
Learning to be a Bot:
Reinforcement Learning in Shooter Games

Michelle McPartland and Marcus Gallagher

School of Information Technology and Electrical Engineering
University of Queensland

St Lucia, Australia
{michelle,marcusg}@itee.uq.edu.au

Abstract
This paper demonstrates the applicability of reinforcement
learning for first person shooter bot artificial intelligence.
Reinforcement learning is a machine learning technique
where an agent learns a problem through interaction with
the environment. The Sarsa() algorithm will be applied to a
first person shooter bot controller to learn the tasks of (1)
navigation and item collection, and (2) combat. The results
will show the validity and diversity of reinforcement
learning in a first person shooter environment.

Introduction
Over the past decade substantial research has been
performed on reinforcement learning (RL) for the robotics
and multi-agent systems (MAS) fields. In addition, many
researchers have successfully used RL to teach a computer
how to play classic strategy games such as backgammon
(Tesauro 1995) and go (Silver, Sutton, and Muller 2007).
However, there has been little research in the application of
RL to modern computer games. First person shooter (FPS)
games have common features to the fields of robotics and
MAS, such as agents equipped to sense and act in their
environment, and complex continuous movement spaces.
Therefore, investigating the affects of RL in an FPS
environment is an applicable and interesting area to
research.
 FPS bot artificial intelligence (AI) generally consists of
pathfinding, picking up and using objects in the
environment, and different styles of combat such as sniper,
commando and aggressive. Bot AI in commercial games
generally uses rule-based systems, state machines and
scripting (Sanchez-Crespo Dalmau 2003). These
techniques are typically associated with problems
including predictable behaviors (Jones 2003), time
consuming fine-tuning of parameters (Overholtzer 2004),
and writing separate code for different creature types and
personalities. RL is an interesting and promising algorithm
to overcome or minimize such problems. For example,

Copyright © 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

experiments with different parameters can be automated,
and the same algorithm can be used to generate different
personality types.
 The aim of this paper is to investigate how well RL can
be used to learn basic FPS bot behaviors. Due to the
complexities of bot AI, we have split the learning problem
into two tasks. The first task looks at navigation and item
collection in a maze-type environment. The second task
looks at FPS combat. The Sarsa() algorithm will be used
as the underlying RL algorithm to learn the bot controllers.
Results will show the potential to create different
personalities in FPS bots using the same underlying
algorithm.
 This paper is organized as follows. First, a brief
overview of RL will be explained, followed by an outline
of RL applied to computer games. The method section will
outline the common algorithm used in both experiments.
The next two sections describe the experimental setup,
results and discussion of the navigation and combat
experiments.

Background
RL is a popular machine learning technique which allows
an agent to learn through experience. An RL agent
performs an action a in the environment which is currently
in state s, at time t. The environment returns a reward r
indicating how well the agent performed based on a reward
function. The agent’s internal policy is then updated
according to an update function. Several RL algorithms
have been developed over the years including TD, Q-
learning and Sarsa. The Sarsa algorithm, similar to Q-
learning, has successfully been applied to MAS using
computer game environments (Bradley and Hayes 2005;
Nason and Laird 2005).
 An important part of all RL algorithms is the policy. The
policy is a mapping between states and actions, called
state-action pairs, and provide the path the agent should
take to reach the maximum reward for the task. The two
most common types of policy representations are the
tabular and generalization approach. The tabular approach
uses a lookup table to store values indicating how well an

