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Abstract

Cooperative Pathfinding is a multi-agent path planning prob-
lem where agents must find non-colliding routes to separate
destinations, given full information about the routes of other
agents. This paper presents three new algorithms for effi-
ciently solving this problem, suitable for use in Real-Time
Strategy games and other real-time environments. The algo-
rithms are decoupled approaches that break down the prob-
lem into a series of single-agent searches. Cooperative A*
(CA*) searches space-time for a non-colliding route. Hierar-
chical Cooperative A* (HCA*) uses an abstract heuristic to
boost performance. Finally, Windowed Hierarchical Coop-
erative A* (WHCA*) limits the space-time search depth to a
dynamic window, spreading computation over the duration of
the route. The algorithms are applied to a series of challeng-
ing, maze-like environments, and compared to A* with Local
Repair (the current video-games industry standard). The re-
sults show that the new algorithms, especially WHCA*, are
robust and efficient solutions to the Cooperative Pathfinding
problem, finding more successful routes and following better
paths than Local Repair A*.

Keywords: path planning, search techniques, group be-
haviour

Introduction
Pathfinding is a critical element of AI in many modern game
genres. Real-Time Strategy games present particularly large
challenges to pathfinding algorithms (Pottinger 1999), due
to the presence of multiple agents on a congested, dynamic
map. Although the classic A* algorithm (Hart, Nilsson, &
Raphael 1968), can route a single agent to its destination,
multi-agent pathfinding(Erdmann & Lozano-Perez 1987)
must be used when multiple agents are present, to avoid col-
lisions between the agents. A* can be adapted to reroute
on demand (Stout 1996), a procedure known asLocal Re-
pair. However, this algorithm is known to be inadequate in
many respects (Zelinsky 1992). On difficult maps with nar-
row passageways and many agents, these pathfinding sys-
tems break down and give rise to bottlenecks, deadlock, and
cyclic repetition. In many cases game designers are forced
to work around the shortcomings of the pathfinding system
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in order to ensure good behaviour (Pagan 2001). This pa-
per introduces new algorithms for dealing with multi-agent
pathfinding more robustly and effectively, suitable for use in
challenging, real-time environments.

Real-Time Strategy games may have differing require-
ments for the multi-agent pathfinding system. InCooper-
ative Pathfindingeach agent is assumed to have full knowl-
edge of all other agents and their planned routes. In the com-
plementary problem,Non-Cooperative Pathfinding, agents
have no knowledge of each other’s plans, and must predict
their future movements. Finally, inAntagonistic Pathfinding
each agent tries to reach its own goal whilst preventing other
agents from reaching theirs. This paper focusses exclusively
on the Cooperative Pathfinding problem.

Latombe (1991) and Fujimura (1991) break down the pos-
sible approaches to multi-agent pathfinding into two cat-
egories. Centralisedplanning takes account of all agents
at once, and can find all possible solutions. However, the
problem is PSPACE-hard (Hopcroft, Schwartz, & Sharir
1984) and the search space in a typical game is prohibitively
large for this approach to be practical. For example, given
n agents in a 32x32, 4-connected grid there are approxi-
mately103n different states with a branching factor of5n

(N,E, S,W,wait for each agent). Thedecoupledor dis-
tributedapproach decomposes the task into independent or
weakly-dependent problems for each agent (Erdmann &
Lozano-Perez 1987). Each agent can then search greedily
for a path to its destination, given the current state of all
other agents. Four decoupled algorithms are presented in
this paper, one existing algorithm and three new ones.

Local Repair A*
Local Repair A* (LRA*) describes a family of algorithms
widely used in the video-games industry. Each agent
searches for a route to the destination using the A* algorithm
(Hart, Nilsson, & Raphael 1968), ignoring all other agents
except for its current neighbours. The agents then begin to
follow their routes, until a collision is imminent. Whenever
an agent is about to move into an occupied position it instead
recalculates the remainder of its route. The basic algorithm
corresponds to the brute-force replanner described by Zelin-
sky (1992).

