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Abstract
As the non-playable characters (NPCs) of squad-based
shooter computer games share a common goal, they should
work together in teams and display cooperative behaviours
that are tactically sound. Our research examines genetic pro-
gramming (GP) as a technique to automatically develop ef-
fective team behaviours for shooter games. GP has been used
to evolve teams capable of defeating a single powerful en-
emy agent in a number of environments without the use of
any explicit team communication. The aim of this paper is
to explore the effects of communication on the evolution of
effective squad behaviours. Thus, NPCs are given the ability
to communicate their perceived information during evolution.
The results show that communication between team members
enables an improvement in average team effectiveness.

Introduction
In recent years, there has been an emergence of squad-based
shooter games. The artificial intelligence (AI) of the non-
playable characters (NPCs) of these games should be team-
orientated and tactical as the NPCs should work together to
devise the most effective method to achieve their common
goal. As tactics are highly dependent on the situation (i.e.
team supplies, enemy movement, etc) (Thurau, Bauckhage,
and Sagerer 2004) it is very difficult for game developers
not only to code the tactical behaviours but also to decide
when and where it would be effective to use certain tactics.
As such, game developers find it difficult to create teams of
NPCs that are able to correctly assess a situation, choose
effective courses of action for each NPC and work together
to achieve their common goal.
Rather than attempting to develop complex behavioural

systems that may allow NPCs to display intelligent team be-
haviour, game developers have opted to continue using de-
terministic techniques to implement the AI of NPCs and use
simple techniques to make it appear as if the NPCs are coop-
erating in an intelligent manner. For example, some devel-
opers prevent two NPCs from simultaneously shooting at the
player, causing them to appear to be taking turns attacking
the player. This is combined with audio cues from the NPCs
such as shouting “cover me” when an NPC goes to reload
its weapon to create the illusion of cooperative behaviour.
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However, using rudimentary or “cheating” mechanisms to
simulate cooperative behaviour in shooter games is less than
ideal. Moreover, the use of deterministic techniques results
in repetitive and predictable behaviour.
We propose that genetic programming (GP) can be used

to evolve effective team behaviours for NPCs in squad-
based shooter games. In previous work, GP has been suc-
cessfully used to evolve effective teams in shooter environ-
ments of varying difficulty (Doherty and O’Riordan 2006;
2007). In these experiments, teams are evolved against a
single powerful enemy agent that can be likened to the hu-
man player of a single-player shooter game. The difficulty
of the environment is varied by altering the field of view
(FOV) and viewing distance of NPCs. In modern shooter
games, both the NPCs and the human player(s) have limited
visual ranges within which information can be perceived.
In our previous research, the evolved teams could not

communicate with each other. It was found that the effec-
tiveness of evolved teams decreases significantly as the en-
vironments become more difficult. In this paper, NPCs are
given the ability to share perceived information as the game
is played in order to explore the effects of communication
on the effectiveness of evolved squad behaviours. We hy-
pothesise that explicit communication between team mem-
bers should allow the NPCs to perceive the environment as
a team rather than individually, which should result in more
effective emergent team behaviours.

Related Work
With the emergence of squad-based shooter games, devel-
opers have struggled to create systems that allow teams of
NPCs to display effective squad behaviours. As such, devel-
opers have opted to use simple techniques to create the il-
lusion of cooperation amongst the NPCs. Command hierar-
chies (Reynolds 2002) and cognitive architectures (Best and
Lebiere 2003) have both been proposed as methods to im-
plementing squad AI for shooter games. Decentralised ap-
proaches (Van Der Sterren 2002a) where the team behaviour
emerges from interactions of team members and centralised
approaches (Van Der Sterren 2002b) where a team leader
makes the decisions have also been suggested. However,
none of these approaches are perfect and all require a con-
siderable amount of time and effort to design and implement.
Evolutionary computation (EC) techniques have not been
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used extensively in the exploration and research of AI for
computer games. As the environments and range on NPC
behaviours in a computer game are generally very complex,
developers are hesitant to introduce EC techniques into their
games as there is no guarantee desirable behaviours will be
found. However, a number of games that have incorpo-
rated EC have proven to be very successful, e.g. Black &
White (Lionhead Studios 2001) or S.T.A.L.K.E.R.: Shadow
of Cherynobyl (GSC GameWorld 2006). The research com-
munity has begun to realise the potential of EC techniques
as developmental tools for game-AI. Champandard (2004)
used a GA to successfully evolve NPCs in an first-person
shooter game to dodge enemy fire. In addition, GAs has
been used to successfully design tactics for an RTS game
(Ponsen 2004) and to successfully tune an NPC’s weapon
selection parameters for a shooter game (Cole, Louis, and
Miles 2004).
A few attempts have been made at evolving teams for

