
Talking with NPCs: Towards Dynamic Generation of Discourse Structures

Christina R. Strong and Michael Mateas
Expressive Intelligence Studio (EIS)
University of California, Santa Cruz

Santa Cruz, California, USA
{crstrong,michaelm}@cs.ucsc.edu

Abstract

Dialogue in commercial games is largely created by
teams of writers and designers who hand-author every
line of dialogue and hand-specify the dialogue struc-
ture using finite state machines or branching trees. For
dialogue heavy games, such as role playing games
with significant NPC interactions, or emerging genres
such as interactive drama, such hand specification sig-
nificantly limits the player’s interaction possibilities.
Decades of research on the standard pipeline architec-
ture in natural language generation has focused on how
to generate text given a specification of the communica-
tive goals; one can imagine beginning to adapt such
methods for generating the lines of dialogue for char-
acters. But little work has been done on the problem
of procedurally generating dialogue structures, that is,
dynamically generating dialogue FSMs or trees (more
generally, discourse managers) that accomplish com-
municative goals. In this paper we describe a system
that uses a formalization of backstory, character infor-
mation, and social interactions to dynamically generate
interactive dialogue structures that accomplish desired
dialogue goals.

Introduction

Non-player character (NPC) dialogue is a significant compo-
nent of many contemporary games; story progression, char-
acter relationships, and backstory and world information is
often presented through interactive dialogues. Even games
such as Mass Effect, in which the designers tried to reduce
interactive dialogue and depend more on cinematics to con-
vey story and character progressions, still had approximately
28,000 lines of conversation dialogue, averaging 12.5 words
per line (Walters and Pressey 2008).

Game dialogue is currently created by teams of writers
and designers who hand-author every line and hand-specify
the dialogue structure using finite state machines or branch-
ing trees. In this paper, we report on the design and initial
results of a system that procedurally generates dialogue fi-
nite state machines (FSMs) based on a declarative model of
the information possessed by NPCs and their emotional in-
clinations. The system could be used offline to automate

Copyright c© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

the creation of dialogue FSMs, or potentially, online, to cre-
ate dialogue structures tailored to evolving game state of a
particular play session. The emerging genre of interactive
drama has utilized the most advanced dialog structures, as
the primary gameplay is dialogue-based. Thus, we are us-
ing the dialogues in the interactive drama Façade (Mateas
and Stern 2003) to inform our model of dialogue structure
generation.

Player interaction in Façade is organized around so-
cial games, “head games” the player plays with the NPCs
through discourse actions (Mateas and Stern 2005b). For
example, one of the social games in Façade is the affinity
game, in which the NPCs bring up an emotionally charged
issue, argue about it, and force the player to take sides in
their argument. The affinity each NPC feels towards the
player is influenced by whom the player takes sides with. In
the course of the argument, the player also learns backstory
information about the characters and their relationships. In
our work we start with the affinity game as the first social
game to procedurally model.

The social games in Façade are organized around dra-
matic beats (McKee 1997), the smallest units of dramatic
action that change character relationship and story state. In
Façade the behaviors for beats are hand-authored. Though
the reactive execution of the beat will result in many variants
as the player interacts in the beat, the decisions about which
information will be revealed in the beat, how the characters
will counter each other in the argument, and how the char-
acters will force the player to take sides, are decided at de-
sign time by the authors. There is nothing in the system that
declaratively understands what an “affinity game” is, nor
how the information and emotions revealed in the beat relate
to the social game. The goal of our work is to explicitly rep-
resent backstory, character and relationship information, as
well as to procedurally model the dynamics of social games,
so as to dynamically generate the dialogue structure of the
social games instantiated in beats. This provides significant
authoring leverage; given a fixed quantity of possible dia-
logue content, it can be sliced and diced many possible ways
into dialogue structures. This allows the player to traverse
many more individual trajectories through the content than
is possible if the content is manually organized by authors
into a relatively small number of dialogue structures.