Cycles are possible (and indeed common) using this al-
gorithm, so it is usual to try and add some modifications to
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escape such problems. One possibility, used here, is to in-
crease an agent’sagitation levelevery time it is forced to
reroute. Random noise is then added to the distance heuris-
tic in proportion to the agitation level. As the agents behave
increasingly more randomly it is hoped that they will escape
from the problematic area and try different routes.

Local Repair A* is known to have several severe draw-
backs in difficult environments (Zelinsky 1992; Stout 1996;
Pottinger 1999). If bottlenecks occur in crowded regions,
they may take arbitrarily long to be resolved. Whilst caught
in a bottleneck, agents constantly reroute in an attempt to es-
cape, requiring a full recomputation of the A* search almost
every turn. This leads to visually disturbing behaviour that
is perceived as unintelligent. Each change in route is made
independently, leading to cycles in which the same location
may be visited repeatedly in a loop. The remainder of this
paper develops new algorithms to overcome these problems
by the use of cooperative search.

Cooperative A*
Cooperative A*(CA*) is a new algorithm for solving the Co-
operative Pathfinding problem. The task is decoupled into
a series of single agent searches. The individual searches
are performed in three dimensional space-time, and take ac-
count of the planned routes of other agents. Await move
is included in the agent’s action set, to enable it to remain
stationary. After each agent’s route is calculated, the states
along the route are marked into areservation table. Entries
in the reservation table are considered impassable and are
avoided during searches by subsequent agents.

The reservation table represents the agents’ shared knowl-
edge about each other’s planned routes. It is a sparse data
structure marking off regions of space-time. The choice
of data structure is independent from the state space of the
agents themselves. In general, individual agents may vary in
speed or size, and the reservation table must be capable of
marking off any occupied region.

A simple implementation, used here, is to treat the reser-
vation table as a 3-dimensional grid (two spatial dimensions
and one time dimension). Each cell of the grid that is inter-
sected by the agent’s planned route is marked as impassable
for precisely the duration of the intersection, thus prevent-
ing any other agent from planning a colliding route. Only a
small proportion of grid locations will be touched, and so the
grid can be efficiently implemented as a hash table, hashing
on a randomly distributed function of the(x, y, t) key.

It is important to note that any decoupled, greedy algo-
rithm that precalculates the optimal path will not be able to
solve certain classes of problem. This can happen when a
greedy solution for one agent prevents any solution for an-
other agent, for example see Figure 1. In general, such algo-
rithms are sensitive to the ordering of the agents, requiring
that sensible priorities to be selected for good performance,
for example using Latombe’sprioritized planning(1991).

Any admissible heuristic can be used in CA*. The base
case is to use the Manhattan distance. However, this can
give poor performance in more challenging environments.
Ideally, a better heuristic should be used to help reduce the
computation.

Figure 1: This simple problem cannot be solved by Cooper-
ative A*. One agent must navigate fromS1 to G1 whilst the
other attempts to get fromS2 to G2.

Hierarchical Cooperative A*
There are two generic methods for improving a heuristic
based on abstractions of the state space. The first approach is
to precompute all distances in the abstract space, and store
them in a pattern database (Culberson & Schaeffer 1994).
However, this is not feasible in Cooperative Pathfinding be-
cause the map is dynamic and the goal can change at any
time. The second generic method is to use Hierarchical A*
(Holte et al. 1996). With this approach the abstract dis-
tances are computed on demand, which is more appropriate
in a dynamic context. The hierarchy in this case refers to a
series of abstractions of the state space, each more general
than the previous, and is not restricted to spatial hierarchy.
Holte notes that the choice of hierarchy is critical, and that
large hierarchies may in fact perform worse than small, sim-
ple hierarchies.

Hierarchical Cooperative A* (HCA*) uses a simple hier-
archy containing a single domain abstraction, which ignores
both the time dimension and the reservation table. In other
words, the abstraction is a simple 2-dimensional map with
all agents removed. Abstract distances can thus be viewed
as perfect estimates of the distance to the destination, ig-
noring any potential interactions with other agents. This is
clearly an admissible and consistent heuristic. Furthermore,
the inaccuracy of the heuristic is determined only by the dif-
ficulty of interacting with other agents (how much the agent
must deviate from the direct path to avoid other agents).