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

78

action performs in a state, while the generalization
approach uses a function approximator to generalize the
state to action mapping.
 A recognized problem with the tabular approach is the
issue of scalability in complex continuous domains
(Bradley and Hayes 2005; Lee, Oh, and Choi 1998). As the
state and action space of the problem increases, the size of
the policy lookup table exponentially increases. The
literature shows numerous ways to address this problem,
such as approximating value functions (Lee, Oh, and Choi
1998) and abstracting sensor inputs (Bradley and Hayes
2005; Manslow 2004). This paper uses the tabular
approach with data abstraction for the sensor inputs, due to
successes in the literature in similar complex continuous
problem spaces (Manslow 2004; Merrick and Maher
2006).
 Eligibility traces are a method to speed up the learning
process by increasing the memory of the agent (Sutton and
Barto 1998). A trace history of each state-action pair is
recorded and is represented as e(s,a). A received reward is
propagated back to the most recently recorded state-action
pairs. The eligibility trace factor () and decay factor () is
used to update the traces as seen in equation 1.
 e(s,a) e(s,a) (1)
The Sarsa() algorithm updates each state-action pair
Q(s,a) in the policy according to equation 2.
 Q(s,a) Q(s,a) e(s,a) (2)
Where is the learning rate and is defined in equation 3.
 r (s’,a’) Q(s,a) (3)
Where r is the received reward, is used to ensure
convergence of the policy by discounting future rewards,
and Q(s’,a’) is the value of the next state-action pair.
 The application of RL toward modern computer games
remains poorly explored in current literature, despite
preliminary findings displaying promising results.
Manslow (2004) applied an RL algorithm to a racing car
game and dealt with the complexity of the environment by
assessing the state at discrete points in time. Actions are
then considered as a continuous function of the state-action
pair. In a fighting simulation game Graepel, Herbrich, and
Gold (2004) applied the Sarsa algorithm to teach the non-
player characters (NPCs) to play against the hard-coded
AI. Results found a near optimal strategy and interesting
behaviors of the game agents were observed.
 An interesting development in RL and games is seen in
Merrick and Maher’s (2006) research. A motivated RL
algorithm is used to control NPCs in a role-playing game.
The algorithm is based on Q-learning and uses an -greedy
exploration function. They use a cognitive model of
curiosity and interest similar to Blumberg et al.’s (2002)
work where states and actions are dynamically added to the
corresponding space when certain conditions are met.
Results showed that the agent was able to adapt to a
dynamic environment. The method used in these
approaches is not necessarily suited to FPS bot controllers,
as they do not need to adapt to new types of objects in the
environment. In FPS games, object types and how to

interact with them are usually defined before the game
starts.
 While RL has been extensively used in the MAS (Tan
and Xiao 2005) and robotics domains (Lee, Oh, and Choi
1998), there is very little applied research in FPS games.
Previous work provides an overview of applying RL to
FPSs and preliminary results (McPartland, 2008). Vasta,
Lee-Urban, and Munoz-Avilla (2007) have applied RL to
learn winning policies in a team FPS game. The problem
model was directing a team player to move to certain
strategic locations in a domination team game. Each
player’s actions were hard-coded, only the domination
areas on the map, where the team players could go, were
learnt. A set of three locations were used in the
experiments which reduced the state space considerably.
The complexity of the state space was reduced to 27
combinations enabling the algorithm to develop a winning
policy that produced team coordination similar to human
teams.

Method
A purpose-built 3D FPS game environment was used for
both experiments described in this paper. The game world
was an indoor building type environment, equipped with
walls, items, and spawn points. Bots in the game were able
to move around the environment, sense their surroundings,
pick up items, and shoot at enemies.
 The RL algorithm used for the experiments was the
tabular Sarsa algorithm with eligibility traces (Sarsa())
(Sutton and Barto 1998). The tabular Sarsa() algorithm
was chosen as it learns the action-selection mechanism
within the problem (i.e., mapping states to actions in the
policy table). On the other hand state value RL algorithms
(e.g., TD-lambda) are able to learn the state transition
function, but need an extrinsic action-selection mechanism
to be used for control. Therefore state to action mapping
algorithms, such as tabular Sarsa(), are more suitable than
state value algorithms for FPS bot AI.
 When a state-action pair occurred, the eligibility trace
was set to 1.0, instead of incrementing the current trace by
1.0, as the former case encourages faster learning times
(Sutton and Barto 1998).
 A small learning rate was used in all experiments, and
was linearly decreased during the training phase according
to equation 4.
 d = i e n (4)
Where d is the discount rate applied at each iteration, i is
the initial learning rate (0.2), e is the target end learning
rate (0.05), and n is the total number of iterations for the
training phase (5000).
 An -greedy exploration strategy was used with set to
0.2, in other words random actions where chosen two out
of ten times, otherwise the best action in the current policy
was chosen. If the policy consisted of equal highest valued
actions, then one was selected at random. This strategy was
chosen due to its success in other RL problems (Manslow
2004; Merrick and Maher 2006; Tan and Xiao 2005).

