
Logical Agents for Language and Action∗

Martin Magnusson and Patrick Doherty
Department of Computer and Information Science
Linköping University, 581 83 Linköping, Sweden
marma@ida.liu.se,patdo@ida.liu.se

Abstract

Game developers are faced with the difficult task of creating
non-player characters with convincing behavior. This com-
monly involves an exhaustive specification of their actions in
every conceivable situation that might arise. The process is
laborious and the results do not apply in new and unforeseen
circumstances. We present an agent architecture where game
characters have a basic understanding of their environment
that enables them to figure out what to do by themselves.
Knowledge about facts and actions is encoded in a formal
logic where automated reasoning technology can apply the
knowledge to answer novel questions in dialog and to plan
actions in new situations. A number of examples serve to
demonstrate how the technology meets the challenges of ap-
plication in a simple computer game prototype. We envision
this technology being used to create more flexible game char-
acters with a deeper understanding of the world they inhabit.

Introduction

The behavior of most non-player characters (NPCs) in com-
puter games relies on the developers’ foresight. Game play
programmers meticulously design finite state machines that
specify what NPCs should do in every state they can end
up in, script writers painstakingly construct dialog trees that
completely determine all possible conversational exchanges,
and game designers carefully craft quests where the NPCs
play out predefined scenarios. But a hallmark of intelligence
is the ability to deal with the unexpected. Unforeseen situa-
tions pose problems for state machines, novel questions are
impossible in scripted dialog, and dynamic scenarios call for
the consideration of alternative courses of action.

A few games have successfully attacked one or more
of these challenges using artificial intelligence technology.
One example is the application of a planning algorithm,
reminiscent of the classic STRIPS planning framework, in
Monolith’s game F.E.A.R. (Orkin 2005). Enemy soldiers
plan sequences of actions for taking cover and attacking the
player instead of relying on finite state machines. The tight

∗This work is supported in part by the National Aeronautics
Research Program NFFP04 S4203, CENIIT, and the Strategic Re-
search Center MOVIII, funded by the Swedish Foundation for
Strategic Research, SSF.
Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

time constraints enforced by the real-time combat situation
necessitated a very limited planning model, but it is never-
theless a demonstration of feasibility.

EA’s game series The Sims features characters that dis-
play a broader range of autonomous action (EA 2007). Part
of the game’s appeal is the player’s ability to modify the
environment and see how this causes the Sims to modify
their behavior. This behavior is reactive, in response to the
characters’ needs and desires, rather than being based on a
planning framework. The game adds an element of dialog,
which is an important behavior that Sims engage in. But the
sounds that they utter have no content or meaning, and the
player has no means of participating in any conversation.

This is possible to some degree in the game Creatures
from Millennium Interactive (Grand, Cliff, & Malhotra
1997). The player is able to teach life-like creatures with
neural network “brains” limited language skills and to watch
them reproduce and evolve over generations through genetic
algorithms. Creatures successfully manages to build an en-
tertaining game using advanced artificial life technologies.

Academia has approached the challenge of intelligent
game characters from at least two different viewpoints. The
Oz project (Bates 2002) and the Virtual Theater project
(Doyle 2001) emphasized interactive drama. They at-
tempted to provide programming languages and tools for
creating dramatic stories that involve believable agents who
appear intelligent to the player. This is an author intensive
solution where character behaviors are scripted beforehand
to ensure a high degree of control over the result.

In contrast, more traditional artificial intelligence re-
search, such as the Soar architecture, emphasize agent au-
tonomy. Soar is based on the use of production rules, which
the Soar/Games project coupled to Quake 2 and Descent 3
(Laird & van Lent 1999). This allowed the researchers to
build reusable rule bases for autonomous agent behavior.

Unlike Soar, which is not primarily a planning frame-
work, SquadSmart (Gorniak & Davis 2007) demonstrates
how hierarchical task network planning can be used for
multi-agent planning in games. An incremental algorithm
ensures bounded computation time and an execution mod-
ule synchronizes actions and copes with failures.