One of the issues in Hierarchical A* is how best to reuse
search data in the abstract domain. If searches are performed
from scratch each time around, then overall performance
may in fact be reduced (Holteet al. 1996). Holte introduces
3 different techniques for reusing search data in his paper. A
fourth approach is introduced here, which is to use a Reverse
Resumable A* (RRA*) search in the abstract domain.

The RRA* algorithm executes a modified A* search in a
reverse direction. The search starts at the agent’s goalG,
and heads towards the agent’s initial positionO. Instead
of terminating atO, the search continues until a specified
nodeN is expanded. A well-known property of A* with
a consistent heuristic is that the optimal distance from the
start to a node is known once that node is expanded (Nilsson
1980). As the search executes in a reverse direction, this
means that the optimal distance fromN to G is known once
the RRA* search completes. The Manhattan distance is used
as a heuristic for the RRA* search, meeting the consistency
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requirements.
Unlike previous work in this area (Zhou & Hansen 2004),

the RRA* algorithm is used to calculate the abstract distance
on-demand. Whenever an abstract distance is requested
from N to G, RRA* checks whetherN exists in its Closed
table. If so, the optimal distance of that node is already
known and can be returned immediately. If not, the RRA*
search is resumed until nodeN is expanded. Pseudocode for
the RRA* procedure is shown in algorithm 1.

Algorithm 1 Reverse Resumable A*

1: procedure INITIALISE RRA*(O,G)
2: G.g ← 0
3: G.h← MANHATTAN (G, O)
4: Open← {G}
5: Closed← ∅
6: RESUMERRA*(O)
7: end procedure

8: procedure RESUMERRA*(N )
9: while Open6= ∅ do

10: P ← pop(Open)
11: Closed

add←− P
12: if P = N then
13: return success
14: end if
15: for all Q ∈ reverse(SUCCESSORS(P )) do
16: Q.g ← P.g + COST(P,Q)
17: Q.h← MANHATTAN (Q, O)
18: if Q /∈ Open and Q /∈ Closed then

19: Open
add←− Q

20: end if
21: if Q ∈ Open and f(Q) < f(Q in Open)

then
22: Open

update←− Q
23: end if
24: end for
25: end while
26: return failure
27: end procedure

28: procedure ABSTRACTDIST(N,G)
29: if N ∈ Closed then
30: return g(N)
31: end if
32: if RESUMERRA*(N) = success then
33: return g(N)
34: end if
35: return +∞
36: end procedure

HCA* is just like CA* with a more sophisticated heuris-
tic, using RRA* to calculate the abstract distance on de-
mand. If the shortest path to the destination is clear of agents
then the initial call to RRA* should contain the distances to
all required nodes. This is achieved by reversing the order-
ing of the successor function in RRA* to ensure that ties are

broken in the same direction (e.g. a left fork in the forward
direction should become a right fork in the reverse direc-
tion).

If there are other agents on the path to the destination then
HCA* will get pushed away from the shortest path. In this
case, new nodes will be encountered and the RRA* search
must be continued until they are reached. Each resump-
tion RRA* will expand nodes in concentric rings of equidis-
tance from the shortest path until the required node has been
found.

Windowed Hierarchical Cooperative A*
One issue with the previous algorithms is how they termi-
nate once the agents reach their destination. If an agent sits
on its destination, for example in a narrow corridor, then
it may block off parts of the map to other agents. Ideally,
agents should continue to cooperate after reaching their des-
tinations, so that an agent can move off its destination and
allow others to pass.

A second issue is the sensitivity to agent ordering. Al-
though it is sometimes possible to prioritise agents globally
(Latombe 1991), a more robust solution is to dynamically
vary the agent order, so that every agent will have the high-
est priority for a short period of time. Solutions can then
be found which would be unsolvable with an arbitrary, fixed
agent order.

