (3). In planning a path for an agent to
execute a task, we make use of the multi-label A∗ algorithm
(Grenouilleau, Hoeve, and Hooker 2019) to plan an optimal
path for the agent to move from its current location via the
task pickup location to the task delivery location. The A∗
search is conducted in the space of location-timestamp pairs
taking into account the node and edge access constraints im-
posed by the paths already planned for the previously as-
signed tasks.

After the assignment and path planning of every task, the
states of the agents change. Thus, a key challenge of im-
plementation is to compute the flexibility of the unassigned
tasks at every assignment based on the current states of the
agents. We leverage the bounding technique in our frame-
work to greatly improve the computational efficiency. A
state-of-the-art method to avoid collisions in path planning
is to reserve for every agent a dummy path from the agent’s
current location to its parking location whenever the agent
finishes one task (Liu et al. 2019). This may involve plenty
of extra vain computation of paths that the agents will never
use. We improve this method by identifying the conditions
under which planning such dummy paths is necessary and
selectively reserving dummy paths for agents.

small warehouse
φ

N
M 10 20 30 40 50

0.0 10×M 0.9360 0.9230 0.8573 0.8212 0.7978
0.1 10×M 0.9660 0.9635 0.9560 0.9335 0.8980
0.25 10×M 0.9950 0.9920 0.9943 0.9890 0.9854

large warehouse
φ

N
M 60 90 120 150 180

0.0 10×M 0.8778 0.8194 0.7723 0.7198 0.6848
0.1 10×M 0.9707 0.9250 0.8587 0.8119 0.7604
0.25 10×M 0.9977 0.9930 0.9820 0.9638 0.8991

Table 1: Average success rate for our algorithm

small warehouse
φ

N
M 10 20 30 40 50

0.0 10×M 0.8670 0.8090 0.7760 0.7378 0.7214
0.1 10×M 0.9380 0.8920 0.8580 0.8198 0.7902
0.25 10×M 0.9890 0.9810 0.9630 0.9402 0.9098

large warehouse
φ

N
M 60 90 120 150 180

0.0 10×M 0.7867 0.7376 0.7047 0.6650 0.6247
0.1 10×M 0.8755 0.8137 0.7697 0.7253 0.6881
0.25 10×M 0.9792 0.9381 0.8917 0.8358 0.7908

Table 2: Average success rate for the baseline algorithm

Experimental Results
We simulate two warehouse environments of different sizes
(Liu et al. 2019). To generate task deadlines, we run a simple
algorithm to construct hypothetical task streams and find the
hypothetical path for each task stream without considering
any conflicts with other hypothetical paths. We specify a pa-
rameter φ and set the deadline of each task to (1 + φ) times
its completion time in the hypothetical path.

We set the number of agents M = 10, 20, 30, 40, 50 for
the small warehouse and set M = 60, 90, 120, 150, 180
for the large warehouse. We set the number of tasks N =
10×M and φ = 0, 0.1, 0.25. For each setting of (M,N, φ),
we randomly generate 10 problem instances and present the
average performance over these instances.

Table 1 shows the success rate of our algorithm (the ra-
tio of the number of tasks completed by their deadlines to
the total number of tasks). Table 2 shows the success rate
of a baseline algorithm that, for each task to assign, simply
chooses the agent giving rise to the task flexibility (1) (i.e.,
completing the task earliest). It can be seen that our algo-
rithm choosing the agent with the lowest execution cost as
given by (3) can improve the success rate by up to 10%.

Acknowledgments
This research was conducted at Singtel Cognitive and Ar-
tificial Intelligence Lab for Enterprises (SCALE@NTU),
which is a collaboration between Singapore Telecommuni-
cations Limited (Singtel) and Nanyang Technological Uni-
versity (NTU) that is funded by the Singapore Government
through the Industry Alignment Fund – Industry Collabora-
tion Projects Grant.

207



References
Farinelli, A.; Contini, A.; and Zorzi, D. 2020. Decentralized
Task Assignment for Multi-item Pickup and Delivery in Lo-
gistic Scenarios. In Proceedings of the 19th International
Conference on Autonomous Agents and MultiAgent Systems
(AAMAS), 1843–1845.
Grenouilleau, F.; Hoeve, W.-J. v.; and Hooker, J. N. 2019. A
Multi-Label A∗ Algorithm for Multi-Agent Pathfinding. In
Proceedings of the 29th International Conference on Auto-
mated Planning and Scheduling (ICAPS), 181–185.
Li, J.; Tinka, A.; Kiesel, S.; Durham, J. W.; Kumar, T. K. S.;
and Koenig, S. 2020. Lifelong Multi-Agent Path Finding in
Large-Scale Warehouses. In Proceedings of the 19th Inter-
national Conference on Autonomous Agents and MultiAgent
Systems (AAMAS), 1898–1900.
Liu, M.; Ma, H.; Li, J.; and Koenig, S. 2019. Task and Path
Planning for Multi-Agent Pickup and Delivery. In Proceed-
ings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems (AAMAS), 1152–1160.
Ma, H.; Wagner, G.; Felner, A.; Li, J.; Kumar, T. K. S.; and
Koenig, S. 2018. Multi-Agent Path Finding with Deadlines.
In Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI), 417–423.
Stern, R.; Sturtevant, N. R.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T. T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, T. K. S.;
Boyarski, E.; and Bartak, R. 2019. Multi-Agent Pathfinding:
Definitions, Variants, and Benchmarks. In Proceedings of
the 12th International Symposium on Combinatorial Search
(SoCS), 151–158.

208