79

Navigation Task
The aim of the navigation task was to investigate how well
a bot could learn to traverse a maze-type environment
while picking up items of interest.

Experimental Setup
The test environment was at a scale of 50m x 50m. Figure
1 shows the layout of the navigation map. There were 54
item spawn points, each with a respawn time of 10 update
cycles. All bots in the experiments moved at a speed of 0.2
meters/update cycle. The human-sized RL bot was
equipped with six sensors, which were split into two
groups of three. One sensor was directly in front of the bot,
one 20 degrees to the left, and one 20 degrees to the right.
The first three sensors were used to determine if there were
any obstacles in view of the bot. The value returned by the
obstacle sensors is either 0, 1 or 2, where 0 is no obstacle,
1 means there is an obstacle close to the bot (within four
meters), and 2 means there is an obstacle far away from the
bot (within ten meters). The second set of sensors was used
to indicate where items were in relation to the bot. The
item sensors were spaced in the same formation as the
obstacle sensors, and also use the same abstraction to
indicate if items are close or far away. The RL bot was
equipped with the following actions: move forward; turn
left; and, turn right. The policy table for the navigation task
totaled 2187 entries.

Figure 1. Navigation map. Green represents health items, red
represents ammo, and yellow represents bot spawn points.

 The reward function for the navigation task consisted of
the three objectives: (1) minimize collisions; (2) maximize
distance travelled; and, (3) maximize number of items
collected. These objectives were guided through rewards
and penalties given to the bot during the training phase. A
small penalty (-0.000002) was given when the bot collided
with environment geometry. A small reward (0.000002)
was given when the bot moved, and a large reward (1.0)
was given when the bot collected an item. Small values
were chosen for the first two objectives as the occurrence
of them in the training phase was very high. If the reward
values were higher, then the item collection reward would
be negligible when it occurred.
 Table 1 lists the trial number, discount factor, and
eligibility trace parameters for the navigation experiment.
A range of values were chosen to determine the overall
effect they had on the task.

 The navigation bot was trained over 5000 iterations.
Following the training phase, the learnt policy was
replayed over 5000 iterations with learning disabled.
Replays were performed as they provide a more realistic
picture of how the learnt policy performs. The following
section displays and discusses the results from the replay
of the learnt policy.

Table 1. Trial Parameters
Trial number Parameters

1 = 0.0 = 0.0
2 = 0.0 = 0.4
3 = 0.0 = 0.8
4 = 0.4 = 0.0
5 = 0.4 = 0.4
6 = 0.4 = 0.8
7 = 0.8 = 0.0
8 = 0.8 = 0.4
9 = 0.8 = 0.8

10 Random

Results and Discussion
Figure 2 shows the number of collisions that occurred with
the environment geometry or walls. Trials 2, 5, 8 and 9 did
not collide with any objects, while the random trial (10)
collided many times (800). Trials 2, 5 and 8 have their
eligibility trace value in common (= 0.4), which suggests
that the eligibility trace is very susceptible to finding good
policies in this problem. Trials 1, 4 and 7 had no eligibility
trace (= 0), and they collided the most with objects. The
collisions in trial 1 (387) were almost double that of trial 4
(197), while trial 7 collided significantly more again (642).
The results show that when planning is used (high
eligibility traces), no collisions occurred, but when one-
step backup is used (= 0) more collisions occurred.

Number of Times RL Bot Collided With Geometry

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10

Trial number

C
ol

lis
io

ns

Figure 2. Graph of collisions with obstacles.

 Figure 3 shows how far in meters the bot travelled. The
data shows that trials 2, 3, 5, 6, 8, and 9 (the trials that had
little to no collisions) did not travel a significant distance.
In fact, on observation of the replay, some of the bots
became stuck upon colliding with the first wall they
encountered, and entered a flip-flop state (e.g., repeatedly
turning left then right). In contrast, trials 2 and 9 did not
move a single step as there was no move forward action for
the initial starting state the bot was in. On the other hand,

80

trials 1, 4 and 7 all performed well in this objective, with
all trials at least doubling the distance achieved in the
random trial.

