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Abstract 
This paper demonstrates the applicability of reinforcement 
learning for first person shooter bot artificial intelligence. 
Reinforcement learning is a machine learning technique 
where an agent learns a problem through interaction with 
the environment. The Sarsa( ) algorithm will be applied to a 
first person shooter bot controller to learn the tasks of (1) 
navigation and item collection, and (2) combat. The results 
will show the validity and diversity of reinforcement 
learning in a first person shooter environment. 

Introduction   
Over the past decade substantial research has been 
performed on reinforcement learning (RL) for the robotics 
and multi-agent systems (MAS) fields. In addition, many 
researchers have successfully used RL to teach a computer 
how to play classic strategy games such as backgammon 
(Tesauro 1995) and go (Silver, Sutton, and Muller 2007). 
However, there has been little research in the application of 
RL to modern computer games. First person shooter (FPS) 
games have common features to the fields of robotics and 
MAS, such as agents equipped to sense and act in their 
environment, and complex continuous movement spaces. 
Therefore, investigating the affects of RL in an FPS 
environment is an applicable and interesting area to 
research. 
 FPS bot artificial intelligence (AI) generally consists of 
pathfinding, picking up and using objects in the 
environment, and different styles of combat such as sniper, 
commando and aggressive. Bot AI in commercial games 
generally uses rule-based systems, state machines and 
scripting (Sanchez-Crespo Dalmau 2003). These 
techniques are typically associated with problems 
including predictable behaviors (Jones 2003), time 
consuming fine-tuning of parameters (Overholtzer 2004), 
and writing separate code for different creature types and 
personalities. RL is an interesting and promising algorithm 
to overcome or minimize such problems. For example, 
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experiments with different parameters can be automated, 
and the same algorithm can be used to generate different 
personality types. 
 The aim of this paper is to investigate how well RL can 
be used to learn basic FPS bot behaviors. Due to the 
complexities of bot AI, we have split the learning problem 
into two tasks. The first task looks at navigation and item 
collection in a maze-type environment. The second task 
looks at FPS combat. The Sarsa( ) algorithm will be used 
as the underlying RL algorithm to learn the bot controllers. 
Results will show the potential to create different 
personalities in FPS bots using the same underlying 
algorithm. 
 This paper is organized as follows. First, a brief 
overview of RL will be explained, followed by an outline 
of RL applied to computer games. The method section will 
outline the common algorithm used in both experiments. 
The next two sections describe the experimental setup, 
results and discussion of the navigation and combat 
experiments. 

Background 
RL is a popular machine learning technique which allows 
an agent to learn through experience. An RL agent 
performs an action a in the environment which is currently 
in state s, at time t. The environment returns a reward r 
indicating how well the agent performed based on a reward 
function. The agent’s internal policy is then updated 
according to an update function. Several RL algorithms 
have been developed over the years including TD, Q-
learning and Sarsa. The Sarsa algorithm, similar to Q-
learning, has successfully been applied to MAS using 
computer game environments (Bradley and Hayes 2005; 
Nason and Laird 2005). 
 An important part of all RL algorithms is the policy. The 
policy is a mapping between states and actions, called 
state-action pairs, and provide the path the agent should 
take to reach the maximum reward for the task. The two 
most common types of policy representations are the 
tabular and generalization approach. The tabular approach 
uses a lookup table to store values indicating how well an 
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action performs in a state, while the generalization 
approach uses a function approximator to generalize the 
state to action mapping. 
 A recognized problem with the tabular approach is the 
issue of scalability in complex continuous domains 
(Bradley and Hayes 2005; Lee, Oh, and Choi 1998). As the 
state and action space of the problem increases, the size of 
the policy lookup table exponentially increases. The 
literature shows numerous ways to address this problem, 
such as approximating value functions (Lee, Oh, and Choi 
1998) and abstracting sensor inputs (Bradley and Hayes 
2005; Manslow 2004). This paper uses the tabular 
approach with data abstraction for the sensor inputs, due to 
successes in the literature in similar complex continuous 
problem spaces (Manslow 2004; Merrick and Maher 
2006). 
 Eligibility traces are a method to speed up the learning 
process by increasing the memory of the agent (Sutton and 
Barto 1998). A trace history of each state-action pair is 
recorded and is represented as e(s,a). A received reward is 
propagated back to the most recently recorded state-action 
pairs. The eligibility trace factor ( ) and decay factor ( ) is 
used to update the traces as seen in equation 1. 
 e(s,a)  e(s,a)               (1) 
The Sarsa( ) algorithm updates each state-action pair 
Q(s,a) in the policy according to equation 2. 
 Q(s,a)  Q(s,a)  e(s,a)           (2) 
Where  is the learning rate and  is defined in equation 3. 
   r  (s’,a’)  Q(s,a)           (3) 
Where r is the received reward,  is used to ensure 
convergence of the policy by discounting future rewards, 
and Q(s’,a’) is the value of the next state-action pair. 
 The application of RL toward modern computer games 
remains poorly explored in current literature, despite 
preliminary findings displaying promising results. 
Manslow (2004) applied an RL algorithm to a racing car 
game and dealt with the complexity of the environment by 
assessing the state at discrete points in time. Actions are 
then considered as a continuous function of the state-action 
pair. In a fighting simulation game Graepel, Herbrich, and 
Gold (2004) applied the Sarsa algorithm to teach the non-
player characters (NPCs) to play against the hard-coded 
AI. Results found a near optimal strategy and interesting 
behaviors of the game agents were observed. 
 An interesting development in RL and games is seen in 
Merrick and Maher’s (2006) research. A motivated RL 
algorithm is used to control NPCs in a role-playing game. 
The algorithm is based on Q-learning and uses an -greedy 
exploration function. They use a cognitive model of 
curiosity and interest similar to Blumberg et al.’s (2002) 
work where states and actions are dynamically added to the 
corresponding space when certain conditions are met. 
Results showed that the agent was able to adapt to a 
dynamic environment. The method used in these 
approaches is not necessarily suited to FPS bot controllers, 
as they do not need to adapt to new types of objects in the 
environment. In FPS games, object types and how to 

