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Abstract
Multi-agent path finding (MAPF) is the problem of planning
a set of non-conflicting plans on a graph, for a set of agents.
Online MAPF extends MAPF by considering a more realistic
problem in which new agents may appear over time. While
planning, an online solver does not know whether and which
agents will join in the future. Therefore, in online problems
the notion of snapshot-optimal was defined, where only cur-
rent knowledge is considered. The quality of such a solution
may be weaker than the quality of a solution to an equivalent
offline MAPF problem (offline-optimality), where the solver
is preinformed of all the agents that will appear in the fu-
ture. In this paper we explore, theoretically and empirically,
the quality of snapshot-optimal solutions compared to offline-
optimal solutions.

Definitions and Background
The input to the Multi-Agent Path Finding (MAPF) problem
is a tuple 〈G,A〉, where G = (V,E) is a graph, and A =
{a1, ..., ak} is a set of k agents. Each agent ai is associated
with a start vertex si ∈ V and a goal vertex gi ∈ V (Stern
et al. 2019). A solution to a MAPF problem is a list π =
{π1, . . . , πk} of individual agent plans such that each agent
ai ∈ A is associated with a single plan π from its start to its
goal. π is a sequence of vertices such that πi(t) ∈ V is the
planned vertex for agent ai at time t, where time is discrete.
πi[x] ∈ V (note the difference between parenthesis () and
brackets []) is the vertex that the agent would reach after
performing x moves according to its plan. Thus, πi[0] = si
and πi[|πi| − 1] = gi. At each time step an agent can either
move or wait at its current vertex. The length of a plan is
defined as (len(πi) = |πi| − 1). A MAPF solution is valid
only if none of the plans within it conflict. Two plans πi
and πj conflict if at any time t the two agents are planned to
occupy the same vertex, or are planned to swap their vertices
(Stern et al. 2019). A common cost function in MAPF is the
Sum Of Costs (SOC), defined as the sum of the lengths of
all individual plans, SOC (π) =

∑k
i=1 len(πi). A MAPF

solution is optimal if it is valid and has the minimal cost
among all valid solutions.

Most previous works on MAPF focused on the offline
MAPF setting, where plans are found before the agents start
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their movement, and are assumed to execute them with-
out any modification during execution. Recently, an online
MAPF setting was suggested (Švancara et al. 2019). In this
setting, new agents may appear over time and wish to join
the problem space while existing agents are still executing
their plans. Appearing agents are allowed to wait outside
the problem space before entering and when agents reach
their goals, they disappear. This problem is relevant to real-
world problems, such as autonomous intersections, robot
warehouses, airport traffic etc.

In online MAPF, each agent ai is associated with a time
of appearance TOA(ai). Accordingly, each plan πi in an
online MAPF solution starts at that agent’s time of arrival
(πi[0] = πi(TOA(ai))). Note that the new agents are only
revealed to an online solver at the time of their arrival.

The solution to online MAPF is a sequence of all the solu-
tions found at the different times when new agents appeared
Π = {π0, ..., πn}, where πt is the solution found at time t.
The executed solution Ex(Π) represents the plans that the
agents ended up following, considering the changes made to
their plans over time. An online MAPF solution Π is valid
only if none of the plans in Ex(Π) have a conflict. The cost
of an online solution Π is SOC (Ex(Π)).

Any online MAPF problem may be converted into an
equivalent offline problem by informing the solver of all the
agents that will appear in the future. By optimally solving
the equivalent offline problem, we can find the lowest cost
possible for a solution to the online problem. We designate
such a solution as offline-optimal (or oracle optimal) solu-
tion. Naturally, online problems can not be solved offline in
practice. However, the cost of the offline-optimal solution is
useful for theoretical comparisons.

An online solver for online MAPF does not know when
and which agents may appear in the future. Consequently,
a solution with a lower cost than that of the executed so-
lution may exist. No online MAPF solver can guarantee to
find a solution with cost equal to the offline-optimal cost of
an equivalent offline problem (Švancara et al. 2019). An al-
gorithms that always returns a solution for the current set of
agents that is optimal, assuming no new agents arrive in the
future, is called snapshot-optimal (Švancara et al. 2019).
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Snapshot-Optimal Vs. Offline-Optimal
In this section, we explore how optimal snapshot-optimal is,
by comparing it with offline-optimal.

Theoretical Comparison
Let P be an online MAPF problem. Let Πoo(P ) and Πso(P )
be the solutions to P generated by an offline-optimal solver
and snapshot-optimal solver, respectively. Let P+ be an on-
line MAPF problem that is identical to P except that there
is an additional new agent ai and ∀aj 6= ai(TOA(ai) >
TOA(aj)). Let t+ := TOA(ai). Let π∗i be a plan for agent
ai that has minimal length while ignoring all other agents.
Let ∆SOC (P ) be the difference in SOC between Πoo(P )
and Πso(P ), that is,

∆SOC (P ) = SOC (Πso(P ))− SOC (Πoo(P )).