Thirdly, the previous algorithms must calculate a com-
plete route to the destination in a large, three-dimensional
state space. With single agent searches, planning and plan
execution are often interleaved to achieve greater efficiency
(see for example Korf’s Real-Time Heuristic Search (1990)),
by avoiding the need to plan for long-term contingencies that
do not in fact occur. WHCA* develops a similar idea for co-
operative search.

A simple solution to all of these issues is towindow the
search. The cooperative search is limited to a fixed depth
specified by the current window. Each agent searches for a
partial route to its destination, and then begins following the
route. At regular intervals (e.g. when an agent is half-way
through its partial route) the window is shifted forwards and
a new partial route is computed.

To ensure that the agent heads in the correct direction,
only the cooperative search depth is limited to a fixed depth,
whilst the abstract search is executed to full depth. A win-
dow of sizew can be viewed as an intermediate abstraction
that is equivalent to the base level state space forw steps,
and then equivalent to the abstract level state space for the
remainder of the search. In other words, other agents are
only considered forw steps (via the reservation table) and
are ignored for the remainder of the search.

To search this new search space efficiently, a simple trick
can be used. Oncew steps have elapsed, agents are ignored
and the search space becomes identical to the abstract search
space. This means that the abstract distance provides the
same information as completing the search. For each node
Ni reached afterw steps a special terminal edge is intro-
duced, going directly fromNi to the destinationG, with a
cost equal to the abstract distance fromNi to G. Using this
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trick, the search is reduced to aw-step window using the
abstract distance heuristic introduced for HCA*.

In addition, the windowed search can continue once the
agent has reached its destination. The agent’s goal is no
longer to reach the destination, but to complete the window
via a terminal edge. Any sequence ofw moves will thus
reach the goal. However, the WHCA* search will efficiently
find the lowest cost sequence. This optimal sequence repre-
sents the partial route that will take the agent closest to its
destination, and once there to stay on the destination for as
much time as possible.

In general, the edge cost function for WHCA* is:

COST(P,Q) =

{
0 if P = Q = G, t < w
ABSTRACTDIST(P, G) if t = w
1 otherwise

An additional benefit of windowing is that processing
time can be spread across all agents. By staggering the win-
dows appropriately, searches can be smoothly interleaved.
With n agents and a window size ofw, recalculating routes
at the midpoint of each window, only2n/w searches need
be performed per turn. If a turn consists of many frames,
then the resumable search naturally breaks down further and
can be spread across multiple frames.

Finally, the RRA* search results can be reused for each
consecutive window. This requires each agent to store its
own Open and Closed lists. An initial RRA* search is per-
formed for each agent from its original positionO to its goal
G. For each subsequent window, the RRA* search is re-
sumed to take account of any new nodes encountered. For
consistency, it must continue to search towards the agent’s
original positionO, and not the agent’s current position.
This means that expansions will take place in concentric
rings of equidistance about the original shortest path. The
efficiency of this approach will reduce if agents are forced
far away from the original path. However, the savings from
reuse should in general outweigh any additional expansions
caused by deviation.

Experimental Results
To test the algorithms, a series of 10 challenging, maze-like
environments were generated. Each environment consisted
of a 32x32 4-connected grid, with impassable obstacles ran-
domly placed down in 20% of the grid locations. Any dis-
connected subregions were additionally filled with obstacles
to guarantee a fully connected map. Agents were placed
into this environment with randomly selected start positions
and destinations, subject to the constraint that no two agents
shared the same start position or destination. An example
environment is shown in Figure 2.

An agent was considered successful if it was able to reach
its destination within 100 turns. If the agent exceeded this
time limit, was unable to find a route, or collided with any
other agent, then it was considered to be a failure. The av-
erage success rates of each algorithm are shown in Figure
3. With few agents, all of the algorithms are able to achieve
100% success rates. However, with more crowded maps Lo-
cal Repair A* begins to struggle and 20% of the agents fail

Figure 2: An example environment. Agents must navigate
from Si to Gi.

to reach their destinations. A large throng of agents tends to
build up in a key bottleneck, and the high agitation level of
the agents is insufficient to escape the deadlock. When us-
ing any of the three Cooperative A* algorithms, agents are
able to step aside and allow others to pass, dealing comfort-
ably with bottleneck situations. Even with 100 agents, under
2% of the agents fail to reach their destination when using
WHCA* with a window size of 16 (window size is indicated
in parentheses in the figures).