interact with them are usually defined before the game 
starts. 
 While RL has been extensively used in the MAS (Tan 
and Xiao 2005) and robotics domains (Lee, Oh, and Choi 
1998), there is very little applied research in FPS games. 
Previous work provides an overview of applying RL to 
FPSs and preliminary results (McPartland, 2008). Vasta, 
Lee-Urban, and Munoz-Avilla (2007) have applied RL to 
learn winning policies in a team FPS game. The problem 
model was directing a team player to move to certain 
strategic locations in a domination team game. Each 
player’s actions were hard-coded, only the domination 
areas on the map, where the team players could go, were 
learnt. A set of three locations were used in the 
experiments which reduced the state space considerably. 
The complexity of the state space was reduced to 27 
combinations enabling the algorithm to develop a winning 
policy that produced team coordination similar to human 
teams. 

Method 
A purpose-built 3D FPS game environment was used for 
both experiments described in this paper. The game world 
was an indoor building type environment, equipped with 
walls, items, and spawn points. Bots in the game were able 
to move around the environment, sense their surroundings, 
pick up items, and shoot at enemies. 
 The RL algorithm used for the experiments was the 
tabular Sarsa algorithm with eligibility traces (Sarsa( )) 
(Sutton and Barto 1998). The tabular Sarsa( ) algorithm 
was chosen as it learns the action-selection mechanism 
within the problem (i.e., mapping states to actions in the 
policy table). On the other hand state value RL algorithms 
(e.g., TD-lambda) are able to learn the state transition 
function, but need an extrinsic action-selection mechanism 
to be used for control. Therefore state to action mapping 
algorithms, such as tabular Sarsa( ), are more suitable than 
state value algorithms for FPS bot AI. 
 When a state-action pair occurred, the eligibility trace 
was set to 1.0, instead of incrementing the current trace by 
1.0, as the former case encourages faster learning times 
(Sutton and Barto 1998). 
 A small learning rate was used in all experiments, and 
was linearly decreased during the training phase according 
to equation 4. 
 d = i  e  n                (4) 
Where d is the discount rate applied at each iteration, i is 
the initial learning rate (0.2), e is the target end learning 
rate (0.05), and n is the total number of iterations for the 
training phase (5000). 
 An -greedy exploration strategy was used with  set to 
0.2, in other words random actions where chosen two out 
of ten times, otherwise the best action in the current policy 
was chosen. If the policy consisted of equal highest valued 
actions, then one was selected at random. This strategy was 
chosen due to its success in other RL problems (Manslow 
2004; Merrick and Maher 2006; Tan and Xiao 2005). 
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Navigation Task 
The aim of the navigation task was to investigate how well 
a bot could learn to traverse a maze-type environment 
while picking up items of interest. 

