
Automatic Generation of Game Level Solutions as Storyboards

David Pizzi1, Marc Cavazza1, Alex Whittaker2 and Jean-Luc Lugrin1

1 School of Computing, University of Teesside, Middlesbrough, TS1 3BA, United Kingdom.
{d.pizzi, m.o.cavazza, j-l.lugrin}@tees.ac.uk

2 Eidos - Beautiful Game Studios, London, N7 9DP, United Kingdom.

alexw@bgstudios.co.uk

Abstract
Interactive Storytelling techniques are attracting much
interest for their potential to develop new game genres but
also as another form of procedural content generation,
specifically dedicated to game events rather than objects or
characters. However, one issue constantly raised by game
developers, when discussing gameplay implications of
Interactive Storytelling techniques, is the possible loss of
designer control over the dynamically generated storyline.
Joint research with industry has suggested a new potential
use for Interactive Storytelling technologies, which stands
precisely as an assistance to game design. Its basic
philosophy is to generate various/all possible solutions to a
given game level using the player character as the main
agent, and gameplay actions as the basic elements of
solution generation. We present a fully-implemented
prototype which uses the blockbuster game HitmanTM as an
application. This system uses Heuristic Search Planning to
generate level solutions, each legal game action being
described as a planning operator. The description of the
initial state, the level’s objective as well as the level layout,
constitute the input data. Other parameters for the
simulation include the Hitman’s style, which influences the
choice of certain actions and privileges a certain style of
solution (e.g. stealth versus violent). As a design tool, it
seemed appropriate to generate visual output which would
be consistent with the current design process. In order to
achieve this, we have adapted original HitmanTM
storyboards for their use with a generated solution: we
attach elements of storyboards to the planning operators so
that a complete solution generates a comic strip similar to an
instantiated storyboard for the solution generated. We
illustrate system behaviour with specific examples of
solution generation.

Introduction
Despite the growing interest in Interactive Storytelling (IS)
techniques, their actual relation to traditional gameplay
remains to be investigated. Many game designers have
expressed concerns about the incorporation of such
generative techniques in traditional game titles, mainly
because of the lack of control they will have upon
dynamically generated contents.

However, in the course of joint research with a major
European publisher (Eidos Interactive), a novel use for IS
techniques was suggested, precisely as a support to the
game design phase. It consists in generating all the possible
solutions for a given game level. In this approach, the
player character is represented as the main planning agent,
making use of all gameplay actions to produce a solution to
the game level. This relies on the dual nature of Planning
technologies, which are able to generate sequences or
narrative actions as well as solutions to a game level
problem. The generated solutions, which help assess the
final gameplay for a given level design, can be visualised
using comic strips similar to the original storyboard. We
present in this paper the first version of a fully
implemented prototype of such a design tool.

Related Work
Formal approaches have been previously proposed to
model the design process of computer games (Natkin and
Vega 2003; Natkin et al. 2004; Collé et al. 2005; Brom and
Abonyi 2006). The underlying idea is to model the spatio-
temporal relationships which occur within the game
universe. These techniques thus allow describing the
logical structure of the level missions in the game by
modelling the ordering of action sequences using graphical
models such as Petri Nets. They allow a dynamic
visualisation of game scenarios. However, for industrial
use, the designers would have to learn the adequate
formalism. Moreover, they are essentially designed for
analysing and validating pre-existing scenarios rather than
assisting in their creation.

In the field of IS itself, several authors have described
tools facilitating the construction of story using some
visualisation support. For instance, story graphs have been
used in different authoring systems to explicitly represent
all the possible story paths in INSCAPE (Zagalo et al.
2006), U-Create (Sauer et al. 2006) and SceneMaker
(Gebhard et al. 2003). These tools present intuitive
methods of visualisation which can assist authors in their
creation process. However, they are based on non-
generative formalisms (Skorupski et al. 2007) constraining
authors to manually encode possible plan variations.

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

96

Overview
Our system enables game designers to generate and
explore complex game scenarios without relevant expertise
in AI Planning technologies, and immediately visualise
them as storyboards. This approach differs from previous
generative systems such as ScriptEase (Cutumisu et al.
2006), which assists designers in producing character
behaviour scripts within the boundaries of previously
validated game scenarios, in that it produces level solutions
from first principles.