Game contexts also provide excellent opportunities to
study natural language understanding problems such as ref-
erence resolution in circumscribed environments (Gorniak,

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

72



Orkin, & Roy 2006). But the complexity of unrestricted
language makes for prohibitively difficult challenges, even
given the limited domains of a game applications. We think
a more immediately practical approach is to restrict the nat-
ural language input, e.g. to exclude ambiguity, while still al-
lowing much more freedom than in traditional dialog trees.

In this paper we present an agent architecture where logic
is used to represent the knowledge of NPCs in a declarative
form that is applicable even in unforeseen situations, theo-
rem proving derives answers to dialog questions that were
not scripted beforehand, and reasoning about action finds
plans for scenarios that were not predetermined. The tech-
nology has been applied to a simple dialog-based adventure
game depicted in Figure 1. The reader is encouraged to ex-
periment with our demonstrator, ANDI-Land, that is avail-
able for download at www.andi-land.com.

Logical Agents

The characters of ANDI-Land are autonomous agents with
Augmented Natural Deductive Intelligence called ANDIs.

Each ANDI is equipped with a knowledge base, i.e. a
database of logical formulas that encode the character’s
knowledge about the laws that govern the game world and
its memory of recent events. The representation is based
on Temporal Action Logic (Doherty & Kvarnström 2007), a
very expressive logic designed for commonsense reasoning
problems that involve action and change, but the computer
game application necessitated new extensions for reasoning
about other agents, beliefs, and communication.

ANDIs are also equipped with an automated theorem
prover for reasoning with the content of the knowledge base.
Rather than working with an off-the-shelf resolution prover
we have developed an automated natural deduction system
based on the use of an efficient quantifier-free form of logic
(Pollock 1999). The proof rules used in natural deduction
are more intuitive and the resulting proofs are similar to hu-
man reasoning (Rips 1994). Moreover, the rule set is exten-
sible and easily accommodates special purpose rules, e.g. to
integrate an efficient pathfinding algorithm.

An agent architecture based exclusively on logic and the-
orem proving might not be suitable for the split-second deci-
sions required in first-person shooter combat situations. But
achieving satisfactory performance for game applications is
certainly possible. NPCs in our ANDI-Land game proto-
type display no noticeable delay in their responses. While
all of the theorem prover’s functionality has not yet been in-
tegrated with the game prototype, let alone a full size game
world, there are many opportunities for improving perfor-
mance. A few planned enhancements include porting the
implementation from Lisp to C++, using constraint solvers
for efficient reasoning in common domains (Magnusson &
Doherty 2007), and introducing heuristic search.

What we gain from the generality of logical reasoning is a
simple but highly capable architecture where the many prob-
lems faced by partially or fully autonomous agents are for-
mulated in a unified way in terms of proof. In the follow-
ing we shall introduce the key features of our current sys-
tem with the help of example natural language input from a

Figure 1: Magni meets Smith in ANDI-Land

player, formulas from the underlying logical representation,
as well as NPC responses.

Questions and Answers

Most games that feature a dialog element use pre-authored
questions and answers. ANDIs parse natural language in-
put into logical formulas and generate their replies on the
fly. It would, however, be unrealistic to attempt a deep un-
derstanding of arbitrary natural language input. Full natu-
ral language understanding is believed to be an AI-complete
problem, i.e. a problem impossible to solve without solv-
ing all other problems in artificial intelligence at the same
time. Instead, the ANDI-Land game’s input interface uses
a unique interactive natural language parser to guide the
player towards sentences that are relevant in the particular
game. A chart parser, based on Russel and Norvig’s descrip-
tion (2003), produces a partial parse as soon as the player
starts typing. Though the initial words do not constitute a
complete sentence, the resulting parse chart still contains
useful information. Specifically, by looking at active chart
edges we can collect all words that would advance the parse
if they were next in the input. These word suggestions are
presented to the player who chooses one by typing or click-
ing it. E.g., if the player start typing “who owns”, the list
of suggestions include all of the objects previously encoun-
tered in the game.

The interactive input interface supports an open dialog
that does not limit the player’s choices to a handful of alter-
natives, as dialog trees do. This is a challenge for any mech-
anism used by the NPCs to find appropriate responses. Sup-
pose, e.g., that Magni (the player) enters the shop of Smith
(a metalworker) and sees an axe. There is no scripted sce-
nario or dialog that the player must adhere to, but he thinks
the axe might be of importance. He asks:

Magni: Who owns the axe?

