
Multi-Agent Terraforming:
Efficient Multi-Agent Path Finding via Environment Manipulation

David Vainshtein and Oren Salzman
Technion – Israel Institute of Technology

dudiwa@campus.technion.ac.il, osalzman@cs.technion.ac.il

Abstract
Planning collision-free paths for multiple agents operating in
close proximity has a myriad of applications ranging from
smart warehouses to route planning for airport taxiways. This
problem, known as the Multi-Agent Path-Finding (MAPF)
problem, is highly relevant to real-world applications in au-
tomation and robotics, and has attracted significant research
in recent years. While in many applications, the robots are
tasked with transporting objects and thus have the means to
move obstacles, common formulations of the problem pro-
hibit agents from moving obstacles en-route to a task. This
often causes agents to take long detours to avoid obstacles in-
stead of simply moving them to clear a path. In this work
we present multi-agent terraforming, a novel extension of
the MAPF problem that can exploit the fact that the system
contains movable obstacles. We build upon leading MAPF
solvers and propose an efficient method to solve the multi-
agent terraforming problem in a manner that is both complete
and optimal. We evaluate our method on scenarios inspired
by smart warehouses (such as those of Amazon) and demon-
strate that, compared to the classical MAPF formulation, the
extra flexibility provided by terraforming facilitates a notable
improvement of solution quality.

Introduction
The MAPF problem (Stern et al. 2019) calls for planning
collision-free paths for a set of agents from given start to
goal locations. A motivating example is the management of
smart warehouses, in which agents carry shelves to and from
packing stations (Wurman, D’Andrea, and Mountz 2008).
The standard MAPF approach perceives idle shelves as ob-
stacles that often elicit winding paths and funnel the agents
into congested bottlenecks. However in many domains, such
as our motivating smart warehouse example, agents have the
capability to move obstacles and indeed do so as part of their
task. Our key insight is that this capability can be used to in-
crease the system’s throughput which is our ultimate goal.
Several relevant works allow obstacles to be displaced or
removed by a robot, with a recent variant called C-MAPF
(Bellusci, Basilico, and Amigoni 2020), venturing to recon-
figure the environment itself to better serve a preferable so-
lution. These works demonstrate the advantage of adjusting
obstacles to open up shortcuts in the environment.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1 2

(a) MAPF task

21

(b) Static obstacles

21

(c) Terraforming

Figure 1: An obstacle is displaced to reduce flowtime.

In this work we set the ground to allow such capabili-
ties. As a simplifying assumption, here we do not require
the obstacles to be moved by agents and assume that they
are “self propelled”. Future work will remove this assump-
tion and incorporate the additional cost of bringing agents to
the movable obstacles.

Classical MAPF Given a set of agents A = {a1, . . . , an}
inhabiting an undirected graph G = (V,E), the MAPF
problem assigns each agent with start and goal locations
(vertices). Let πi be a single-agent path where πi(t) corre-
sponds to the position of agent ai at timestep t. We define
the single agent service cost as the number of timesteps |πi|
until the goal is reached. Agents must avoid obstacles that
obstruct locations and transitions (edges), and cannot simul-
taneously be at the same spot or swap places. Therefore a
solution π is a plan of non-colliding paths {π1, . . . , πn},
and a common measure of a plan’s cost is its flowtime (also
referred to as Sum of Costs) defined as the sum of all ser-
vice costs. Another quality measure, latency, quantifies the
cost agents impose on each other through their interactions:
path detours, congestion and delays. If we regard the dis-
tance cost di, i.e. the cost of the shortest path of a solitary
agent ai from start to goal, then the best attainable service
cost maintains |π∗i | ≥ di. The latency is the sum of differ-
ences between service and distance costs.

Multi-agent terraforming We introduce an extension to
the classical MAPF problem where we are also given a set of
“self-propelled” obstacles O that can move while avoiding
other obstacles and agents (similar to the classical MAPF
problem). We define the cost of an obstacle’s path as the

Proceedings of the Fourteenth International Symposium on Combinatorial Search (SoCS 2021)

239

Algorithm 1: Terraforming using TF-CBS
Input: Graph G, agents A, movable obstacles O
Returns: An optimal plan π∗

TERRA

R.constraints← ∅ // root state
agents ← A∪O
R.paths← findPaths(G, agents,R.constraints)
R.cost ← flowtime(R.paths)
R.conflicts← detectConflicts(R.paths)
insert(R, OPEN)
while OPEN not empty do

N ← pop(OPEN) // best first candidate
〈i, j, p, t〉 ← getConflict(N)
for c ∈ 〈i, p, t〉, 〈j, p, t〉 do

C ← N.constraints ∪ c
N ′ ← clone(N)
N ′.paths← findPaths(G, agents, C)
N ′.cost ← flowtime(N ′.paths)
N ′.conflicts← detectConflicts(N ′.paths)
N ′.constraints← C
insert(N ′, OPEN)

number of timesteps excluding wait actions, and mitigate the
buildup of clutter by requiring that all obstacles return to
their initial positions after moving. We call this new type
of problem Terraforming-MAPF, or TF-MAPF, and denote
its solution by πTERRA. Figure 1 illustrates how the search
creates a shortcut by displacing a single obstacle to reduce
flowtime.