As illustrated by Figure 1, the exploratory approach
supported by our system follows three main stages: domain
implementation, solution generation and storyboard
generation.
• The first step corresponds to the elicitation of all
knowledge required to describe a game level, such as the
various states (e.g. the level goal is to kill three different
targets, different initial states, etc.) and the various game
actions described through their pre-conditions and their
consequences. In terms of Planning, this corresponds to
domain implementation where each part of the planning
domain is created (i.e. propositions, operators, states and
goal). The domain description also includes a formalisation
of the initial state and the goal state, which corresponds to
the level’s objective.

The (Drawing) Panel Templates are attached to planning
domain elements; therefore, they need to be defined at this
stage. Their composition will be detailed in the section
storyboard generation.
• The second step, or solution generation, consists in
generating a possible solution to the HitmanTM 1 level under
consideration, seen as a planning problem whose operators
are the game actions. The solution is generated through
Heuristic Search Planning (HSP) (Bonnet and Geffner
2000) planning the shortest solution from initial state to
level goal. We implemented a real-time version of the HSP
in C#, in which heuristics are used to guide action selection
towards the level solution. The heuristics calculation is
based on the simple Value Iteration (VI) method (Liu et al.
2002). We have opted for a “real-time” version of HSP by
implementing RTA* (Korf 1990) as it allows backtracking

1 HitmanTM is a trademark of IO Interactive Ltd and Eidos PLC.

to avoid deadlocks and also anytime world state variations.
Computation of the heuristic accounts for a significant
fraction of the total CPU time for the planner, as is
classically described in the HSP literature (Bonnet and
Geffner 1999). The planner still produces on average a
complete solution in approx. one second on a 2 GHz Intel
processor, which is fully compatible with its use within a
design/authoring environment. It generates solutions to the
game level as a sequence of actions leading to the level
objective, represented as the plan’s goal.

As an alternative to offline generation of a complete
solution, an interactive mode allows step-by-step
generation of a solution, which includes the visualisation
of all possible outcomes. Starting from the initial state, the
user can expand the plan at each step using a tree
representation until the goal state is reached. After each
action is selected by the user, the system automatically
offers a list of possible subsequent actions.

At this point, the solution plan only exists in the form of
a list of operators. These are difficult to read for non-
programmers or anyone not familiar with Planning
formalisms. We thus looked for a more user-friendly way
of displaying level solutions which could also be integrated
in the standard design process. One natural idea would be
to automatically generate solutions as comic-like
storyboards.

Comics constitute a highly expressive medium as they
allow presenting a story using a limited number of panels
(McCloud 1993). However, even if comic strips have been
described as part of IS system output in previous work
(Alves et al. 2008) and seem promising, the creation of
comics is quite a complex process and obeys a large set of
rules (e.g. on transitions, panel shapes, etc.) (Eisner 1985;
Alves et al. 2007). On the other hand, storyboards, which
use simplified conventions, are commonly used by
designers because they are both expressive and simple to
produce. This is why we have decided to follow simplified
storyboard conventions for the generation of visuals
corresponding to the level solutions produced.
• The last stage, storyboard generation, uses templates
to construct a storyboard panel from data corresponding to
the selected action (Figure 2). In turn, the various panels
will be assembled sequentially into a storyboard presenting
the complete level solution generated.

Figure 1: Overview of the Authoring Process

97

• In addition, designers are allowed to interact with the
solution generation process at any time using a dynamic
environment simulation feature. It allows them to
reproduce the dynamic state variations that will normally
occur within the game (e.g. simulating NPC movements
from a room to another), so as to explore opportunities for
various player actions.

In the next sections, we present in detail each of these
stages. First, we discuss the authoring methods for the
domain implementation. We then describe the solution
generation process, the dynamic environment simulation
process and finally the storyboard generation.

Domain Implementation
The first step consists in providing a complete
propositional representation of the world (e.g.
Disguised(HM,afrikaaner), Location(HM,room),
etc.). The initial state and the level goal are then simply
represented by conjuncts of propositions. The planning
operators are represented using a STRIPS-like formalism
(i.e. a set of propositions as pre-conditions and effects)
(Fikes and Nilsson 1971) and correspond to game actions
that can be performed by the player character Hitman.
Each operator is associated with a panel template which
will construct a storyboard’s individual panel according to
the current world state.