Distance Travelled by RL Bot

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

Trial number

M
et

er
s

Figure 3. Graph of distance travelled by the bot.

Figure 4 shows the number of items collected in the replay.
Here we see the complete picture of trials 3 and 6. Each
bot did not travel far, however they were able to pick up a
reasonable number of items. Observation showed that these
bots were ‘camping’ (i.e., not moving from) an item’s
spawn point, and were successful in two of the three
objectives in the reward scheme. Trials 2, 5 and 8 were
successful in the collision objective, as they minimized
collisions to zero (i.e., the optimal solution). However,
these trials performed badly in the other two objectives. All
three trials had a common eligibility trace of 0.4, which
implies that trials with this parameter experienced many
collisions in the training phase, therefore learning to
minimize collisions at the cost of shorter distance travelled.
Similarly, trial 9 performed well in the collision objective,
but badly in the other two. The failure of trial 9 may be
attributed to the high trace factor and eligibility trace. For
the navigation task, the data indicates that no eligibility
trace leads to the most successful outcomes, with trace
factor varying the success only slightly. Trials 1, 4 and 7
performed well in all three objectives. The policy learnt
that allowing some collisions resulted in a bot that moved
further through the environment and that was able to pick
up more items. The success of trials with the eligibility
trace set to zero indicates that the navigation task did not
require much planning (only one-step backup was needed).

Items Collected by RL Bot

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10

Trial number

Ite
m

s

Figure 4. Graph of items collected by the bot.

 Figure 5 shows the navigation paths of the trained bots
in four of the trials. The figures clearly show how well the
bot in trials 1, 4 and 7 performed in the navigation task.
The random path showed that the bot never became
immobilized, but stayed in the same small area for all 5000
iterations.

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

Figure 5. Recorded paths of trial 1 (top left), trial 4 (top
right), trial 7 (bottom left) and trial 10 (bottom right)

 Overall, trial 4 (= 0.4 = 0.0) learnt the best policy for
all three objectives. Collisions were low (197), distance
travelled was high (101m), and a good number of items
were collected (25). The medium discount factor indicates
that the previous state-action pair needs to be rewarded at
0.4 times the reward from the successful or not successful
next state-action pair. Whereas the high discount factor in
trial 7 (= 0.8, = 0.0), had high collisions (642), high
distance (115m) and medium item collections (16). The
high discount factor was good at learning the travel
objective, but was not as effective in the collision and item
collection objectives. The low discount factor in trial 1 (=
0.1, = 0.0) learnt a policy with double the collisions than
trial 4 (387), but had a slightly higher travel distance
(103m) and item collections (28). Therefore, the discount
factor mostly impacted on the collision and items collected
objectives, as the results show the distance travelled was
similar in trials 1, 4 and 7. On observation of trial 4 it was
noted that the bot was able to traverse the maze-type
environment, and was able to enter enclosed rooms, pick
up items, and then exit the rooms.
 The Sarsa() algorithm was successfully used to learn a
controller for the task of navigation and item collection.
The results show that the eligibility trace needed to be kept
small as the best solutions did not require much planning.
In other words, the task only needed one-step backup to
find a good solution. The discount factor had less effect on
the objectives than the eligibility trace, but was useful in
fine-tuning good policies.

Combat Task
The aim of the combat task experiment was to investigate
how well a bot could learn to fight when trained against a
state machine controlled opponent. This task will also

81

investigate whether different styles of combat can be learnt
from the same algorithm. The enemy AI, in this task, is
controlled by a state machine. The state machine bot has a
shooting accuracy of approximately 60%, and is
programmed to shoot anytime an enemy is in sight and its
weapon is ready to fire. The state machine bot follows
enemies in sight until the conflict is resolved.

Experimental Setup
The environment used in the combat task was an enclosed
arena style environment. This map style was chosen to
remove navigation from the problem, and therefore
allowing the algorithm to concentrate on combat alone.
The state space is defined as follows.