Algorithm
To solve the Terraforming problem, we adapt the Conflict
Based Search algorithm, or CBS (Sharon et al. 2015), which
is complete and optimal. The search starts at the root state
where it obtains the individual shortest paths for all agents.
Next, a single collision 〈i, j, p, t〉 involving agents ai, aj
is selected as a conflict at position p (vertex/edge) and
timestep t. This conflict is converted into two constraints
〈i, p, t〉, 〈j, p, t〉 targeting ai, aj respectively, to prevent the
agent from being at p at timestep t. Each constraint spawns
a new child state that alters the agent’s path, after which the
child state is inserted into a priority queue OPEN. Proceeding
in a best-first manner, the search extracts the state with the
lowest flowtime from OPEN and resolves the next conflict.
This cycle continues until a collision-free plan of minimal
cost is found, i.e. an optimal solution π∗.

Terraforming-CBS We apply our assumption of self-
propelled obstacles, and require that they return to their ini-
tial location. Building upon CBS, we propose TF-CBS,
where the key idea is to regard the movable obstacles as
additional agents initialized at their goal location, and have
their path cost account only for movement. Alg. 1 high-
lights the modifications to CBS that allow movable ob-
stacles to move in response to colliding agents. The algo-
rithm searches for single-agent paths that conform to con-

Figure 2: A 32 × 75 sized warehouse, densely packed with
876 shelves (in gray) and operated by 54 agents (coloured
dots). Experiment video: https://bit.ly/3aMIomO

straints imposed by collisions between agents and obstacles.
It then updates the flowtime, accounting for the path cost of
agents and obstacles. Continuing in a best-first manner un-
til a conflict-free plan is found, obstacles move only when
deemed beneficial by the search. This way, TF-CBS main-
tains the completeness and optimality of CBS.

Evaluation

We implement our approach in C++ by extending IDCBS
(Boyarski et al. 2020). We apply Terraforming to ware-
houses (one such warehouse is visualized in Figure 2) where
54 agents work together to determine the ideal obstacle dis-
placement and cost, thereby fulfilling the task faster. An
evaluation of four warehouses with various start and goal
locations demonstrated how movable obstacles induce an
average improvement of 15.1% in flowtime (from 1,794 to
1,522) and a reduction in latency, from a delay of +37 to a
speedup of −245. Interestingly, the ability to achieve nega-
tive latency values represents a potential productivity boost
beyond the warehouse’s original design, thanks to dynamic
shortcuts and congestion mitigation. The average planning
time has increased from 6,338 seconds to 20,609 seconds
due to the added complexity. Future work will concentrate
on reducing the algorithm’s running time.

Discussion and Future Work

In this work we introduce TF-MAPF—a novel formulation
of the MAPF problem. We propose the TF-CBS algorithm
which solves the problem in a manner that is complete and
optimal. While our empirical evaluation indicates that mov-
able obstacles allows for a non-trivial improvement in so-
lution quality, the time-complexity of CBS may grow expo-
nentially in the number of agents (Gordon, Filmus, and Salz-
man 2021). Thus, our approach of considering the obstacles
as self-propelled agents can incur an exponential increase
in the algorithm’s running time. Therefore, future work will
form heuristics to guide the search so that it focuses on
prospective obstacles. In addition, we’re interested in hav-
ing the agents themselves displace the obstacles. This will
relax the assumption of self-propelled obstacles.

240

References
Bellusci, M.; Basilico, N.; and Amigoni, F. 2020. Multi-
Agent Path Finding in Configurable Environments. In AA-
MAS, 159–167.
Boyarski, E.; Felner, A.; Harabor, D.; Stuckey, P. J.; Cohen,
L.; Li, J.; and Koenig, S. 2020. Iterative-Deepening Conflict-
Based Search. In IJCAI, 4084–4090.
Gordon, O.; Filmus, Y.; and Salzman, O. 2021. Revisit-
ing the Complexity Analysis of Conflict-Based Search: New
Computational Techniques and Improved Bounds. CoRR
abs/2104.08759. URL https://arxiv.org/abs/2104.08759.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R. 2015.
Conflict-based search for optimal multi-agent pathfinding.
Artificial Intelligence 219: 40–66.
Stern, R.; Sturtevant, N.; Felner, A.; Koenig, S.; Ma, H.;
Walker, T.; Li, J.; Atzmon, D.; Cohen, L.; Kumar, S.; et al.
2019. Multi-Agent Pathfinding: Definitions, Variants, and
Benchmarks. In SoCS.
Wurman, P. R.; D’Andrea, R.; and Mountz, M. 2008. Coor-
dinating Hundreds of Cooperative, Autonomous Vehicles in
Warehouses. AI Magazine 29(1): 9.

241