During generation, the selection of certain critical
actions (e.g. various killing or neutralising methods) is
made using a categorisation of operators according to the
different Hitman styles. For instance, the stealth style will
favour discreet actions such as Strangle or Put-
Poison-In, over noisier executions such as Shoot or
Trigger-Bomb.

The formalisation of gameplay actions and states as a
Planning domain is not without impact on the types of
solutions that will be generated. Common pitfalls consist in
representing the domain at a level of abstraction too high
or conversely using too specific actions, which will limit
the generative power of the system. Knowledge elicitation
consists in the description of a level’s actions (e.g.
Search-Body, Disguise-As, Unlock-Door, or Shoot).

This is a manual process which becomes error-prone when
the size of the planning domain and the number of
operators increase. It is well-known that maintaining
consistency between the predicates used by the various
operators can become challenging when describing
operators manually. The calculation of the HSP heuristic
introduces further constraints, as it requires that each
proposition appearing once as a pre-condition of an
operator should at least also be present in one add-list (this
could otherwise lead to the calculation of spurious heuristic
values inducing potential action selection errors).
Inconsistencies in predicates’ labels could also be
responsible for errors in the content of operators with other
detrimental side-effects. There is thus a need to check
consistency of pre-conditions and effects every time
changes to the planning domain are introduced as part of
the knowledge elicitation process. Our authoring interface
ensures the development of a coherent and consistent
planning domain.

This stage requires to be encoded by a member of the
development team who is familiar with logical formalisms.
The designers will from there produce and validate the
game solutions at a higher level of abstraction (i.e.
ignoring failures that can be caused by timing issues).

Solution Generation Process
In HitmanTM, where solutions rely on a sophisticated plan,
the various causal dependencies generated by HSP
planning may be difficult to recognise. For instance, when
the level goal involves killing a target, Hitman will first
kill a casino staff member in order to take his clothes.
Then, he will need to pick up poison situated in his hotel
room before being able to taint and serve a toxic drink to
his target.

Therefore, we have imagined that the set of possible
plans could be visually represented in order to control the
unfolding of the generated content. Consequently, our
system also proposes a step-by-step plan simulation, in
which the user can visualise the results using a tree-like
hierarchy (See Figure 4). This corresponds to an expert
mode, which is of interest when enquiring about the

Figure 2: Example of a Panel Template Instantiation from a selected Action and current world state

98

explanation behind certain solutions produced. Every
operator in the planning domain is tested for applicability.
Whenever an operator pre-conditions are satisfied, it is
applied to create a new state that could further be extended.
For efficiency purposes and in order to avoid redundancy,
we only develop new states that diverge from their parent.
The whole tree can be automatically scanned so that all the
possible solutions can be listed and visualised. When a
node is selected, the entire plan that leads to it can then be
rendered as a storyboard using the storyboard generation
process.

Dynamic Environment Simulation
Here the planning agent represents the actions of the player
character. However, the real game environment is dynamic
(i.e. NPC, including Hitman’s targets, have autonomous
behaviour). For instance, the Afrikaaner character (i.e. one
of the Hitman’s main targets) keeps walking cyclically
from the bar to his room passing by the bathroom. Hitman
has thus several options to kill his target and each of these
options should also be represented in the scenarios.
Consequently, spatio-temporal variations have also to be
simulated within the solution generation process. We have
introduced the possibility for the designer to modify the
world state at any stage in order to make the appropriate
state variations. Plan generation is synchronised with plan

interruptions reproducing characters movements (e.g.
Update-Position) or world events (e.g. Character-
Level-Arrival).

Storyboard Generation
We use, as a way of creating graphical content, a method
called automatic composition. Each game action, described
by a Planning operator, is associated with a panel template.
Such template supports the generation of the final panel
from a set of elementary images2.

As illustrated in Figure 3, our storyboard template is
composed of three main layers: i) An Atmosphere Layer
(background), ii) an Environment Layer (mid-ground) and
iii) an Actors Layer (foreground). For each layer, a
template will define a position for an image (jpg, png, etc.).
In addition, selection rules can be attached to these layers
to associate a domain proposition to a specific pre-drawn
image.

The Atmosphere Layer is used as a background image to
emphasise a particular ambience (e.g. glows of fire or
emergency lighting (i.e. darker background), etc.) or game
events (e.g. fire alarm on) while the Environment Layer
represents a given room or place such as a kitchen or
laundry. The Actors Layer is used to draw elements of the
scene that could be rendered at different positions (e.g.
characters, objects, etc.). The objects in the scene can be
rendered at different pre-set positions (left, centre, right,
etc.) and also different heights (above ground, ground
level, etc.).