Though Smith has never seen this question before, he uses
his general reasoning mechanisms to answer it. To be able to
translate the input into a logical formula that he can reason
with he needs some logical representation of questions. We
follow Searle (1969), and many others, in treating commu-
nication as consisting of a special kind of actions, so called
speech acts. The above input can be viewed as a request to
give the speaker a reference to the current owner of the axe:

informRef (magni, value(12:15, owner(axe)))

The function value denotes the value of owner(axe) at the
given time point, where the clock time 12:15 should be read

73



as an abbreviation of a Unix time stamp uniquely identify-
ing both a date and time. Assuming that Smith owns the
axe at that time, the simplest response would be to inform
Magni that value(12:15, owner(axe)) = smith. However,
if all that was required to satisfy a request for a reference
to a person or object was to supply something that was
equal to that person or object, then an obnoxious NPC might
respond with the tautological value(12:15, owner(axe)) =
value(12:15, owner(axe)), i.e. “The owner of the axe owns
the axe”. Instead we require an answer that provides a name
string that identifies the axe’s owner. Smith uses a special
Id relation to inform Magni that the axe’s owner is identified
by the string “smith”:

inform(magni,
“Id(“value(12:15, owner(axe))”, “smith”)”)

Simply passing the Id relation as an argument to the in-
form action constitutes a syntax error in first-order logic.
But the above formula is surrounded by quotation marks.
While quoted formulas are not part of any introductory logic
text books, they can be incorporated into standard first-order
logic through a translation from quoted formulas into regu-
lar first-order terms (Morgenstern 1988). The ability to turn
formulas into terms and pass them as arguments to speech
acts is the enabling feature of our formulation of communi-
cation between agents.

Of course, we would prefer Smith’s reply to use plain
English. But since Smith has never seen Magni’s question
before, there is no way he could have an English transla-
tion of the answer pre-stored. Shieber’s uniform architec-
ture for natural language parsing and generation addresses
this difficulty with minimal machinery (Shieber 1988). It
effectively makes the natural language grammar reversible
with relatively small modifications to the basic chart parsing
algorithm. First, a simple mechanism introduces personal
pronouns based on the current dialog context. Then, run-
ning the chart parser in “reverse” on Smith’s answer formula
generates an English response to the original question, here
together with a follow up question about what Smith would
charge for the axe, which is processed in the same way:

Smith: I own the axe.

Magni: How much is the axe?

Smith: The axe is 5 gold.

The question answering mechanism just described does not
require pre-authored dialog but relies instead on a generative
context free grammar. While our intention is to construct a
larger grammar with more natural-sounding sentences, even
a relatively small grammar can produce an exponential num-
ber of novel sentences. We hope that this will encourage
players to solve game puzzles by reflecting on what they in-
tend to accomplish with the dialog rather than mindlessly ex-
hausting the handful of alternatives offered by dialog trees.

Ignorance and Learning

Dialog can also be used to teach NPCs simple facts. Con-
sider e.g. the following continuation of the previous dialog
between Magni and Smith:

Magni: How much gold do I own?

Smith: I don’t know.

Magni: I own 6 gold.

As before, the question results in a request for information
that Smith tries to satisfy. But this time he lacks the re-
quested knowledge and gives a default “I don’t know” re-
sponse when his proof attempt fails. Magni tells Smith about
his wealth through the inform action, again using the Id re-
lation as content:

inform(smith,
“Id(“value(12:18, gold(magni))”, “6”)”)

Smith applies his theorem prover to the new input to make
sure that it doesn’t conflict with his existing knowledge. The
proof does not result in any contradictions and Smith adds
the content to the other beliefs in his knowledge base and
replies:

Smith: I see.

Magni: How much gold do I own?

Smith: You own 6 gold.

Declarative knowledge, like the logical representation used
by Smith and other ANDIs, can be additively expanded.
This makes it possible to teach the ANDIs new facts. The
new knowledge is automatically put to use by the reason-
ing mechanism, e.g. to answer subsequent questions as was
done above.