In this paper we describe a system for procedurally gen-

Proceedings of the Fourth Artificial Intelligence and Interactive Digital Entertainment Conference

114



Figure 1: Model of a conversation

erating dialogue structures; that is, given the system’s high-
level communicative goals for an NPC interaction (ie. which
backstory information or topics should be revealed and how
the social and emotional states of NPCs should change dur-
ing the conversation), dynamically generating a dialogue
FSM (more generally, a discourse manager) that accom-
plishes these goals. In this rest of this paper we describe
related work, present our architecture, describe an example
dialogue generated by our architecture, and discuss lessons
learned and issues with this approach.

Architecture

Figure 1 depicts the hierarchical structure of an affinity
game. An affinity game consists of a character bringing up a
controversial topic, several argumentative exchanges about
this topic, the player being asked to take sides, and a final
revelation as a function of whom the player took sides with.
In the middle of the conversation, NPCs reveal information
and progress the conflict, while taking turns between the
characters involved in the argument. In the final revelation,
an NPC reveals some portion of his or her beliefs about the
underlying conversational theme. Note that the player might
interact with the NPCs during the argument, and not just
at the point where they take sides. Such interaction might
change the focus of the argument, or mix in a peripheral
topic. However, for the purposes of our initial system, we
are focusing on the simplified case where the primary player
interaction occurs after the progression of the conflict.

Since a conversation lends itself well to hierarchical de-
composition, we chose a hierarchical task network (HTN)
planner to create dialogue structures. HTN planning takes an
initial world-state and creates a plan that accomplishes spec-
ified tasks. This is done by decomposing tasks into smaller
tasks, until the subtasks can be accomplished by planning
operators. Authors provide the initial world state, which in
our case includes assertions about conversational topics and
characters. The tasks are social game author goals, such as
revealing information about a specific story theme. Given
a task and operator description of a social game, many di-
alogue structures can be created by changing the assertions
about topics and characters. We use the SHOP2 planner,
(Karlsson 2001), a partial order HTN planner developed by
the University of Maryland.

In addition to the natural fit between the hierarchical
structure of social games and HTNs, we selected the HTN
planning formalism because of its forward state progression.
This allows us to easily implement functional effects, such
as incrementing and decrementing tension, social relation-
ship state, etc. We found such functional effects necessary
for dialogue structure planning.

Next, we describe our domain model for representing con-
versational content for affinity games, our task network for
modeling the logic of affinity games, and our approach for
interpreting a linear HTN plan as a branching dialogue FSM.

Domain Description

Conversational content is organized into themes, foci, past
events, and information related to past events. Themes are
underlying sources of conflict for which characters may have
strong, opposing beliefs. A focus provides an entry point
into a theme, a concrete object or issue which can segue
into a theme, and provide a focus for a subsequent argu-
ment. Characters have emotions about the focus; a focus for
which characters have conflicting emotions is a good can-
didate for an affinity game argument. Past events provide
backstory that characters can use to support their positions.
Associated with past events are specific pieces of informa-
tion about the event, as well as emotions associated with the
different pieces.

The setting for our prototype content pool is a playground,
where two children, Meg and Chuck, are having an argu-
ment. There are two underlying story themes. The first
theme is a personality conflict where Meg thinks Chuck is
too relaxed and laidback while Chuck thinks Meg is too
uptight and needs to enjoy life more. The second theme
revolves around class, where Chuck thinks Meg’s family
is richer, while Meg thinks the two families are the same.
These themes are introduced via one of two foci, either a
new video game that is coming out or a violin that Meg is
carrying with her. One focus is brought up by one of the
characters in order to start a conversation. The conversation
then progresses to arguing about the topic at hand, with Meg
and Chuck supporting their respective positions using infor-
mation from events that have happened in their mutual past.
The argument grows until one of them forces the player to
choose sides, resulting in a revelation from one of the char-
acters about his/her belief about the current story theme.

Information in the content pool is encoded as logical pred-
icates. For example, to describe a character’s emotion asso-
ciated with a thematic focus, we use an emotion predicate
that takes a character, the name of a focus, and an emotion
(some example emotions are excited, happy, frustrated, and
annoyed) as arguments. So, to represent that Chuck is ex-
cited about a new videogame, which is one focus of conver-
sation, we write: (emotion Chuck new-video-game excited).