The panel generation process relies on two operations:
panel template Instantiation and Aggregation. The first
phase happens once an action is selected. The generic
template, previously associated with the action is then
activated; consequently the Actor Layer is matched to the
action add-list predicates (Figure 2-1). The current

2 All design documents have been provided by IO Interactive Ltd.

Figure 3: Example of Panel Generation from an Instantiated Panel Template

Figure 4: Step-by-Step Solution Generation proposing all

possible alternative actions.

99

Environment and Atmosphere layers are then retrieved
from the current world state (Figures 2-2 and 3). Once
instantiated with the current story context (Figure 2-4), the
panel template layers are now able to determine the image
corresponding to the proposition found (Figure 3). Here,

Hitman is actually located in a room, the proposition
Location(HM,room) is part of the world state, so the
corresponding picture “Room.png” is selected (Figure 3-2).
During this stage, referred to as Panel Aggregation, the
template browses the Actor, Environment and Atmosphere
picture databases. Additional selection rules exist at the
template level to distinguish different images which
correspond to the same proposition: for instance
Disguised(HM,casino-guard) could have two
pictorial representations in our databases (in one of these,
Hitman is standing (Figure 3-3) while he is walking in the
other). Therefore, each panel template layer could contain
“rules” stating the correct picture to use. These rules are
specified by the designer during the template creation in
the case of an ambiguous situation.

Finally, once each image layer has been selected, we
render the final panel by drawing each layer from the
furthest ones (i.e. the background and the location) to the
closest ones (i.e. all the characters and objects) (Figure 3-
4). Lastly, the rendered panel is added to the storyboard
(figure 3-5).

Results and Validation
The final planning domain contains 88 operators and 95
propositions. The length of the solution generated varies
from 25 up to 40 actions, depending on the Hitman’s style
(i.e. from stealth to violent). The generated solutions were
assessed against known published solutions as well as
presented to the game designers. Among the generated
solutions certain reproduce faithfully the original solutions
initially storyboarded by the designers. The alternative
level solutions produced were also successfully tested
within the game environment itself.

 Figure 5 shows an example of a generated storyboard:
Hitman triggers the fire-alarm in order to clear the door by
forcing the guard to leave (Figure 5-1). Once the entrance
is deserted, he can enter the room (Figure 5-2) and kill the
only casino guard who remains inside (Figure 5-3). Then,
he is able to take the casino guard’s clothes (Figure 5-4)
and disguises himself as a casino guard, which will grant
him future access to new areas (Figure 5-5).

In terms of storyboard generation, the total number of
panel templates is 24. However, we must take into account
that certain templates cover a significant number of
actions. For instance, the “HM-Walking” template is used
by 43 actions. This generative approach could represent a
considerable time saver knowing that it can generate panels
for any possible situation where traditional approaches
would have requested a 2D artist’s intervention (i.e.
drawing a completely new situation). This is particularly
relevant when generated plans create novel situations.
Furthermore, the total number of required drawings being
significantly reduced, their quality could become even
more elaborate.

Figure 5: Extract of a storyboard produced

100

Conclusions
While most of the AI techniques used in computer games
are still dedicated to character behaviour generation, we
have presented an AI system assisting the game design
process. This approach, derived from Interactive
Storytelling technologies, supports the generation of level
solutions, while validating their narrative content. Our first
prototype has been tested using data from the released title
HitmanTM Blood Money. This made it possible to validate
the solutions generated by the system, either
experimentally by playing the game or by matching them
to published strategy data or on-line spoilers. Using AI in
support to game design appears as a promising research
topic which can have an impact on development costs and
could facilitate collaboration between AI Programmers and
Game Designers (an example of the latter would be the
“expert mode” of our level solution generation system).

Acknowledgements
IO Interactive Ltd is thanked for providing the original
storyboards and level design documents. This work has
been funded in part by the Department of Trade and
Industry, via the Technology Programme BARDS Project,
in collaboration with Eidos Interactive Ltd.

References
Alves, T., McMichael, A., Simões, A., Vala, M., Paiva, A.
and Aylett, R. 2007. Comics2D: Describing and Creating
Comics from Story-Based Applications with Autonomous
Characters. In the Proceedings of CASA, Hasselt, Belgium.