shooter games (Stanley, Bryant, and Miikkulainen 2005;
Bakkes, Spronck, and Postma 2004). Both techniques have
been used to successfully evolve team behaviours. How-
ever, neither technique is ideal for developers to use to cre-
ate squad behaviours for NPCs. In both cases, the team’s
behaviour is evolved in an adaptive manner, while the game
is being played, so developers cannot tell or test, in advance,
what behaviours the NPCs will exhibit or how tactically pro-
ficient they will be. Moreover, the first system (Stanley,
Bryant, and Miikkulainen 2005) requires a human player to
specify which attributes are to be evolved and the second
mechanism (Bakkes, Spronck, and Postma 2004) requires a
number of game-specific enhancements to the GA paradigm.
GP has been successfully used to simulate team evolu-

tion in a number of different simulated domains. GP was
first applied to team evolution by Haynes et al. (Haynes et
al. 1995b). Luke and Spector (1996) used GP to success-
fully evolve predator strategies that enable a group of lions
to successfully hunt gazelle. In Luke’s work, heterogeneous
teams are shown to perform better than homogeneous teams.
GP has also been used to enable a team of ants to work to-
gether to solve a food collection problem (LaLena 1997).
The ants must not only cooperate in order to reach the food
but must also work together to carry it as it is too heavy for
one ant to carry alone. Richards et al. (2005) used a genetic
program to evolve groups of unmanned air vehicles to effec-
tively search an uncertain and/or hostile environment. Their
environments were relatively complex, consisting of: hostile
enemies, irregular shaped search areas and no fly zones. In
addition, GP has been used to successfully evolve sporting
strategies for teams of volleyball players (Raik and Durnota
1994) and teams of soccer players (Luke et al. 1997).
It has been argued that communication is a necessary pre-

requisite to teamwork (Best and Lebiere 2003) and plays a
key role in facilitating multiagent coordination in cooper-
ative and uncertain domains (Chakraborty and Sen 2007).
Moreover, in a study conducted by Barlow et al. (2004) on
teamwork in multi-player shooter games, it was found that
communication is one of the three main factors that con-
tribute to a team’s success, together with role assignment
and team coordination.

Gaming Environment

The environment is a 2-dimensional space, enclosed by four
walls and is built using the Raven game engine (Buckland
2005, chap. 7). Items are placed on the map at locations
equidistant from both the team and enemy starting points.
These items consist of health packs and a range of weapons
that respawn after a set time if collected (see Figure 1).

Figure 1: Environment map (FOV 180, viewing distance 50)

Both types of agent (i.e. team agents and enemy agent)
use the same underlying goal-driven architecture (Orkin
2004) to define their behaviour. Composite goals are broken
down into subgoals; hence a hierarchical structure of goals is
created. Goals are satisfied consecutively so the current goal
(and any subgoals of it) are satisfied before the next goal
is evaluated. If an NPC’s situation changes, a new, more
desirable goal can be placed at the front of the goal-queue.
Once this goal is satisfied, the NPC can continue pursuing
its original goal. Although the underlying goal architecture
is the same, team agents use a decision-making tree evolved
using GP to decide which goal to pursue, whereas the en-
emy uses desirability algorithms associated with each goal.
These desirability algorithms are hand-coded to give the en-
emy intelligent reasoning abilities. Random biases are used
when creating these desirability algorithms, in order to vary
the enemy’s behaviour from game to game.
The team consists of five agents each of which begin the