Information about story themes, beliefs, people, and past
events are similarly encoded, forming a network of connec-
tions within the content pool. Everything relates back to
a story theme, since these are what drive the conversation.
Figure 2 shows the representations of the beliefs, past events,
and foci related to the personality conflict theme. The in-
formation associated with past events can be brought up by

115



(person Meg) (person Chuck) (focus new-video-game)

(story-theme playfulness-personality-conflict)

(belief Meg live-by-the-book)

(related-belief

playfulness-personality-conflict Meg live-by-the-book)

(belief Chuck have-fun-in-life)

(related-belief

playfulness-personality-conflict Chuck have-fun-in-life)

;; Chuck’s point of view

(pastevent allowanceChuck)

(primary-person allowanceChuck Chuck)

;; Meg was directly involved

(others-involved allowanceChuck Meg)

;; directly related to the Meg allowance past event

(related-pastevent allowanceChuck allowanceMeg)

;; pieces of information about the event

(information allowanceChuck borrowed-from-Meg)

;; both grateful and embarassed he had to borrow

(emotion Chuck borrowed-from-Meg embarrassed)

(emotion Chuck borrowed-from-Meg gratitude)

(information allowanceChuck had-spent-his-on-video-games)

;; is content with spending his money on what he wanted

(emotion Chuck had-spent-his-on-video-games satisfaction)

Figure 2: Personality Conflict Predicates

characters in the course of the arguments. This structure al-
lows the planner to reason over important information in the
story, relating everything to the current story theme.

Note that in the domain description we use long sym-
bols such as had-spent-his-on-videogames. The reader may
wonder how non-composition symbols such as these acquire
meaning for the dialogue planner. In making decisions about
content to include in an affinity game, our current affinity
game logic focuses on the relationships between and emo-
tions associated with themes, foci, past events and informa-
tion. At the planning level, the only thing the planner needs
to know about the information symbols is that, when look-
ing at two different assertions, the information symbols are
the same or different. The information symbols essentially
come along for the ride as the planner lays out the argument.
Of course, when the conversation is actually presented to
the player, some part of the system must know what these
symbols mean in order to generate text. But even in the
case where long symbol names are mapped by human au-
thors into hand-written conversational lines, dynamic dia-
logue structure generation still provides significant autho-
rial leverage by automatically figuring out how to combine
a fixed pool of lines into many different dialogue FSMs.

Methods and Operators

In SHOP2, tasks are the fundamental building blocks of the
planner. Tasks are either primitive or compound; a primitive
task can be executed directly, whereas compound tasks have
to be broken into smaller compound tasks or primitive tasks
to be executed. Methods describe rules on how to decom-
pose compound tasks, while operators accomplish primitive
tasks. Going back to Figure 1, the higher levels of the tree

are methods and the leaves are operators. Operators are the
only thing that can change the state of the world, by adding
and/or deleting the predicates described in the previous sec-
tion. Each method and operator takes a number of variables
and checks the current bindings of them as well as the cur-
rent state against a list of logical expressions called precon-
ditions. These preconditions are what enable the planner to
make intelligent choices about what to put into the plan.

;; start the conversation by having one person bring up a

;; focus and an emotion about it, and having the other

;; person express their own opinion

(:method (begin-conversation ?focus ?person1 ?person2 ?x)

;; preconditions

( and (person ?person1)(person ?person2)

(intensity ?x) (focus ?focus)

(not (emotion-expressed ?person1))

(not (emotion-expressed ?person2)))

;; decomposition

((bring-up-and-express ?person1 ?focus)

(dismiss-and-express ?focus ?person2 ?person1)))

;; ?person1 questions what ?person2 says

(:method (counter ?person1 ?person2)

(and (intensity ?x) (current-theme ?theme)

(current-focus ?focus)

(emotion-expressed ?person2)

(or (emotion ?person2 ?focus ?emotion)

(emotion ?person2 ?information ?emotion))

(related-focus ?theme ?focus)

(related-emotion ?person2 ?theme ?emotion)

(pastevent ?pastevent)

(will-bring-up ?pastevent ?person1)

(information ?pastevent ?information)

(related-pastevent ?theme ?pastevent))

( (!question ?person1 ?person2 ?emotion)

(past-information ?person1 ?pastevent)

