
Meta-level Techniques for Planning, Search, and Scheduling

Shahaf S. Shperberg
Ben-Gurion University of the Negev, Be’er Sheva, Israel

shperbsh@post.bgu.ac.il

Abstract

Metareasoning is a core idea in AI at that captures the essence
of being both human and intelligent. This idea is that much
can be gained by thinking (reasoning) about one’s own think-
ing. In the context of search and planning, metareasoning
concerns with making explicit decisions about computation
steps, by comparing their ‘cost’ in computational resources,
against the gain they can be expected to make towards ad-
vancing the search for solution (or plan) and thus making
better decisions. To apply metareasoning, a meta-level prob-
lem needs to be defined and solved with respect to a spe-
cific framework or algorithm. In some cases, these meta-
level problems can be very hard to solve. Yet, even a fast-
to-compute approximation of meta-level problems can yield
good results and improve the algorithms to which they are ap-
plied. This paper provides an overview of different settings in
which we applied metareasoning to improve search, planning
and scheduling.

Metareasoning in MCTS
Monte-Carlo tree search (MCTS) is an algorithmic schema
commonly used to search huge trees, especially when a
good heuristic is not available (Browne et al. 2012). In gen-
eral, MCTS grows a search tree, using four phases: node-
selection, node-expansion, simulation, and backup. When
the time for search is over, the action which leads to the
most-promising child of the root (the one with the highest
estimated utility, denoted as α) is performed. The scheme
used for node-selection essentially controls the search by de-
ciding were to focus the computational effort. A popular ap-
proach for node-selection is the Upper Confidence Bounds
for Trees (UCT) (Kocsis and Szepesvári 2006) which aims
to minimize cumulative regret (balancing exploration and
exploitation). However, it was shown that minimizing cumu-
lative regret is actually inappropriate for move selection and
that that simple regret and value of information (VOI) crite-
ria are more appropriate, and result in more efficient search
(Tolpin and Shimony 2012; Feldman and Domshlak 2014).
In essence, the VOI of selecting nodes for simulation corre-
sponds to the probability of changing α (either by increas-
ing the estimated utility of some other child β of the root,
or by decreasing the estimated utility of α) as a result of

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

running simulations on these nodes. VOI can be defined in
different ways, each way uses different assumptions which
induce different computational overheads. The two previous
node-selection schemes that are based on VOI, MGSS (Rus-
sell and Wefald 1991) and “blinkered” (Tolpin and Shimony
2012), only consider the VOI of individual nodes, a very
myopic approach that often prematurely commitment to α.

Our work in the area attempts to relax this myopic as-
sumption. We defined (Shperberg, Shimony, and Felner
2017) a batch value of perfect information (BVPI) as a gen-
eralization of value of computation as proposed by Russell
and Wefald. We showed that computing BVPI is NP-hard,
but it can be approximated in polynomial time. In addition,
we proposed a node-selection scheme that intelligently find
sets of nodes with high BVPI. Finally, We applied our BVPI
selection-scheme to existing MCTS algorithm applications
and empirically showed that our methods outperform exist-
ing node-selection methods for MCTS in different scenarios.

Our current attempts are to adapt the VOI node-selection
schemes to cases where a neural network (NN) provides
value estimations instead of simulation (e.g. AlphaZero (Sil-
ver et al. 2017)). These schemes traditionally use node-
selection methods which are based on variants of UCT,
which still try to (wrongfully) minimize cumulative regret.
Specifically, instead of having the NN return a single value-
estimation for each node, we propose to return a value-
distribution estimation. This could be achieved, for exam-
ple, by replacing the standard reinforcement learning used
in AlphaZero with a distributional reinforcement learning
(e.g. (Dabney et al. 2018)). By having value-distribution es-
timations instead of single-value estimations the VOI-based
schemes can be applied. These modified schemes can poten-
tially improve the decision making abilities in many appli-
cations (such as AlphaGo and AlphaZero).

Situated Temporal Planning
Agents that plan and act in the real world must deal with
the fact that time passes as they are planning. For example,
an agent that needs to get to the airport may have two op-
tions: take a bus, or take a taxi. Each of these options can be
thought of as a partial plan to be elaborated into a complete
plan that can be executed. Furthermore, consider a second
example in which there are two partial plans, each estimated
to require five minutes of computation to elaborate into a

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

236



complete plan. If only six minutes remain until both plans
expire, then we would want the planner to allocate all of its
remaining effort to one plan, rather than to fail on both.