Experimental Setup 
The test environment was at a scale of 50m x 50m. Figure 
1 shows the layout of the navigation map. There were 54 
item spawn points, each with a respawn time of 10 update 
cycles. All bots in the experiments moved at a speed of 0.2 
meters/update cycle. The human-sized RL bot was 
equipped with six sensors, which were split into two 
groups of three. One sensor was directly in front of the bot, 
one 20 degrees to the left, and one 20 degrees to the right. 
The first three sensors were used to determine if there were 
any obstacles in view of the bot. The value returned by the 
obstacle sensors is either 0, 1 or 2, where 0 is no obstacle, 
1 means there is an obstacle close to the bot (within four 
meters), and 2 means there is an obstacle far away from the 
bot (within ten meters). The second set of sensors was used 
to indicate where items were in relation to the bot. The 
item sensors were spaced in the same formation as the 
obstacle sensors, and also use the same abstraction to 
indicate if items are close or far away. The RL bot was 
equipped with the following actions: move forward; turn 
left; and, turn right. The policy table for the navigation task 
totaled 2187 entries. 

 
Figure 1. Navigation map. Green represents health items, red 
represents ammo, and yellow represents bot spawn points. 
 
 The reward function for the navigation task consisted of 
the three objectives: (1) minimize collisions; (2) maximize 
distance travelled; and, (3) maximize number of items 
collected. These objectives were guided through rewards 
and penalties given to the bot during the training phase. A 
small penalty (-0.000002) was given when the bot collided 
with environment geometry. A small reward (0.000002) 
was given when the bot moved, and a large reward (1.0) 
was given when the bot collected an item. Small values 
were chosen for the first two objectives as the occurrence 
of them in the training phase was very high. If the reward 
values were higher, then the item collection reward would 
be negligible when it occurred. 
 Table 1 lists the trial number, discount factor, and 
eligibility trace parameters for the navigation experiment. 
A range of values were chosen to determine the overall 
effect they had on the task. 

 The navigation bot was trained over 5000 iterations. 
Following the training phase, the learnt policy was 
replayed over 5000 iterations with learning disabled. 
Replays were performed as they provide a more realistic 
picture of how the learnt policy performs. The following 
section displays and discusses the results from the replay 
of the learnt policy. 

Table 1. Trial Parameters 
Trial number Parameters 

1  = 0.0  = 0.0 
2  = 0.0  = 0.4 
3  = 0.0  = 0.8 
4  = 0.4  = 0.0 
5  = 0.4  = 0.4 
6  = 0.4  = 0.8 
7  = 0.8  = 0.0 
8  = 0.8  = 0.4 
9  = 0.8  = 0.8 

10 Random 

Results and Discussion 
Figure 2 shows the number of collisions that occurred with 
the environment geometry or walls. Trials 2, 5, 8 and 9 did 
not collide with any objects, while the random trial (10) 
collided many times (800). Trials 2, 5 and 8 have their 
eligibility trace value in common (  = 0.4), which suggests 
that the eligibility trace is very susceptible to finding good 
policies in this problem. Trials 1, 4 and 7 had no eligibility 
trace (  = 0), and they collided the most with objects. The 
collisions in trial 1 (387) were almost double that of trial 4 
(197), while trial 7 collided significantly more again (642). 
The results show that when planning is used (high 
eligibility traces), no collisions occurred, but when one-
step backup is used (  = 0) more collisions occurred. 
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Figure 2. Graph of collisions with obstacles. 
 
 Figure 3 shows how far in meters the bot travelled. The 
data shows that trials 2, 3, 5, 6, 8, and 9 (the trials that had 
little to no collisions) did not travel a significant distance. 
In fact, on observation of the replay, some of the bots 
became stuck upon colliding with the first wall they 
encountered, and entered a flip-flop state (e.g., repeatedly 
turning left then right). In contrast, trials 2 and 9 did not 
move a single step as there was no move forward action for 
the initial starting state the bot was in. On the other hand, 
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trials 1, 4 and 7 all performed well in this objective, with 
all trials at least doubling the distance achieved in the 
random trial. 
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Figure 3. Graph of distance travelled by the bot. 
 