(!!increment-intensity ?x))

(and (intensity ?x) (current-theme ?theme)

(current-focus ?focus)

(emotion-expressed ?person2)

(emotion ?person2 ?focus ?emotion)

(related-focus ?theme ?focus)

(related-emotion ?person2 ?theme ?emotion))

( (!question ?person1 ?person2 ?emotion)

(!!increment-intensity ?x)))

Figure 3: SHOP2 methods for beginning a conversation and
countering a statement

Consider Figure 3, which shows two methods used in cre-
ating a beat. The first method, begin-conversation, takes
several parameters and uses the preconditions to make sure
the parameters are typed correctly. These are the precon-
ditions such as (person ?person1)(person ?person2) (intensity
?x) (focus ?focus). The rest of the preconditions check to
make sure that it is, indeed, the beginning of the conversa-
tion. The predicate (emotion-expressed ?person) is added to
the world state in the operator !express-emotion, so if at
least one of the people in the conversation has already ex-
pressed an opinion about something, then it’s not the begin-
ning of the conversation anymore, and this is not the right

116



method to be calling. The method begin-conversation de-
composes into two smaller methods, bring-up-and-express
and dismiss-and-express.

The method counter, also in Figure 3, has a more in-
teresting decomposition. First, this is one of three differ-
ent methods that decompose the task “counter”. The other
two decompose it into using past history or supporting the
speaker’s own opinion; this one decomposes it into question-
ing the previous speaker’s opinion. Additionally, the pre-
conditions do more interesting work than just variable bind-
ing. First, the planner checks to make sure that the previous
speaker has expressed his/her feelings, since it’s difficult to
question someone’s opinion if they have not voiced it yet.
Next the planner checks to make sure that the emotion that
was expressed was either about the focus of the conversation
or some piece of information about a past event. This means
the planner also needs to check to see if there is an appropri-
ate past event to bring up information about. So it checks to
see if there is a past event, that is both related to the current
theme and that the speaker is willing to bring up, that has a
piece of information that can be brought up. If there is, the
planner uses the first decomposition, which both causes the
speaker to question the other character’s opinion, and bring
up some past history. Otherwise, if there is no past event
that can be brought up, the second decomposition is cho-
sen, which has the speaker questioning the other character’s
opinion without bringing up any background.

Two of the three types of operators are represented in Fig-
ure 3, the internal operators (denoted by ‘!!’) and external
operators (denoted by ‘!’). Internal operators are for the use
of the planner only, such as incrementing the intensity of the
beat or setting the underlying story theme of the beat. The
external operators become the part of the plan that will be
interpreted into a finite state machine. The third type of op-
erator (denoted by ‘!#’), is a type of operator we developed
as annotations in the plan to help create a dialogue finite
state machine upon interpreting the plan. In other words,
these operators were used to signify conditional branches in
the plan, such as planning for if the player agrees with one
person versus agreeing with the other.

Planning for Finite State Machines

Since the idea is to create an interactive experience with the
player, the ideal output from the planner would be a finite
state machine (FSM) that illustrated how to react to different
player inputs. However, non-conditional planners (such as
SHOP2) generate linear plans for specific situations. Thus,
we developed a way to coerce SHOP2 into planning to react
differently given different player inputs. It should be noted
that Kuter and Nau adapted SHOP2 to work in nondetermin-
istic domains (Kuter and Nau 2004). In ND-SHOP2, they
modified the planner itself so that it finds policies as solu-
tions rather than plans.

Leaving the planner as it is (producing a linear plan), we
initially needed to do was figure out how to take a linear plan
and make it non-linear and conditional. The first step was to
figure out how to take a linear plan and read it as an FSM.
We started by trying to create seperate plans for different
outcomes, but quickly ran into the problem of how to tell

the FSM that the start node, for example, was the same in
both plans.

To fix this, we created higher level tasks that basically
constructed mini-plans within the overall beat plan, plan-
for-agree and plan-for-disagree. The methods to decompose
these tasks are very similar, since the conversation itself for
if the player agrees with one character is the same as if
he/she disagreed with the other character. There are differ-
ent ways to decompose each task, one of which is shown in
Figure 4. This method first checks to make sure the player
has made a choice, makes sure that there are two different
characters, and figures out which character forced the player
to make a decision as this is the character that the player
sided with (since this is the agree branch).