Cashmore et al. (2018) recognized the problem of node
expiration in the context of temporal planning with timed
initial literals (TIL), where the TILs occur at times that are
relative to when planning starts, rather than to when execu-
tion starts. However, their approach is relatively superficial
and used merely to prune nodes that become infeasible based
on their latest start time estimation. Such a planner fails on
the the second example given above.

We defined the problem of selecting which nodes to fo-
cus during planning as a meta-level problem called Allo-
cating Effort when Actions Expire (AE2, (Shperberg et al.
2019a)). AE2 abstracts away from the planning problem and
merely assumes n independent processes, each modeled by
a distribution over wall clock times denoting the deadline
and a distribution over the required time allocation to com-
plete computation. The objective of AE2 is to schedule pro-
cessing time over the n processes such that the probabil-
ity that at least one process finds a solution before its dead-
line is maximized. We have analyzed properties of the AE2
problem, developed a pseudo-polynomial time solution for
the special case of known deadlines, and proposed an ef-
fective greedy algorithm for the general case. In addition,
we have also tackled the extended problem (called ACE2)
where processes (plans) have cost and the aim is to mini-
mize the expected cost (Shperberg et al. 2020). Finally, we
showed how our greedy scheme for the AE2 problem can
be applied inside a practical situated temporal planner (OP-
TIC). An empirical evaluation suggests that the new planner
provides state-of-the-art results on problems where external
deadlines play a significant role (Shperberg et al. 2021).

Our current focus is to extend the metareasoning tech-
niques to interleave planning and execution. Allowing to
start execution before having a complete plan can increase
the chance to find and execute a plan on time.

Algorithm and Instance Selection
In the context of multiple agents sharing the same resource,
metaresoning can be used for dividing the shared resource
among all agents. In this context, we have considered (Sh-
perberg, Shimony, and Yehezkel 2019) a set of black-box
agents/algorithms (each with its own strengths and weak-
nesses) attempting to solve a pool of optimization problem
instances. Unlike standard algorithm selection settings in
which there is an individual time limit for each instance, here
we have a global time limit for the entire set of instances.
The goal is to maximize the sum of solution qualities, where
each instance can be solved more then once, but only the best
solution counts. Thus, a policy is a pair of problem instance
and algorithm to execute at any given moment. The original
motivation for this work was combining multiple programs
that compete in the AI Angry Birds competition. In this com-
petition, agents have 30 minute to play 8 unseen levels with
total score being the sum of level scores. We have formu-
lated the problem as a selection problem and showed that it
is NP-hard even when the time and score performance pro-
files (distributions) of agents on levels are known and inde-

pendent. Nonetheless, we have developed an an approxima-
tion algorithm for one simple case, as well as faster greedy
algorithm for the general case which works well empirically
on data collected from the angry birds game. Then, we have
combined this greedy algorithm with a Bayesian learning
scheme for obtaining the performance profiles. The com-
bined algorithm was evaluated in past years competition set-
tings, outperforming the individual agents.

Bidirectional Heuristic Search

In bidirectional heuristic search (Bi-HS) we are given an im-
plicit graph, a start vertex s, a goal vertex g, and a heuristic
which estimates the minimal cost between vertices. The aim
is to find a least-cost path between the s and g. Bi-HS al-
gorithms maintain two search frontiers (one from s and the
other from g) and need to connect them to find a solution.

A fundamental question in Bi-HS is “how much of the
search effort to invest in each frontier?”. In an attempt to an-
swer this question, Eckerle et al. (2017) investigated which
nodes must be expanded by any Bi-HS algorithm in order
to prove solutions optimality. While in unidirectional search
there is a specific set of nodes for every problem instance
that must be expanded (Dechter and Pearl 1985), in Bi-HS
there is no such unique set. Instead, for every problem in-
stance there are pairs of nodes that must be expanded (de-
noted as must-expand pairs or MEPs), each pair contains a
forward-frontier node and a backward-frontier node. A pair
is expanded if at least one of its nodes is expanded. Thus,
these pairs induce many sets of nodes (of different size) from
which one set needs to be fully expanded. Each set corre-
sponds to a division of the search effort between the fron-
tiers. Aiming to find a small set to expand, Chen et al. (2017)
converted the problem of expanding all MEPs to the prob-
lem of finding a vertex cover in an abstract graph which they
called GMX. Thus, the minimal vertex cover (MVC) of the
GMX is the minimal number of node expansions required
to prove optimality of solutions. While the GMX can only
be fully constructed in post analysis, it is possible to obtain
edges from it during the search. NBS (Chen et al. 2017) is
a prominent Bi-HS algorithm which always obtain such an
edge and expands both of its nodes in order to get a 2× MVC
bound on the number of expansions. Our work (Shperberg
et al. 2019c) presents other ways to exploit the GMX struc-
ture for node expansion. Instead of choosing a single edge
from the GMX our algorithm, called DVCBS, maintains a
dynamic sub-graph of the GMX (denoted as DGMX) using
frontier nodes. Then, DVCBS computes an MVC for this
DGMX (in linear time) and uses it to choose which nodes
to expand. DVCBS faces a tradeoff. On the one hand, con-
structing DGMX and computing its MVC often is more ac-
curate and leads to better search results as new frontier nodes
become available. On the other hand, these operations are
computationally expansive. This tradeoff induces a metarea-
soning problem which we briefly discussed. Finally, we also
developed a method for enabling existing algorithm to bene-
fit from the GMX structure by incorporating this information
into the heuristic function (Shperberg et al. 2019b).