Figure 4 shows the number of items collected in the replay. 
Here we see the complete picture of trials 3 and 6. Each 
bot did not travel far, however they were able to pick up a 
reasonable number of items. Observation showed that these 
bots were ‘camping’ (i.e., not moving from) an item’s 
spawn point, and were successful in two of the three 
objectives in the reward scheme. Trials 2, 5 and 8 were 
successful in the collision objective, as they minimized 
collisions to zero (i.e., the optimal solution). However, 
these trials performed badly in the other two objectives. All 
three trials had a common eligibility trace of 0.4, which 
implies that trials with this parameter experienced many 
collisions in the training phase, therefore learning to 
minimize collisions at the cost of shorter distance travelled. 
Similarly, trial 9 performed well in the collision objective, 
but badly in the other two. The failure of trial 9 may be 
attributed to the high trace factor and eligibility trace. For 
the navigation task, the data indicates that no eligibility 
trace leads to the most successful outcomes, with trace 
factor varying the success only slightly. Trials 1, 4 and 7 
performed well in all three objectives. The policy learnt 
that allowing some collisions resulted in a bot that moved 
further through the environment and that was able to pick 
up more items. The success of trials with the eligibility 
trace set to zero indicates that the navigation task did not 
require much planning (only one-step backup was needed). 
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Figure 4. Graph of items collected by the bot. 
 

 Figure 5 shows the navigation paths of the trained bots 
in four of the trials. The figures clearly show how well the 
bot in trials 1, 4 and 7 performed in the navigation task. 
The random path showed that the bot never became 
immobilized, but stayed in the same small area for all 5000 
iterations. 
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Figure 5. Recorded paths of trial 1 (top left), trial 4 (top 
right), trial 7 (bottom left) and trial 10 (bottom right) 
 
 Overall, trial 4 (  = 0.4  = 0.0) learnt the best policy for 
all three objectives. Collisions were low (197), distance 
travelled was high (101m), and a good number of items 
were collected (25). The medium discount factor indicates 
that the previous state-action pair needs to be rewarded at 
0.4 times the reward from the successful or not successful 
next state-action pair. Whereas the high discount factor in 
trial 7 (  = 0.8,  = 0.0), had high collisions (642), high 
distance (115m) and medium item collections (16). The 
high discount factor was good at learning the travel 
objective, but was not as effective in the collision and item 
collection objectives. The low discount factor in trial 1 (  = 
0.1,  = 0.0) learnt a policy with double the collisions than 
trial 4 (387), but had a slightly higher travel distance 
(103m) and item collections (28). Therefore, the discount 
factor mostly impacted on the collision and items collected 
objectives, as the results show the distance travelled was 
similar in trials 1, 4 and 7. On observation of trial 4 it was 
noted that the bot was able to traverse the maze-type 
environment, and was able to enter enclosed rooms, pick 
up items, and then exit the rooms. 
 The Sarsa( ) algorithm was successfully used to learn a 
controller for the task of navigation and item collection. 
The results show that the eligibility trace needed to be kept 
small as the best solutions did not require much planning. 
In other words, the task only needed one-step backup to 
find a good solution. The discount factor had less effect on 
the objectives than the eligibility trace, but was useful in 
fine-tuning good policies. 

Combat Task 
The aim of the combat task experiment was to investigate 
how well a bot could learn to fight when trained against a 
state machine controlled opponent. This task will also 
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investigate whether different styles of combat can be learnt 
from the same algorithm. The enemy AI, in this task, is 
controlled by a state machine. The state machine bot has a 
shooting accuracy of approximately 60%, and is 
programmed to shoot anytime an enemy is in sight and its 
weapon is ready to fire. The state machine bot follows 
enemies in sight until the conflict is resolved. 

Experimental Setup 
The environment used in the combat task was an enclosed 
arena style environment. This map style was chosen to 
remove navigation from the problem, and therefore 
allowing the algorithm to concentrate on combat alone. 
The state space is defined as follows. 