;; plan for agree options

(:method (plan-for-agree ?person1 ?person2)

(and (player-response) (person ?person1) (person ?person2)

(forced-choice ?person1)

(different-people ?person1 ?person2))

((!#agree-branch-start)

(acknowledge-response ?person1 ?person2)

(!#agree-branch-end))

(and (player-response) (person ?person1) (person ?person2)

(forced-choice ?person2)

(different-people ?person1 ?person2))

((!#agree-branch-start)

(acknowledge-response ?person2 ?person1)

(!#agree-branch-end)) )

Figure 4: SHOP2 method for one possible agree branch

Rather than modifying the planner to handle condition-
als, we defined a new kind of operator (‘!#’) that anno-
tated where different branching options began and ended,
as in Figure 4. The planner then creates a plan that con-
tains both an option for the player to agree with the charac-
ter who forced the choice as well as an option for the player
to disagree. This allowed us to have complete finite state
machines as an output from the planner that we could inter-
pret at runtime, given the player’s input. Each state in the
FSM is a semantic specification of content to express in the
dialogue.

An Example Beat

Consider the situation where we, as the author, want to re-
veal information about a specific story theme. In the prob-
lem described above, we mentioned two story themes, the
personality conflict and the family background. For this ex-
ample, let us choose to reveal information about the person-
ality conflict. To do this, we set the goal to “reveal-info” in
the problem definition. The planner takes this goal and the
initial state, and begins to create a plan.

First it identifies two characters to have this conversation,
in our case this is Meg and Chuck, as they are currently
the only two characters in the problem definition. Were
the author to add more characters, the planner would pick
two characters that were related to the story theme to be re-
vealed. The planner then decomposes the goal into the task
of making a conversation, which is in turn decomposed into

117



three smaller tasks. The first task is an exchange between the
two characters, the second task is planning for if the player
agrees with one character, and the third task is planning for
if the player agrees with the other character.

The exchange between the two characters starts by one of
them bringing up some focus of conversation. This is one
way in which minor variations in the dialogue can occur, as
plans are created for both Meg starting the conversation and
Chuck starting the conversation. For the sake of the exam-
ple, let us say Meg starts the conversation by bringing up
the new video game that Chuck wants to buy and then ex-
presses her opinion on it (she thinks it’s a bad idea). Chuck
dismisses her opinion by telling her she doesn’t understand,
then expresses his own opinion (he is excited about it).

Several exchanges of dialogue occur between the two
characters before the player is forced to choose sides; it is
the author’s choice how long to let the conversation con-
tinue. There are three different ways of continuing the con-
versation: the character whose turn it is to speak can support
his/her own opinion; he/she can question the other charac-
ter’s opinion; or he/she can bring up information about an
event that happened in the past, if it relates to the current
story theme. This is one of the ways that more distinct vari-
ation in dialogue occurs, as there are multiple pieces of in-
formation that could be brought up.

Once the conversation has reached the point where one of
the characters forces the player to make a choice, the anno-
tation operators (‘!#’) come in useful. They indicate where
the cases for if the player agrees or disagrees begin and end,
as well as where the end of the beat is. After the player has
made a choice, there are multiple ways to end the beat. The
most simple is that the character with whom the player dis-
agreed reveals his/her belief about the story theme. There
can also be a small amount of dialogue where the charac-
ter tries to convince the player that he/she is right. These
different options again allow for variation in dialogue.

Chuck says: "I can’t wait til that new game comes out"

Chuck says: "I’m so excited for that new video game"

Meg says: "That’s so stupid"

Meg says: "I can’t believe you’re getting that new video game"

Meg says: "Remember that class project?"

Meg says: "You played video games instead of putting in

the effort on our project"

Chuck says: "I don’t understand why you’re upset about it"

Meg says: "What do you think, player?

agree or disagree? agree

Chuck says: "Learn to have some fun in life, like me"

Figure 5: Example Beat

At the moment, all of the possible variations described
above are found by the planner, and output to a file. This file
is then read by an interpreter, which non-deterministically
picks a plan to execute. The interpreter steps through the
plan, at the moment doing a simple template-based genera-
tion to create a conversation as in Figure 5. The point where
the player types “agree” or “disagree” is where the inter-
preter uses the annotations to determine which path of the
finite state machine to traverse.