237



References
Browne, C.; Powley, E. J.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Liebana, D. P.;
Samothrakis, S.; and Colton, S. 2012. A Survey of Monte
Carlo Tree Search Methods. IEEE AI Games 4(1): 1–43.

Cashmore, M.; Coles, A.; Cserna, B.; Karpas, E.; Maga-
zzeni, D.; and Ruml, W. 2018. Temporal Planning while
the Clock Ticks. In ICAPS, 39–46. AAAI Press.

Chen, J.; Holte, R. C.; Zilles, S.; and Sturtevant, N. R.
2017. Front-to-End Bidirectional Heuristic Search with
Near-Optimal Node Expansions. In IJCAI, 489–495. ij-
cai.org.

Dabney, W.; Rowland, M.; Bellemare, M. G.; and Munos, R.
2018. Distributional Reinforcement Learning With Quantile
Regression. In AAAI, 2892–2901. AAAI Press.

Dechter, R.; and Pearl, J. 1985. Generalized Best-First
Search Strategies and the Optimality of A*. J. ACM 32(3):
505–536.

Eckerle, J.; Chen, J.; Sturtevant, N. R.; Zilles, S.; and Holte,
R. C. 2017. Sufficient Conditions for Node Expansion in
Bidirectional Heuristic Search. In ICAPS, 79–87.

Feldman, Z.; and Domshlak, C. 2014. Simple Regret Opti-
mization in Online Planning for Markov Decision Processes.
J. Artif. Intell. Res. 51: 165–205.

Kocsis, L.; and Szepesvári, C. 2006. Bandit Based Monte-
Carlo Planning. In ECML, volume 4212 of Lecture Notes in
Computer Science, 282–293. Springer.

Russell, S. J.; and Wefald, E. 1991. Do the right thing: stud-
ies in limited rationality. MIT press.

Shperberg, S. S.; Coles, A.; Cserna, B.; Karpas, E.; Ruml,
W.; and Shimony, S. E. 2019a. Allocating Planning Effort
When Actions Expire. In AAAI, 2371–2378. AAAI Press.

Shperberg, S. S.; Coles, A.; Karpas, E.; Ruml, W.; and
Shimony, S. E. 2021. Situated Temporal Planning Using
Deadline-aware Metareasoning. In ICAPS.

Shperberg, S. S.; Coles, A.; Karpas, E.; Shimony, S. E.; and
Ruml, W. 2020. Trading Plan Cost for Timeliness in Situated
Temporal Planning. In IJCAI, 4176–4182. ijcai.org.

Shperberg, S. S.; Felner, A.; Shimony, S. E.; Sturtevant,
N. R.; and Hayoun, A. 2019b. Improving Bidirectional
Heuristic Search by Bounds Propagation. In SOCS, 106–
114. AAAI Press.

Shperberg, S. S.; Felner, A.; Sturtevant, N. R.; Shimony,
S. E.; and Hayoun, A. 2019c. Enriching Non-Parametric
Bidirectional Search Algorithms. In AAAI, 2379–2386.
AAAI Press.

Shperberg, S. S.; Shimony, S. E.; and Felner, A. 2017.
Monte-Carlo Tree Search using Batch Value of Perfect In-
formation. In UAI. AUAI Press.

Shperberg, S. S.; Shimony, S. E.; and Yehezkel, A. 2019. Al-
gorithm Selection in Optimization and Application to Angry
Birds. In ICAPS, 437–445. AAAI Press.

Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.;
Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton,
A.; Chen, Y.; Lillicrap, T. P.; Hui, F.; Sifre, L.; van den
Driessche, G.; Graepel, T.; and Hassabis, D. 2017. Mas-
tering the game of Go without human knowledge. Nat.
550(7676): 354–359.
Tolpin, D.; and Shimony, S. E. 2012. MCTS Based on Sim-
ple Regret. In AAAI. AAAI Press.

238