S = {(s1,s2,s3)}, si {0,1,2}
Where s1, s2, s3 correspond to the bot’s three sensors, left,
front and right respectively. The sensors differ to those in
the navigation task due to the need to have all the enemies’
relative positions in the state space. The combat task
sensors determined the relative distance and direction of
enemy bots from the RL bot. The RL bot was able to
perform the following actions: start move forward (a1);
start move backward (a2); strafe left (a3); strafe right (a4);
halt (a5); turn left (a6); turn right (a7); and, shoot (a8).
Therefore the action space is defined as follows.
 A = {a1, a2, …, a8}
The policy table for the combat task had 216 entries.
 A large reward (1.0) was given to accurately shooting or
killing an enemy, as these events did not occur very often
in the training phase. A very small penalty (-0. 0000002)
was given when the bot shot and missed the target, as
shooting and missing occurred many times in the training
phase. A large penalty (-1.0) was given when the bot was
killed, and a small penalty (-0.000002) was given when the
bot was wounded.
 In this experiment the decay factor and eligibility trace
parameters were kept high (see Table 2), due to the need
for planning in combat and initial experiments showing
good results for higher values. The number of iterations
during the training phase was 5000, and then the learnt
policy was replayed over 5000 iterations.

Table 2. Experimental parameters
Trial number Parameters

1 = 0.4 = 0.4
2 = 0.4 = 0.8
3 = 0.8 = 0.4
4 = 0.8 = 0.8

Results and Discussion
Data was collected from the replay and collated into
graphs. Figure 6 shows the accuracy of the bot, or the
percentage of shots that successfully hit the enemy. Figure
7 displays the number of times the bot died during the
replay. Figure 8 displays the number of times the bot killed
the enemy.
 The bot trained in trial 1 learnt a commando style of
combat. The bot would take one shot at the enemy and then

turn tail and run away. Unfortunately for the bot, the
enemy AI was easily able to track it down and kill it. This
strategy saw a high number of deaths (19) and only one
kill.
 The second and forth trial bots learnt similar strategies.
The strategy was very similar to the enemy AI’s, as they all
favored close combat and turning to keep the enemy to
their front. Trial 4 performed slightly better than trial 2,
with a 3% higher accuracy (31%) and one more kill (6). In
this experiment the bots had to learn to maximize kills
while simultaneously trying to minimize deaths. The
strategies that learnt to balance the two rewards saw the
bots using the environment to their advantage (i.e., by
continually moving through the environment). This
strategy increased the amount of time spent in combat,
which minimized their death count and increased their kill
count.

Accuracy of RL Bot

0

10

20

30

40

50

60

70

80

90

100

4321

Trial number

Pe
rc

en
ta

ge
 (%

)

Figure 6. Graph of the bot’s accuracy in combat.

Kill Count of RL Bot

0

1

2

3

4

5

6

7

4321

Trial number

N
um

be
r o

f k
ill

s

Figure 7. Graph of the number of enemies the bot killed.

Number of Deaths of RL Bot

0

2

4

6

8

10

12

14

16

18

20

4321

Trial number

D
ea

th
s

Figure 8. Graph of the number of times the bot died.

82

 The bot in trial 3 did not perform well in the combat
objectives. While the policy learnt a reasonable movement
style by tracking the enemy, the bot only fired a few shots
during the entire replay. The shots were fired with perfect
accuracy, but the enemy was not injured enough to die.
 The two bots from trial 2 and 4 learnt an aggressive
combat strategy similar to the enemy AI. The strategy
proved competitive even though the enemy achieved a
higher kill rate. One bot learnt a commando (or cowardly)
style of fight, where it shot from afar and then ran away.
While this strategy was not effective in the arena
environment used, it may perform better in other scenarios
such as a maze-type environment. The two best scoring
bots learnt to imitate the behavior of the enemy AI. One
bot learnt suitable movements in combat, however did not
learn to shoot enough to kill the enemy.
 This section has shown that the Sarsa() algorithm can
be used to learn a combat controller for FPS bots. Results
indicated that two bots learnt successful behaviors and
proved competitive opponents against the state machine
controlled bot. It was also observed that different styles of
combat could be produced, each of which varied
depending on the eligibility trace. In other words, the
amount of memory or planning the bot does will ultimately
affect the combat strategy it learns.