Related Work

Cavazza, Charles, and Mead also uses HTN planning in
their interactive story-telling system (Cavazza, Charles, and
Mead 2002). In their work, each character’s behavior is rep-
resented by an HTN, so each character is planning to achieve
an individual goal. The interesting interactions arise when
the HTNs collide with one another, causing characters to
interact, rather than purposefully planning that interaction.
Mimesis (Young et al. 2004), another story-telling system
using planning, combines a story-world plan that describes
a sequence of actions for everything in the world and a dis-
course plan detailing cinematic effects into an integrated
narrative plan. This interactive plan is then turned into a di-
rected acyclic graph that indicates the temporal constraints
in the plan. Mimesis plans at a much higher level, plan-
ning over the entire story rather than over characters as in
Cavazza, Charles, and Mead’s work, or over the story con-
tent in order to create dialogue as in the work presented in
this paper.

At first glance, it might seem like a conditional planner
would be a better choice, or better yet, an HTN conditional
planner such as C-SHOP (Bouguerra and Karlsson 2004).
The problem with using such a planner is that we are con-
cerned with conditional branching that is dependent upon
exogenous events, namely, the player interaction. While the
current version of our planner does not include true natural
language understanding, it is an area we wish to explore in
the future. Therefore, we chose not to model player inter-
action with explicit predicates within the domain, but use
the planner to allow for such events. Since most of the
documented conditional planners plan over uncertain events
within the planning domain, a straight conditional planner
did not suit our needs. In addition, some conditional plan-
ners (Karlsson 2001) also aim to avoid the combinatorial
effect of trying every possibility by pruning unpromising
branches. However, our goal is to capture every possibility
in a generated FSM.

Evaluation and Discussion

We have presented a prototype that procedurally generates
dialogue structures for affinity games. One way to assess
the viability of this approach is to characterize the genera-
tivity; that is, for a given amount of authorial effort, how
many dialogue FSMs can the system generate. In our current
prototype world of Meg and Chuck, there are 120 assertions
(ground terms) in the content pool. Of these, 54 map directly
to a dialogue output. The rest are used to make connections
between assertions, enabling the planner to generate 2176
unique dialogue FSMs. In sampling the dialogue FSMs, we
have found that they all make sense, and provide different
slices through the content pool. Many of these variations are
not “trivial” in the sense that they actually change the infor-
mation being offered, though some of the FSMs represent
trivial variations such as responding with a question instead
of responding with information about a past event. This is a
significant authorial leverage. Were the author to add a new
focus, it would create twice as many FSMs as there currently
are, assuming the focus was applicable to both themes. Were

118



the author to add a single piece of information about a single
past event, this would result in approximately 16 additional
possible FSMs, though the exact number may be more or
less depending on how constraints associated with that piece
of information (e.g. the emotion felt by a character towards
that information) interacts with existing assertions.

We focus on the problem of dialogue creation, and cur-
rently use simple template methods for text realization. This
work is not meant to replace the writer—the writer still
needs to create the content for the planner, as well as the
templated text to realize the dialogue. What we are doing
is equivalent to automatically generating the dialogue trees
used in many current commerical games.

Another type of planner we chose not to use is a reac-
tive planner, since we are concerned about reacting to the
player’s input. Reactive planning computes the next action
based on the current context, rather than creating an entire
plan in advance. Façade’s beat selection (Mateas and Stern
2003), for example, looks at the current state and current sit-
uation, combined with some internal criteria, to choose the
next beat. However, a reactive planner that doesn’t do some
sort of projection won’t be able to create setups and guar-
antee payoffs. Since we actually want to be able to plan a
coherent dialogue, not just react to the player input, a reac-
tive planner is not a good choice.