Note that if ∆SOC(P+) > ∆SOC(P ) it means that
adding a new agent caused the cost difference to increase.
Observation 1. If ∆SOC(P+) > ∆SOC(P ) then it must
hold that for every minimal length plan for the new agent π∗i
there exists a conflict with the plans of the other agents in
any Πso(P ).
Observation 2. If ∆SOC(P+) > ∆SOC(P ) then it must
hold that for every snapshot-optimal solution Πso(P+) ei-
ther there exists an old agent whose plan is longer than its
plan in Πso(P ), or len(Πso(P+)i) > len(π∗i ).

A solution π is applicable at time step t for an online solu-
tion Π if ∀i(Ex(Π)i(t) = πi(t)), meaning all agents occupy
the same vertices in both solutions at t (including agents that
already disappeared) A solution Π′ is a prefix of Π up to time
step t if it is applicable at every time step t′ < t for Π.
Observation 3. If ∆SOC(P+) > ∆SOC(P ) then for ev-
ery offline-optimal solution Πoo(P+) and snapshot-optimal
solution Πso(P ), it holds that Πso(P ) is not a prefix of
Πoo(P+) up to time step t+.

From these observations we conclude that for a significant
difference in quality to exist between an offline-optimal so-
lution and a snapshot-optimal solution for an online MAPF
problem, that problem would have to contain many situa-
tions where scenarios implied by the observations are met.

Experimental Comparison
We used problem instances from a common MAPF bench-
mark (Stern et al. 2019). The benchmark contains a set of
grid-maps (often seen as 4-connected), and a set of offline
MAPF scenarios for each map. We made the following ad-
justments to the instances to create online MAPF instances:

1. For each online scenario a set of 20 agents was selected
randomly from an existing offline scenario.

2. For every time step, the number of new agents that
appear was drawn from a Poisson distribution. The rate of
agent appearance is set by the distribution’s λ parameter.

3. Start-goal pairs for agents were drawn from a stan-
dard normal distribution over the set of pairs. We chose this
method as we felt it would reflect real-world scenarios.

We adapted the MAPF solver CBS (Sharon et al. 2015) to
compare the quality of offline-optimal and snapshot-optimal

Figure 1: random-32-32-20 (left), room-32-32-4 (right)

Map Rate Offline-
Optimal

Snapshot-
Optimal % Equal

random-
32-32-20

0.05 856.34 856.43 98.11%
0.50 859.51 859.79 91.51%
1.00 862.68 863.28 88.68%
1.50 866.34 867.04 90.57%

room-
32-32-4

0.05 915.04 915.32 96.00%
0.50 920.12 921.28 82.00%
1.00 921.60 922.72 86.00%
1.50 925.96 926.04 98.00%

Table 1: Comparison of snapshot and offline optimal solu-
tions for 40 agents, with varying appearance rates.

solutions on 50 online MAPF instances per map and appear-
ance rate. The appearance rates (λ) ranged from 0.05 to 1.5
agent per time step, with 40 agents per instance. We used
two 32x32 grid maps: ’random-32-32-20’, which has 20%
random obstacles, and ’room-32-32-4’ which has randomly
connected 4x4 rooms (Figure 1). Each solver was allowed
300 seconds to solve each instance. For the instances solved
by both solvers and on all arrival rates, we measured the av-
erage cost of offline-optimal and snapshot-optimal solutions
and the proportion of instances where no cost difference was
observed. The results of this experiment are found in Table
1. We see that the cost of snapshot-optimal solutions was
on average very close to the offline-optimal cost, and that in
most problem instances they were equal.

The experiment results confirm our claim that the scenar-
ios implied by the observations above are rare. Therefore, we
conclude that snapshot optimal algorithms are very powerful
as they are practical to implement and their solution quality
is very close to that of an offline (oracle) optimal solution.

Online MAPF Variants and Conclusions
We also developed and analyzed lifelong versions of
snapshot-optimal solvers, concluding that in most cases the
improvement of such versions is only marginal. We further
evaluated a setting where rerouting an agent carries a spe-
cific cost. We found that in the tested scenarios, solving
sub-optimally while completely avoiding reroutes produced
higher quality solutions under most reroute costs. Finally,
we examined a setting where agents are assigned different
priorities, and showed a trade-off between solution quality
and problem coverage in this setting.

In conclusion, we examined the matter of optimality
in online Multi-agent Path Finding. We defined offline-
optimality in the online MAPF problem, and compared it
to snapshot-optimality both analytically and empirically. We
conclude that snapshot-optimal solutions are usually very
similar in quality to offline-optimal solutions.
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