game with the weakest weapon in the environment. The
enemy agent has five times the health of a team agent and
begins the game with the strongest weapon with unlimited
ammunition. Both types of agent have a memory allowing
them to remember information they perceive. Any dynamic
information, such as team or enemy positions, is forgotten
after a specified time. If more than one team agent has
been recently sensed by the enemy, the enemy will select
its target based on distance. Weapons have different ideal
ranges within which they are more effective and bullets for
weapons have different properties, such as velocity, spread,
etc. Agents also have limited auditory and viewing ranges
within which they can perceive game information.
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The Genetic Program
In our genetic program, the entire team of five NPCs is
viewed as one chromosome, so team fitness, crossover and
mutation operators are applied to the team as a whole. Each
agent is derived from a different part of the chromosome, so
evolved teams are heterogenous (see Figure 2).

Figure 2: Sample GP chromosome

A strongly typed genetic program is used so as to con-
strain the type of nodes that can be children of other nodes.
In strongly typed genetic programming (Montana 1995), the
initialisation process and genetic operators must only allow
syntactically correct trees to be produced. There are five
node sets and a total of fifty nodes used in the evolution.
These nodes represent: goals the NPC can pursue along with
the IF statement, conditions under which goals are to be
pursued, positions on the map, gaming parameters that are
checked when making decisions and numerical values.

Fitness Calculation
The fitness function takes into account the games’ duration
and the remaining health of the enemy and team agents.

RawFitness =
AvgGameTime

Scaling ×MaxGameTime
+

EW × (Games× TSize×MaxHealth− EH) + AH

Games× TSize×MaxHealth

where AvgGameTime is the average duration of the
games, Scaling reduces the impact game time has on fitness
(set to four),MaxGameTime is the maximum game length
(i.e. 5000),EH andAH are the amount of health remaining
for the enemy and for all five team agents respectively, EW
is a weight (set to five) that gives more importance to EH ,
Games is the number of games played per evaluation (i.e.
twenty), TSize is the team size (i.e. five) andMaxHealth
is the maximum health of a team agent (i.e. fifty).
The team’s fitness is then standardised such that values

closer to zero are better and the length of the chromosome is
taken into account to prevent bloat.

Fitness = (MaxRF −RawFitness) +
Length

LengthFactor

where MaxRF is the maximum value RawFitness
can hold, Length is the length of the chromosome and
LengthFactor is a constant used to limit the influence
Length has on fitness (set to 5000).

Selection
There are two forms of selection used. The first is a form
of elitism where m copies of the best n chromosomes from
each generation are copied directly into the next generation.
Three copies of the best and two copies of the next best in-
dividual are retained in this manner. The second method is
roulette wheel selection. Any chromosomes selected in this
manner are subjected to crossover and mutation (given prob-
abilities of 0.8 and 0.1 respectively). To increase genetic di-
versity, there is also a 2% chance for new chromosomes to
be created and added to the population each generation.

Crossover
The crossover operator is specifically designed for team evo-
lution (Haynes et al. 1995a). A random Tsize bit mask is
selected that decides which of the team agents in the parent
chromosomes are to be altered during crossover. A ‘1’ in
the mask indicates that the agent at that position is copied
directly into the child chromosome and a ‘0’ indicates the
agent is to take part in crossover with the corresponding
agent of the other parent. A random crossover point is then
chosen within each agent to be crossed over. The node at the
crossover point in each corresponding agent must be from
the same node set in order for the crossover to be valid.

Mutation
Two forms of mutation are used. The first, randomly
chooses two agent trees from the same team chromosome
and swaps two randomly selected subtrees between the
agents. Similar to the crossover operation, the root nodes
of the subtrees must be from the same node set. The second
form randomly selects a subtree from the chromosome and
replaces it with a newly created tree.

