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Abstract

Solving Multi-Agent Path Finding (MAPF) instances opti-
mally is NP-hard, and existing optimal and bounded subopti-
mal MAPF solvers thus usually do not scale to large MAPF
instances. Greedy MAPF solvers scale to large MAPF in-
stances, but their solution qualities are often bad. In this pa-
per, we therefore propose a novel MAPF solver, Hierarchical
Multi-Agent Path Planner (HMAPP), which creates a spatial
hierarchy by partitioning the environment into multiple re-
gions and decomposes a MAPF instance into smaller MAPF
sub-instances for each region. For each sub-instance, it uses
a bounded-suboptimal MAPF solver to solve it with good so-
lution quality. Our experimental results show that HMAPP
is able to solve as large MAPF instances as greedy MAPF
solvers while achieving better solution qualities on various
maps.

Introduction
The Multi-Agent Path Finding (MAPF) problem arises in
many real-world applications, including automated ware-
housing (Wurman, D’Andrea, and Mountz 2008; Li et al.
2020) and multi-drone delivery (Choudhury et al. 2020). In
the MAPF problem, each agent is required to move from a
start vertex to a goal vertex on an undirected graph while
avoiding conflicts with other agents. A conflict happens
when two agents stay at the same vertex or traverse the same
edge in opposite directions at the same time.

Two common objectives for the MAPF problem are min-
imizing the sum of the path costs and minimizing the
makespan. Solving the MAPF problem optimally for either
objective is known to be NP-hard (Yu and LaValle 2013; Ma
et al. 2016). Thus, existing optimal and bounded suboptimal
MAPF solvers (Sharon et al. 2015; Barer et al. 2014) usu-
ally do not scale to large MAPF instances. Greedy MAPF
solvers (Silver 2005) are able to scale to large MAPF in-
stances, but their solution qualities are often bad.

Although planning can find MAPF solutions of good
quality for small MAPF instances, planning in small steps
from one vertex to another has the disadvantage that its run-
time can dramatically increase with the number of agents
and the size of the environment. In this paper, we approach
the MAPF problem from a rarely-pursued spatial-hierarchy
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perspective. A high-level planner generates a high-level plan
for each agent that moves the agent from one spatial region
to another, and each regional planner subsequently refines
the high-level plan to a low-level path for the agent.

There are only few existing works on solving MAPF using
spatial hierarchies. The Spatially Distributed Multi-Agent
Planner (SDP) (Wilt and Botea 2014) partitions a map into
high-contention and low-contention regions and uses differ-
ent MAPF solvers for regions of different types. Different
from HMAPP, SDP does not partition the map into smaller
regions if no high-contention regions are found. Further-
more, SDP can only solve MAPF instances in which none
of the start and goal vertices are inside a high-contention re-
gion while HMAPP does not have this restriction.

HMAPP
HMAPP first partitions the vertices into regions. For each
pair of adjacent regions, HMAPP finds pairs of adjacent ver-
tices (one from each region), called boundary pairs, and uses
them to transfer agents between regions. To simplify the in-
teraction between regions, agents are allowed to travel only
in one direction through each boundary pair. A high-level
planner generates a high-level plan for each agent, which
specifies the sequence of regions that the agent should visit
to reach its goal vertex.

In the beginning, the timestep counter t is set to 0, and all
agents are at their start vertices. For each region r, a regional
planner Pr initially plans a set of conflict-free sub-paths for
all agents in the region. For each agent a, the sub-path is
from its start vertex either to a vertex in a boundary pair that
leads to the next region according to its high-level plan or to
its goal vertex (if the goal vertex is inside r). The regional
planner assumes that a immediately exits the current region
once it reaches the boundary vertex that leads to its next re-
gion. At timestep t, for each agent a that reaches the bound-
ary vertex that leads to its next region r′, the regional planner
Pr′ plans a sub-path for a in r′ with an entry timestep larger
than t. We say that a is delayed if it does not exit r at t. Pr

might have to replan the sub-paths of all agents in r if a de-
lay happens. The exit timestep of a from r does not change
once it has been determined. Pr is allowed to modify the
sub-paths of its agents as long as they obey the determined
exit timesteps. Except for the initial planning, each regional
planner plans at most twice at each timestep for all agents in
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(a) 256× 256 empty grid
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(b) 128× 128 random grid
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(c) Paris 1 256
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(d) warehouse-10-20-10-2-2