Reasoning and Proof

Sometimes the answer to a question is not stored in an
NPC’s knowledge base but is an implicit consequence of it.
The ANDI theorem prover finds such answers by deductive
proof with the formulas in the character’s knowledge base as
premises. The following question is a case in point:

Magni: Is my gold more than the axe’s price?

Yes/no questions correspond to requests for information
about whether the statement is true or false. The natural
language grammar parses this as an informIf speech act:

informIf (magni, “value(12:20, gold(magni)) >
value(12:20, price(axe))”)

While Smith has neither seen this question before, nor has
any sentences of the above form in his knowledge base, he
is still capable of answering. His natural deduction prover
includes a set of rewrite rules for mathematical reasoning
that successively simplify expressions involving relations
between known quantities. The proof is successful and
Smith replies affirmatively:

Smith: Yes, your gold is more than the axe’s price.

Automated reasoning vastly extends the coverage of an
ANDI’s knowledge. It is what makes the open natural lan-
guage dialog feasible since novel input would leave an NPC
without general reasoning capabilities perplexed.

74



Actions and Execution

We have seen examples of speech acts for what-questions
(informRef ), yes/no-questions (informIf ), and statements of
facts (inform). But the player’s next sentence involves an
action that is not only communicative:

Magni: Sell the axe to me.

The grammar recognizes the above as an imperative com-
mand where Magni requests Smith to perform the action of
selling him the axe. The logical representation of the re-
quested action occurrence uses the Occurs relation that takes
an acting agent, a time interval, and an action instance as ar-
guments. In this case the time interval (t1, t2] is left unde-
termined while the agent supposed to do the selling is Smith
and the agent he is selling to is Magni:

∃t1, t2 [Occurs(smith, (t1, t2], sell(axe, magni))]

As always, Smith has no predefined response but passes the
input to his theorem prover. Of course, we should not expect
a deductive proof to succeed unless Smith has in fact already
performed the requested action. But the ANDI theorem
prover is not purely deductive. A special abduction proof
rule can be used to schedule an action for execution, thereby
committing to the action occurrence. However, committing
to executing an action is not enough to prove that the action
will actually occur. One needs to make sure that it is pos-
sible to execute the action and that one knows exactly what
action one is supposed to execute. The former condition is
satisfied, since Smith owns the axe and Magni can afford it,
but could otherwise have required additional actions to sat-
isfy. The latter condition is satisfied if Smith knows a name
string identifying the action, as denoted by an ActionId re-
lation. Knowing how to sell the axe to Magni is uncom-
plicated. More difficult would be e.g. to sell the axe to the
highest bidder. Such an action would first involve finding
out who the highest bidder is (Moore 1980). Smith’s ability
to satisfy Magni’s request, then, is captured by the following
instance of a general action occurrence axiom:

Committed(smith, t1,
“Occurs(smith, (t1, t2], sell(axe, magni))”) ∧

Executable(smith, (t1, t2], sell(axe, magni)) ∧
Believes(smith, t1,

“ActionId(sell(axe, magni), sell(axe, magni))”) →
Occurs(smith, (t1, t2], sell(axe, magni))

The action that Smith has committed to is then executed by
a procedure call at the appropriate time, which is as soon as
possible in this case. The logical representation of actions
and the abductive proof rule for scheduling actions make it
possible to treat Magni’s command in the same way as any
other request, namely as a formula to be proved.

Persistence and Change

Actions, such as Magni’s purchase of the axe, change some
aspects of the world while leaving most unaffected. It is not
trivial for an NPC with incomplete knowledge of the world
to predict which aspects change and which persist. In fact,
providing a concise representation that supports such pre-
dictions is the (in)famous frame problem. This is precisely

what the occlusion concept in Temporal Action Logic was
designed to deal with.

Properties and relations that may change over time, such
as owner(axe), are called fluents. They can be given different
values at different time points using the value function. But
rather than having to specify their values at every time point,
we want to implement the blanket assumption that their val-
ues persist over time. This assumption, however, is not al-
ways true since actions change the values of fluents. The
role of occlusion is to selectively release fluents from persis-
tence, i.e. giving them permission to change. By occluding
fluents at specific time points one obtains a fine grained con-
trol over their persistence. In particular, actions can change
fluents by first temporarily occluding them.