Experimental Setup
In order to explore the effects of communication on the
evolution of squad behaviours, the environments, genetic
program and game parameters used for these experiments
are identical to those used in previous work (Doherty and
O’Riordan 2007), in which teams were evolved without the
use of explicit communication. In Doherty and O’Riordan
(2007), teams have been evolved in eight shooter environ-
ments of varying difficulty. As there was no explicit commu-
nication, teams evolved to cooperate implicitly. However, it
was found that the effectiveness of evolved teams decreases
significantly as the environments become more difficult.
The only difference between these experiments and those

of previous research is that in these experiments NPCs are
given the ability to share perceived information as the games
are played. As game information is sensed by an NPC, it is
broadcast by the NPC to each of its teammates in the form
of messages. Each of the teammates then receive the mes-
sage and store the information in memory. Types of infor-
mation that can be exchanged between teammates includes
the location of health and ammunition packs as well as the
enemy’s current position. A visualisation of an agent in-
forming teammates of the location of shotgun ammunition is
shown in Figure 3. We hypothesise that this sharing of game
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information between team members should allow the NPCs
to perceive the environment as a team rather than individ-
ually and that this should result in more effective emergent
team behaviours.

Figure 3: Sharing perceived information with teammates

In these experiments, the difficulty of the environment is
varied by altering the agents’ visual perception capabilities.
Experiments are set up for two fields of view (90 and 180
degrees) and four viewing distances (50, 200, 350 and 500
pixels) so a total of eight experiments are conducted. The
enemy viewing distance is scaled relative to the viewing dis-
tance of the team NPCs. As there are five team agents and
only the one enemy agent, the collective viewing range of
the team covers a much larger portion of the map than that
of a single agent. Additionally, the human player in single-
player shooter games, to which the enemy is likened, usually
has a much longer viewing distance than that of the NPCs.
For these reasons, it was decided to allow the enemy’s view-
ing distance to be twice that of a team agent.
Twenty separate evolutionary runs are performed in each

of the eight environments. In each of the runs, 100 team
chromosomes are evolved over 100 generations. Each team
evaluation in each generation comprises twenty games. The
best performing team from each of the runs is recorded.
As the enemy’s behaviour varies from game to game, due

to the random biases used when initialising its desirability
algorithms, each recorded team is tested more extensively
using a larger number of games to obtain an accurate and
robust measure of its effectiveness. The effectiveness tests
involve evaluating each recorded team’s performance over
1000 games and recording the number of games won by the
team out of the 1000. Note that draws are not counted in
the measure of team effectiveness as draws are very uncom-
mon. Once these tests are performed for each of the recorded
teams, the results from each environment are compared to
previous results. Statistical significance tests are performed
to determine if explicit communication provides a signifi-
cant benefit to the evolution of effective team behaviours.

Results
Figure 4 and Figure 5 show the number of wins obtained by
the most effective teams evolved with communication and
without communication in the 90 and 180 degree FOV en-
vironments respectively. In both sets of environments, the

results show that communication causes an improvement in
the most effective teams evolved in all environments bar the
least difficult. In the least difficult environments, the results
for the best teams evolved with and without communication
are almost even, differing by only 3 wins in the 90 degree
FOV environment and 4 wins in the 180 degree FOV envi-
ronment. We believe that communication does not benefit
the teams in these environments as the individual NPCs can
view the majority of the map by themselves and do not need
their teammates to communicate the game information.

Figure 4: Comparison of maximum wins FOV 90

Figure 5: Comparison of maximum wins FOV 180

As the environments in Figure 4 and Figure 5 become in-
creasingly more difficult, the percentage improvement in the
effectiveness of the best teams evolved with communication
over those without communication also increases. In gen-
eral, communication seems to benefit the teams more as the
viewing distances of team agents decreases. This is justifi-
able as team agents with more restricted perceptual ranges
would find it more difficult to locate specific game objects
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on their own, and thus should benefit more from the sharing
of game information.
Figure 6 and Figure 7 show the average number of wins

obtained by the twenty teams evolved with communication
and the twenty evolved without communication in the 90
and 180 degree FOV environments respectively. Similar
to Figure 4 and Figure 5, excluding the least difficult en-
vironments, the results show an increase in the percentage
improvement in average team effectiveness in those teams
evolved with communication over those without communi-
cation as the environments become more difficult.