Conclusion
This paper has shown that RL provides a promising
direction for bots in FPS games. A number of advantages
for using RL over rule-based systems exist such as
minimal code needed for the underlying algorithm and
decrease in the time spent tuning parameters. Results have
shown that different bot personality types can be produced
by changing the parameter associated with planning.
Results indicate that the Sarsa() algorithm can
successfully be applied to learn the FPS bot behaviors of
navigation and combat.
 Further work will investigate different environmental
setups and multiple runs with changing random seeds. An
extension to this work will investigate combining the two
controllers, using a hierarchical method, to create a more
complete AI for FPS bots. The combined controllers will
be investigated in different environment types, such as
indoor buildings and sparsely populated open areas.

Acknowledgments
We would like to acknowledge support for this paper from
the ARC Centre for Complex Systems.

References
 Blumberg, B., Downie, M., Ivanov, Y.A., Berlin, M.,
Johnson, M.P., and Tomlinson, B. 2002. Integrated
Learning for Interactive Synthetic Characters. ACM
Transactions on Graphics 21(3): 417-426.

 Bradley, J., and Hayes, G. 2005. Group Utility
Functions: Learning Equilibria Between Groups of Agents
in Computer Games By Modifying the Reinforcement
Signal. Congress on Evolutionary Computation.
 Graepel, T., Herbrich, R., and Gold, J. 2004. Learning to
Fight. In Proceedings of the International Conference on
Computer Games: Artificial Intelligence, Design and
Education.
 Jones, J. 2003. Benefits of Genetic Algorithms in
Simulations for Game Designers. Thesis, School of
Informatics, University of Buffalo, Buffalo, USA.
 Lee, J.H., Oh, S.Y., and Choi, D.H. 1998. TD Based
Reinforcement Learning Using Neural Networks in
Control Problems with Continuous Action Space. IEEE
World Congress on Computational Intelligence.
Anchorage, USA.
 Manslow, J. 2004. Using Reinforcement Learning to
Solve AI Control Problems, in AI Game Programming
Wisdom 2, S. Rabin, (Editor). Hingham, USA: Charles
River Media.
 McPartland, M. 2008. A Practical Guide to
Reinforcement Learning in Shooter Games, in AI Game
Programming Wisdom 4, S. Rabin, (Editor). Boston, USA:
Charles River Media.
 Merrick, K., and Maher, M.L. 2006. Motivated
Reinforcement Learning for Non-Player Characters in
Persistent Computer Game Worlds. In ACM SIGCHI
International Conference on Advances in Computer
Entertainment Technology. Los Angeles, USA.
 Nason, S., and Laird, J.E. 2005. Soar-RL: Integrating
Reinforcement Learning with Soar. Cognitive Systems
Research 6(1): 51-59.
 Overholtzer, C.A. 2004. Evolving AI Opponents in a
First-Person-Shooter Video Game, Thesis, Computer
Science Department, Washington and Lee University:
Lexington, VA.
 Sanchez-Crespo Dalmau, D. 2003. Core Techniques and
Algorithms in Game Programming. Indianapolis, Indiana:
New Riders.
 Silver, D., Sutton, R., and Muller, M. 2007.
Reinforcement Learning of Local Shape in the Game of
Go. In International Conference on Artificial Intelligence.
Hyderabad, India.
 Sutton, R.S., and Barto, A.G. 1998. Reinforcement
Learning: An Introduction. Cambridge, MA: MIT Press.
 Tan, A.H., and Xiao, D. 2005. Self-Organizing
Cognitive Agents and Reinforcement Learning in Multi-
Agent Environment. In International Conference on
Intelligent Agent Technology. Compiegne, France.
 Tesauro, G. 1995. Temporal Difference Learning and
TD-Gammon. Communications of the ACM 38(3): 58-68.
 Vasta, M., Lee-Urban, S., and Munoz-Avila, H. 2007.
RETALIATE: Learning Winning Policies in First-Person
Shooter Games. In Seventeenth Innovative Applications of
Artificial Intelligence Conference (IAAI-07). AAAI Press.

83

	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org