The resulting behavior is exemplified by the following di-
alog with another NPC, the woodsman Jack, who does not
know of Magni’s purchase:

Magni: Who owned the axe yesterday?

Jack: Smith owned the axe yesterday.

Magni: Who owns the axe today?

Jack: Smith owns the axe today.

Jack knew that Smith used to own the axe (where “yester-
day” is simply interpreted as “24 hours ago”). But when
asked about its current owner he has no explicit knowledge
and therefore makes use of the blanket assumption of no
change. The special abduction proof rule, mentioned previ-
ously, lets Jack assume that the axe has not changed owners,
i.e. that owner(axe) is not occluded, as long as doing so does
not lead to inconsistency. The following axiom then propa-
gates the value of a fluent f over a time interval (t1, t2]:

¬Occlude((t1, t2], f) → value(t1, f) = value(t2, f)

Jack uses the axiom and his non-occlusion assumption to
project his knowledge that Smith owned the axe yesterday
forward in time. His prediction is reasonable, given that he is
not aware of the purchase which changes the owner(axe) flu-
ent (as well as the gold fluent for both the buyer and seller).

The purchase action, however, explicitly occludes the af-
fected fluents. Therefore, if Magni tells Jack that he bought
the axe at some earlier time point, Jack will have to conclude
that owner(axe) is occluded, which contradicts his previous
assumption that it was not occluded. With this new infor-
mation Jack believes that Magni rather than Smith currently
owns the axe, and he can apply a new persistence assump-
tion to predict that this will remain so:

Magni: I bought the axe from Smith.

Jack: I see.

Magni: Who owns the axe today?

Jack: You own the axe today.

Magni: Who will own the axe tomorrow?

Jack: You will own the axe tomorrow.

Persistence assumptions of this kind make it possible for the
NPCs to draw reasonable conclusions despite having insuf-
ficient information and being surrounded by a dynamically
changing world, such as those in modern computer games.

75



Goals and Plans

The same logical representation of actions used for reason-
ing about the changes caused by known action occurrences
can be used for goal-oriented action planning (GOAP) to
achieve desired outcomes. Suppose, e.g., that the woods-
man Jack has a goal to obtain lumber, represented by the
following formula:

∃t [value(t, owner(lumber)) = jack ∧ t > 12:25]

Jack tries to satisfy this goal in the same way that he would
try to satisfy a request communicated to him in dialog, by
proving it. The proof uses his knowledge of available ac-
tions and their effects on the world. Jack knows that having
lumber is an effect of felling trees, but that a precondition of
the chop action is the possession of an axe, which he does
not currently have. Since Jack now knows that Magni owns
the axe he plans to ask Magni to sell him the axe and then
use it to cut down a tree. Jack arrives at the following plan
of action through an abductive proof of his goal:

∃t1, t2, t3, t4, t5, t6, [
Schedule(jack, (t1, t2],

request(magni, “Occurs(magni, (t3, t4],
sell(axe, jack))”)) ∧

Schedule(jack, (t5, t6], chop) ∧
t1 < t2 < t3 < t4 < t5 < t6]

Planning is not exclusively used for achieving the agent’s
own goals. Any questions and commands from other agents
may give rise to planning. Suppose e.g. that Jack is asked
by the player to go visit Smith, but that he does not know
where Smith is. Assuming that Magni does know, he plans
to request Magni to inform him about Smith’s location and
then to walk there:

∃t1, t2, t3, t4, t5, t6, [
Schedule(jack, (t1, t2],

request(magni, “Occurs(magni, (t3, t4],
informRef (jack,

value(12:45, location(smith))))”)) ∧
Schedule(jack, (t5, t6],

walk(value(12:45, location(smith)))) ∧
t1 < t2 < t3 < t4 < t5 < t6]

If the player last saw Smith at the town square the scenario
would play out in English as follows:

Magni: Go to Smith.
Jack: Where is Smith?
Magni: Smith is at the town square.
Jack: I see.