Alves, T., Simões, A.R., Figueiredo, R., Vala, M., Paiva,
A., and Aylett, R. 2008. So tell me what happened: turning
agent-based interactive drama into comics. In the
Proceedings of the Seventh International Joint Conference
on Autonomous Agents and Multiagent Systems, Estoril,
Portugal, 1269–1272.

Bonet, B., and Geffner, H. 1999. Planning as heuristic
search: new results. In the Proceedings of the European
Conference on Planning (ECP’99), 360–372.

Bonet, B., and Geffner, H. 2000. HSP: Heuristic Search
Planner. In AI Magazine, Vol. 21(2).

Brom, C., and Abonyi, A. 2006. Petri-Nets for Game Plot.
In: the Proceedings of Artificial Intelligence and
Simulation Behaviour, Bristol, UK, Vol. 3:6–13.

Collé, F., Champagnat, R., and Prigent, A. 2005. Scenario
analysis based on linear logic. In the Proceedings of the
2005 ACM SIGCHI International Conference on Advances
in Computer Entertainment Technology, Valencia, Spain.

Cutumisu, M., Szafron, D., Schaeffer, J., Waugh, K.,
Onuczko, C., Siegel, J., and Schumacher, A. 2006. A
Demonstration of ScriptEase Ambient and PC-interactive

Behavior Generation for Computer Role-Playing Games.
In the Proceedings of the Second Artificial Intelligence and
Interactive Digital Entertainment International
Conference, Marina Del Rey, California, USA, 141–142.

Eisner, W. 1985. Comics & Sequential Art. Poorhouse
Press, Tamarac, Florida, USA.

Fikes, R., and Nilsson, N. 1971. STRIPS: A New
Approach to the Application of Theorem Proving to
Problem Solving. In the Proceedings of the Second
International Joint Conference on Artificial Intelligence,
608–620.

Gebhard, P., Kipp, M., Klesen, M., and Rist, T. 2003.
Authoring Scenes for Adaptive, Interactive Performances.
In the Proceedings of the Second International Joint
Conference on Autonomous Agents and Multiagent
Systems, Melbourne, Victoria, Australia, 725–732.

Korf, R.E. 1990. Real-time heuristic search, Artificial
Intelligence, Vol. 42 No. 2-3:189–211.

Liu, Y., Koenig, S. and Furcy, D. 2002. Speeding Up the
Calculation of Heuristics for Heuristic Search-Based
Planning. In the Proceedings of the Eighteenth National
Conference on Artificial Intelligence, 484–491.

McCloud, S. 1993. Understanding Comics. Kitchen Sink
Press. Northampton, MA.

Natkin, S., and Vega, L. 2003. Petri Net Modelling for the
Analysis of the Ordering of Actions in Computer Games.
In the Proceedings of the 4th International Conference on
Intelligent Games and Simulation (GAME-ON 2003),
London, UK, 82–92.

Natkin, S., Vega, L., and Grünvogel, S. 2004. A new
Methodology for Spatiotemporal Game Design. In: Mehdi,
Q. and Gough, N., (Eds.). Proceedings of CGAIDE 2004,
5th Game-On International Conference on Computer
Games: Artificial Intelligence, Design and Education,
University of Wolverhampton, Reading, UK, 109–113.

Skorupski, J., Jayapalan, L., Marquez, S., and Mateas, M.
2007. Adding Aspects of Implicit Creation to the
Authoring Process in Interactive Storytelling. In the
Proceedings of the Fourth International Conference on
Virtual Storytelling (ICVS 2007), Saint-Malo, France, 26–
37.

Sauer, S., Osswald, K., Wielemans, X., and Stifter, M.
2005. U-Create: Creative Authoring Tools for Edutainment
Applications. In the Proceedings of the third Technologies
for Interactive Digital Storytelling and Entertainment
(TIDSE 2006), Darmstadt, Germany, 163–168.

Zagalo, N., Göbel, S., Torres, A., and Malkewitz, R. 2006.
INSCAPE: Emotion Expression and Experience in an
Authoring Environment. In the Proceedings of the third
Technologies for Interactive Digital Storytelling and
Entertainment (TIDSE 2006), Darmstadt, Germany, 219–
230.

101

	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org