Figure 6: Comparison of average wins FOV 90

Figure 7: Comparison of average wins FOV 180

To test the significance of the results, paired T-tests have
been performed between the teams evolved without commu-
nication and the teams evolved with communication in each
of the environments. For a confidence interval of 95%, any
comparison that records a p-value below 0.05 shows a statis-
tically significant difference in the two samples. The results
displayed in Figure 6 shows that communication affords an
improvement in the average team performance in all envi-

ronments where the FOV is 90 degrees. This improvement
in performance is statistically significant for the 50, 200 and
350 pixel viewing distance environments (with p-values of
0.00, 0.00 and 0.03 respectively) but is not significant for
the 500 pixel viewing distance environment (p-value 0.80).
In Figure 7, the improvement in team effectiveness is only
statistically significant in the 50 pixel viewing distance en-
vironment (p-value 0.00). In addition, the use of communi-
cation actually causes a decrease in team performance in the
500 pixel environment but this disimprovement is not statis-
tically significant (p-value 0.82).
In the 200 pixel and 350 pixel viewing distance environ-

ments the results are statistically better when the FOV is
90 degrees (p-values of 0.00 and 0.03 respectively) but not
when the FOV is 180 degrees (p-values of 0.33 and 0.63 re-
spectively). This may be due to the fact that the enemy’s
FOV is also more restricted in the 90 degree FOV environ-
ments making it more difficult for the enemy to spot team
agents attacking from the sides. Hence, communication be-
tween team members may provide the team with opportu-
nity to attack more effectively. Additionally, the visual range
of NPCs in shooter games is usually cone shaped, meaning
their FOV is closer to 90 degrees than 180 degrees.

Conclusions and Future Work
This paper explores the effects of communication on the
evolution of squad behaviours for teams of NPCs in shooter
games. The results show that communication between team
members enables an improvement in team effectiveness in
all environments bar the least difficult one. In the least dif-
ficult environment, individual NPCs can view the vast ma-
jority of the map by themselves and communication is not
needed to inform them of key game information. In addition,
the decrease in team effectiveness when using communica-
tion is not statistically significant. In contrast, teams evolved
in the more difficult environments, where NPC viewing
ranges are most restricted, were shown to have a significant
improvement in effectiveness when communication is used.
The sharing of information by the team saves the NPCs hav-
ing to explore the environment individually. Despite achiev-
ing a statistically significant improvement in effectiveness
in the most difficult environments, the evolved teams still
only managed to obtain win percentages averaging 11.9%
and 2.5% in comparison to win percentages achieved in the
least difficult environments which averaged 67% and 70%
for FOVs of 90 and 180 degrees respectively.
The current experiments show that as the agents’ individ-

ual visual fields become larger, the need for communication
is reduced. This is due to the fact that the only informa-
tion being communicated here is perceptual information. As
an agent’s own visual field becomes large, there is less of
a need for teammates to inform them of the locations of
game objects as they can more easily find the locations of
game objects themselves. We hypothesise that information
other than perceived game information that can be commu-
nicated amongst the agents, such as tactical commands, may
be more important and may be unaffected by the broadening
of visual fields.
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In future, we wish to continue our research on the role
of communication in facilitating teamwork for squad-based
shooter games by exploring different visual ranges for the
NPCs and evolving behaviours on different types of map.
Additionally, we wish to add explicit communication nodes
into the genetic program in an attempt to directly evolve ef-
fective communication between the team members. We hy-
pothesise that teams will evolve to make use of the com-
munication nodes in order to perform more cooperatively,
particularly in the more restrictive environments.
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