The declarative representation of actions gives ANDIs the
capability both of executing given plans and of goal-oriented
action planning when no predefined plan is given. Jack’s
plan to buy the axe makes use of the information he learned
from Magni previously. His plan to ask Magni regarding
Smith’s location satisfies the requirement to know an iden-
tifier for the walk action and is made possible by the rep-
resentation of questions as regular speech acts amenable to
planning. Such capabilities make the NPCs better equipped
to deal with unforeseen circumstances.

Lies and Trust

In the previous dialog Jack proactively posed a question to
the player. This hints at an interesting challenge. If the
player, accidentally or on purpose, misinforms an NPC then
the NPC risks acting on false information and, worse, be-
lieving a contradiction. In logic, anything follows from a
contradiction so the effect would be disastrous. The poor
character would suddenly believe anything and everything,
effectively making him go mad.

The solution is to realize that no one believes everything
they hear (unless they are already mad). Rather, if you are
the hearer h, you believe your own percept of hearing a
speaker s telling you something, but only believe the content
c of what was said if you find the speaker to be trustworthy.
This insight can be captured by an axiom:

Occurs(s, (t1, t2], inform(h, c)) →
(Trustworthy(s) → Believes(h, t2, c))

Furthermore, if you later withdraw your belief in the trust-
worthiness of the person, you should also withdraw the be-
liefs that were consequences of the untrustworthy person’s
allegations. (While various methods of reestablishing trust
are possible, the simplest being to forget about the lie after a
certain time period, we leave this decision open for now.)

The mechanism is illustrated in the following dialog
where the player finds Jack with his newly cut small heap
of lumber and someone’s pick lying on the ground. Jack
does not know whose pick it is and the player tries to fool
him by claiming ownership of it:

Magni: I own the pick.
Jack: I see.

Jack assumes Magni to be trustworthy and therefore, by the
above axiom, believes his claim. But the player, emboldened
by this success, tries his luck with the lumber too:

Magni: I own the lumber.
Jack: No!
Magni: Who owns the lumber?
Jack: I own the lumber.

Magni’s assertion that he owns the lumber together with
the trustworthiness assumption leads to a contradiction with
Jack’s previous belief that he owns the lumber. A truth main-
tenance system detects the contradiction and withdraws it
from Jack’s knowledge base. The trustworthiness assump-
tion, and formulas marked as having been derived from it,
must also be withdrawn to prevent the contradiction from
reappearing. Jack is now undecided regarding the owner of
the pick and will only grant Magni a default “maybe” in re-
sponse to his repeated claim to own it.

Magni: Who owns the pick?
Jack: I don’t know.
Magni: I own the pick.
Jack: Maybe.

Default trust makes it possible to fool NPCs, but only if one
is careful not to attempt an obvious lie since the ANDIs’
truth maintenance system safeguards them from believing
contradictions.

76



Failure and Recovery

Dropping contradictory beliefs may have consequences on
the execution of plans. If a belief is necessary for a plan of
action to satisfy some goal, dropping it may cause that plan
to fail. But there are also other reasons for why a plan may
fail, such as disruptive events that are not under the agent’s
control. Common to all such reasons is that they necessitate
a method of graceful recovery from plan execution failures.

Consider again Jack’s plan to visit Smith. Jack has al-
ready executed the first part, namely asking Magni for di-
rections. But, in light of recent events, these directions can
not be trusted. Specifically, Jack’s belief that walking to the
town square is the same as walking to Smith’s location is
disbelieved at the same time as Magni’s trustworthiness is
disbelieved. Since Jack’s proof that his plan achieves the
goal depends crucially on this belief, the truth maintenance
system must also withdraw the fact that the goal has been
satisfied. The ANDI theorem prover is forced to reestablish
the goal by finding an alternative proof, e.g. by asking an-
other NPC for the information. This plan revision is an auto-
matic consequence when predictions made during planning
are contradicted by percepts during execution and enables
ANDI agents to pursue goals even in unpredictable environ-
ments where plans have no guarantee of success.

Conclusions

Game characters are usually not equipped to deal with new
circumstances, novel dialogs, and unscripted scenarios. The
problem is that they have no real understanding of the world
that surrounds them. They are told what to do rather than
taught how the world works. If what they were told to do
is no longer appropriate they have no means of figuring out
an altered course of action that is appropriate. Research on
autonomous agents, such as that presented in this paper, is
focused on precisely this challenge of building agents that
use their knowledge to figure out what to do by themselves.