Figure 1: Shows the success rates (that is, the percentages of MAPF instances solved within a time limit of two minutes) of
various MAPF solvers on each grid for different numbers of agents.
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(a) 256× 256 empty grid
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(b) 128× 128 random grid
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(c) Paris 1 256
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Figure 2: Shows the average path costs per agent (averaged over the MAPF instances solved by all MAPF solvers that success-
fully solved at least one MAPF instance) of various MAPF solvers on each grid for different numbers of agents.

its region, once to take the entering agents into account and
once to take the delayed exiting agents into account. Once
all regional planners are done, the timestep counter is up-
dated to the earliest timestep when another agent reaches
its boundary vertex, until all agents have reached their goal
vertices. The resulting plan is conflict-free because (1) the
sub-paths inside each region are conflict-free and (2) no
edge conflict happens when an agent exits a region since the
movements within boundary pairs are one-directional. How-
ever, HMAPP is not a complete MAPF solver since the sub-
instances can be unsolvable. Limiting the number of agents
in each region may make HMAPP complete, which we leave
for future work.

HMAPP is a general algorithmic framework that can use
different methods for graph partitioning, high-level planning
and regional planning. In this paper, we use MAPF instances
on four-neighbor grids (Stern et al. 2019) and partition the
grids into rectangular regions of similar sizes. The high-level
planner generates the high-level plan for each agent from a
randomly picked shortest path from its start vertex to its goal
vertex. The regional planners use ECBS (Barer et al. 2014), a
bounded suboptimal MAPF solver, to find conflict-free sub-
paths.

Experimental Evaluation
In our experimental evaluation, we compared HMAPP with
CA* (Silver 2005), WHCA* (Silver 2005) and ECBS on dif-
ferent grids. CA* is a greedy MAPF solver which plans for
one agent at a time. WHCA* is a variant of CA* which inter-
leaves moving agents and planning within a time window of
a given length. The suboptimality bounds for ECBS and the
regional planners of HMAPP were all set to 1.2. The length

of the time window of WHCA* was set to 16.
We evaluated all MAPF solvers on four grids: (a) the

256 × 256 empty grid, (b) a 128 × 128 grid with 10% ran-
domly blocked vertices, (c) Paris 1 256 and (d) warehouse-
10-20-10-2-2. Grids (c) and (d) are from the MAPF Bench-
mark (Stern et al. 2019). We did not use the empty and ran-
dom grids from the MAPF Benchmark since we were in-
terested in large MAPF instances. For grids (a)-(c), we re-
port experimental results for HMAPP with partitions of sizes
3 × 3, 5 × 5 and 7 × 7. For grid (d), we used a partition of
size 7 × 5 since the performance of HMAPP turned out to
be very sensitive to the size of the partitions.

Figure 1 shows that, on most grids, the success rates of
ECBS and CA* quickly drop as the number of agents in-
creases. WHCA* successfully solves all MAPF instances
for up to 900 agents on grid (a). However, on grids (b)-(d),
the success rate of WHCA* is lower than those of some ver-
sions of HMAPP since WHCA* plans only within a time
window of a limited length.

Figure 2 shows that, compared to CA* and WHCA*, all
versions of HMAPP have better average path costs on all
grids. Except for grid (c), the average path costs of HMAPP
are more than 10% smaller than those of WHCA* for large
numbers of agents. Except for the warehouse grid, which has
many narrow corridors, the average path costs of HMAPP
are close to the average path costs of ECBS.
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