S = {(s1,s2,s3)}, si  {0,1,2} 
Where s1, s2, s3 correspond to the bot’s three sensors, left, 
front and right respectively. The sensors differ to those in 
the navigation task due to the need to have all the enemies’ 
relative positions in the state space. The combat task 
sensors determined the relative distance and direction of 
enemy bots from the RL bot. The RL bot was able to 
perform the following actions: start move forward (a1); 
start move backward (a2); strafe left (a3); strafe right (a4); 
halt (a5); turn left (a6); turn right (a7); and, shoot (a8). 
Therefore the action space is defined as follows. 
  A = {a1, a2, …, a8} 
The policy table for the combat task had 216 entries. 
 A large reward (1.0) was given to accurately shooting or 
killing an enemy, as these events did not occur very often 
in the training phase. A very small penalty (-0. 0000002) 
was given when the bot shot and missed the target, as 
shooting and missing occurred many times in the training 
phase. A large penalty (-1.0) was given when the bot was 
killed, and a small penalty (-0.000002) was given when the 
bot was wounded. 
 In this experiment the decay factor and eligibility trace 
parameters were kept high (see Table 2), due to the need 
for planning in combat and initial experiments showing 
good results for higher values. The number of iterations 
during the training phase was 5000, and then the learnt 
policy was replayed over 5000 iterations. 

Table 2. Experimental parameters 
Trial number Parameters 

1  = 0.4  = 0.4 
2  = 0.4  = 0.8 
3  = 0.8  = 0.4 
4  = 0.8  = 0.8 

Results and Discussion 
Data was collected from the replay and collated into 
graphs. Figure 6 shows the accuracy of the bot, or the 
percentage of shots that successfully hit the enemy. Figure 
7 displays the number of times the bot died during the 
replay. Figure 8 displays the number of times the bot killed 
the enemy. 
 The bot trained in trial 1 learnt a commando style of 
combat. The bot would take one shot at the enemy and then 

turn tail and run away. Unfortunately for the bot, the 
enemy AI was easily able to track it down and kill it. This 
strategy saw a high number of deaths (19) and only one 
kill. 
 The second and forth trial bots learnt similar strategies. 
The strategy was very similar to the enemy AI’s, as they all 
favored close combat and turning to keep the enemy to 
their front. Trial 4 performed slightly better than trial 2, 
with a 3% higher accuracy (31%) and one more kill (6). In 
this experiment the bots had to learn to maximize kills 
while simultaneously trying to minimize deaths. The 
strategies that learnt to balance the two rewards saw the 
bots using the environment to their advantage (i.e., by 
continually moving through the environment). This 
strategy increased the amount of time spent in combat, 
which minimized their death count and increased their kill 
count. 
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Figure 6. Graph of the bot’s accuracy in combat. 
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Figure 7. Graph of the number of enemies the bot killed. 
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Figure 8. Graph of the number of times the bot died. 
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 The bot in trial 3 did not perform well in the combat 
objectives. While the policy learnt a reasonable movement 
style by tracking the enemy, the bot only fired a few shots 
during the entire replay. The shots were fired with perfect 
accuracy, but the enemy was not injured enough to die. 
 The two bots from trial 2 and 4 learnt an aggressive 
combat strategy similar to the enemy AI. The strategy 
proved competitive even though the enemy achieved a 
higher kill rate. One bot learnt a commando (or cowardly) 
style of fight, where it shot from afar and then ran away. 
While this strategy was not effective in the arena 
environment used, it may perform better in other scenarios 
such as a maze-type environment. The two best scoring 
bots learnt to imitate the behavior of the enemy AI. One 
bot learnt suitable movements in combat, however did not 
learn to shoot enough to kill the enemy. 
 This section has shown that the Sarsa( ) algorithm can 
be used to learn a combat controller for FPS bots. Results 
indicated that two bots learnt successful behaviors and 
proved competitive opponents against the state machine 
controlled bot. It was also observed that different styles of 
combat could be produced, each of which varied 
depending on the eligibility trace. In other words, the 
amount of memory or planning the bot does will ultimately 
affect the combat strategy it learns. 

Conclusion 
This paper has shown that RL provides a promising 
direction for bots in FPS games. A number of advantages 
for using RL over rule-based systems exist such as 
minimal code needed for the underlying algorithm and 
decrease in the time spent tuning parameters. Results have 
shown that different bot personality types can be produced 
by changing the parameter associated with planning. 
Results indicate that the Sarsa( ) algorithm can 
successfully be applied to learn the FPS bot behaviors of 
navigation and combat. 
 Further work will investigate different environmental 
setups and multiple runs with changing random seeds. An 
extension to this work will investigate combining the two 
controllers, using a hierarchical method, to create a more 
complete AI for FPS bots. The combined controllers will 
be investigated in different environment types, such as 
indoor buildings and sparsely populated open areas. 
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