To meet the challenges we have made extensive use of
logic. While the use of logic as a theoretical foundation is
relatively commonplace, it is often considered too inefficient
and brittle for practical application. A theorem prover can
potentially churn away indefinitely on a problem and a sin-
gle contradiction can throw it into permanent insanity. But
this is only true for applications that insist on agents with
complete reasoning and naı̈ve trust. If NPCs use incomplete,
time bounded, reasoning and only believe statements as long
as there is no reason to judge the source as unreliable, these
problems can be effectively dealt with.

With these premises we have built a logical agent ar-
chitecture and a practical application in the ANDI-Land
computer game prototype. The logical representation en-
ables a uniform treatment of problem solving in terms of
proof. ANDIs use theorem proving technology to apply
world knowledge in new situations, find answer to novel
questions, and plan courses of action to satisfy their goals.
Much work remains before the technology is sufficiently ef-
ficient and robust for larger scale applications, but it has the
potential to create NPCs with an understanding of their en-
vironment that finite state machines and decision trees lack.

Our vision is to populate game worlds with characters that
live out their lives autonomously. High level goals to survive
and thrive is the source of more immediate goals, plans, and
proactive action. One possible application is a functioning
miniature economy where the participants produce and trade
with necessities like food and tools. An inquisitive player
questioning the characters is not met by mindless machines
but with autonomous agents that know what they are doing
and why. Such NPCs present challenging problems for any
logical theory of agents. But a successful logical theory of
agents can help in the challenge of inhabiting games with
compelling NPCs.

References
Bates, J. 2002. The Oz project. http://www.cs.cmu.

edu/afs/cs.cmu.edu/project/oz/web/oz.html.

Doherty, P., and Kvarnström, J. 2007. Temporal action log-
ics. In Handbook of Knowledge Representation. Elsevier.

Doyle, P. 2001. The virtual theater project. http://www.
ksl.stanford.edu/projects/cait/.

EA. 2007. The Sims. http://thesims.ea.com/.

Gorniak, P., and Davis, I. 2007. Squadsmart: Hierarchi-
cal planning and coordinated plan execution for squads of
characters. In Proc. of AIIDE’07, 14–19.

Gorniak, P.; Orkin, J.; and Roy, D. 2006. Speech,
space and purpose: Situated language understanding
in computer games. CogSci’06 Workshop on Com-
puter Games. http://petergorniak.org/papers/

gorniak_games_cogsci_2007.pdf.

Grand, S.; Cliff, D.; and Malhotra, A. 1997. Creatures:
Artificial life autonomous software agents for home enter-
tainment. In Proc. of Agents’97, 22–29.

Laird, J. E., and van Lent, M. 1999. Developing an artificial
intelligence engine. In Proc. of GDC’99, 577–588.

Magnusson, M., and Doherty, P. 2007. Deductive planning
with temporal constraints. In Proc. of Commonsense’07.

Moore, R. 1980. Reasoning about knowledge and action.
Technical Report 191, AI Center, SRI International.

Morgenstern, L. 1988. Foundations of a logic of knowl-
edge, action, and communication. Ph.D. Dissertation, New
York, NY, USA. Advisor: Ernest Davis.

Orkin, J. 2005. Agent architecture considerations for real-
time planning in games. In Proc. of AIIDE’05, 105–110.

Pollock, J. 1999. Natural deduction. Technical report,
Department of Philosophy, University of Arizona. http:

//www.sambabike.org/ftp/OSCAR-web-page/

PAPERS/Natural-Deduction.pdf.

Rips, L. J. 1994. The psychology of proof: deductive rea-
soning in human thinking. MIT Press.

Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach. Prentice-Hall, 2nd edition.

Searle, J. R. 1969. Speech Acts: An Essay in the Philoso-
phy of Language. Cambridge University Press.

Shieber, S. M. 1988. A uniform architecture for parsing
and generation. In Proc. of COLING’88, 614–619.

77


	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org