Conclusion and Future Work
We hare presented a planning system that automatically gen-
erates dialogue FSMs. The goal of this work is to enable
richer player interaction possibilities with game characters,
by enabling games to include many more, and more com-
plex, dialogue FSMs than would be possible if all the FSMs
had to be build by hand. While, in this initial work, player
interaction is modeled as discrete choice (menu-based), the
generated FSMs could be used with a system that employs
more open ended natural language understanding (NLU),
as long as the NLU system maps player input into discrete
choices (discourse acts) understood by the system. While
our example in the paper includes a single player choice,
our infrastructure can support multiple choice points, as well
as implicit choice points (where the player may interrupt or
not). We are currently building a sample dialogue with mul-
tiple and implicit choice points.

We would like to connect our architecture to a more so-
phisticated text realizer, such as PERSONAGE (Mairesse
and Walker 2007). This will allow both a more realistic con-
versation, as well as variation due to syntactic choices.

Within the planning domain, we intend to develop a more
detailed declarative language for describing personality and
emotion that can also be used by the planner when generat-
ing plans. As discussed in the introduction, there are differ-
ent kinds of social games, and the factors of personality and
emotional state are key in determining what social game is
appropriate to start, given the state of the world. We can then
begin writing task networks for additional social games.

Once we have several social games modeled as HTNs,
we will create a playable NPC conversation prototype that
allows us to playtest both interactive drama-style conversa-
tions, such as the affinity game, as well as the styles of dia-

logues more typically found in dialogue heavy genres such
as role-playing games.

References
Bouguerra, A., and Karlsson, L. 2004. Hierarchical task
planning under uncertainty. In Proceedings of the Third
Italian Workshop on Planning and Scheduling (AI*IA).
Cavazza, M.; Charles, F.; and Mead, S. J. 2002. Inter-
acting with virtual characters in interactive storytelling. In
Proceedings of the First International Joint Conference on
Autonomous Agents and Multi-Agent Systems.
Karlsson, L. 2001. Conditional progressive planning un-
der uncertainty. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence IJCAI.
Kuter, U., and Nau, D. 2004. Forward-chaining plan-
ning in nondeterministic domains. In Proceedings of the
Nineteenth National Conference on Artificial Intelligence
(AAAI).
Mairesse, F., and Walker, M. 2007. Personage: Personality
generation for dialogue. In Proceedings of the Association
for Computational Linguistics.
Mateas, M., and Stern, A. 2003. Integrating plot, char-
acter, and natural language processing in the interactive
drama Façade. In Proceedings of the First International
Conference on Technologies for Interactive Digital Story-
telling and Entertainment (TIDSE).
Mateas, M., and Stern, A. 2005a. Build it to understand
it: Ludology meets narratology in game design space. In
Proceedings of DiGRA 2005 Conference: Changing Views
Worlds in Play.
Mateas, M., and Stern, A. 2005b. Structuring content in the
Façade interactive drama architecture. In Proceedings of
the First International Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE).
Mateas, M. 2002. Interactive Drama, Art, and Artificial In-
telligence. Ph.D. Dissertation, Carnegie Mellon University.
Technical Report CMU-CS-02-206.
Mateas, M. 2007. The authoring bottleneck in creating AI-
based interactive stories. In Proceedings of the AAAI 2007
Fall Symposium on Intelligent Narrative Technologies.
McKee, J. 1997. Story: Substance, Structure, Style, and
The Principles of Screenwriting. HarperEntertainment.
Nau, D.; Muoz-Avila, H.; Cao, Y.; Lotem, A.; and
Mitchell, S. 2001. Total-order planning with partially or-
dered subtasks. In Proceedings of the Seventeenth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI).
Reiter, E., and Dale, R. 2000. Building Natural Language
Generation Systems. Cambridge University Press.
Walters, M., and Pressey, S. 2008. Dialog production for
bioware’s mass effect. Lecture, 2008 Game Developers
Conference. Slides at: https://www.cmpevents.
com/GD08/a.asp?option=C&V=1&SB=4&Pv=2.
Young, R. M.; Riedl, M. O.; Branly, M.; Jhala, A.; Martin,
R.; and Saretto, C. 2004. An architecture for integrating
plan-based behavior generation with interactive game en-
vironments. Journal of Game Development.

119


	AIIDE 2008
	Home
	Contents
	Index
	www.aaai.org