The path length of each agent’s route was also measured.
This is the number of turns that elapse before an agent first
reaches its destination, or equivalently the length of the path
through space-time. This is important since agents may
wait for many turns when using Cooperative Pathfinding.
Average path lengths for each agent are shown in Figure 4.
The shortest path is also shown, assuming no other agents
are present. This provides a lower bound on the optimal
path length achievable by any algorithm. With few agents
on the map, all the algorithms find routes which are close
to the optimal bound. As the number of agents is increased,
interactions begin to occur and agents must deviate from the
shortest path. Using Local Repair A* these deviations can
be significant, with path lengths of more than twice the op-
timal lower bound when 100 agents are present. In contrast
CA* and HCA* deviate by just 20% from the optimal lower
bound.

The path length is only one indicator of route quality. In
addition, it is desirable for agents to follow routes which
have the appearance of intelligence and consistency. An ap-
proximate estimate of the route quality is the number of cy-
cles occurring. A cycle was counted every time an agent
revisited a grid location that it had previously visited in the
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Figure 3: Percentage of agents that successfully reach their
destination

same trial. The average number of cycles for each agent
is shown in Figure 5. CA* and HCA* produce very few
cycles, since they precompute the entire route cooperatively.
However, they are occasionally forced to reroute once agents
have reached their destination, as they have no with ongoing
cooperation. WHCA* does have ongoing cooperation, but
reroutes at regular intervals according to the window. De-
spite the regular recalculations, the paths maintain an over-
all consistency, guided towards the destination by the ab-
stract heuristic. This keeps cycles down to an acceptable
frequency (averaging at most 1.5 cycles per agent with 100
agents). Local Repair A* produces more than 10 times
this number of cycles, corresponding to the large number of
agents that mill around aimlessly in the bottleneck regions.

The processing time for each algorithm is broken down
into two separate components. The total processing time to
calculate initial routes for all agents is shown in Figure 6.
After agents have begun to follow their routes, the total pro-
cessing time across all agents is calculated every turn. For

Figure 4: Average path length for each agent

Figure 5: Average number of cycles in each agent’s route

real-time games, the maximum processing time for any turn
is particularly important, shown in Figure 7. All times were
measured on a 1.2GHz Pentium 4 processor. Local Repair
A* is fast to initialise and to use, although it decreases in ef-
ficiency once many agents are present, due to more frequent
rerouting. CA* and HCA* are prohibitively slow to ini-
tialise as they must perform full-depth cooperative searches
in space-time.

The efficiency of WHCA* depends on the window size.
A smaller window size requires the least initialisation but
must reroute the most frequently, although at little cost. A
larger window size must precalculate a larger proportion of
the route, rerouting rarely but with a higher cost. In practice
window sizes of 8, 16 and 32 have similar ongoing costs,
but an initial calculation time that increases with window
size. Using a window size of 16, 100 agents can initialise in
under 100ms with a maximum ongoing cost of around 50ms
per turn.

Figure 6: Total initial calculation time for all agents
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Figure 7: Maximum total calculation time for all agents on
any turn

Discussion
The cooperative pathfinding methods are more successful
and find higher quality routes than A* with Local Repair.
Unfortunately, the basic CA* algorithm is costly to compute,
taking over a second to calculate 100 routes. Using a hierar-
chical heuristic reduces the cooperative search cost, but with
an overhead in the abstract domain. Although slightly lower
than CA*, the initial cost of HCA* is still too great for real-
time applications. By windowing the search to a fixed depth,
the precalculation can be reduced to under 1ms per agent.
The abstract search is spread over the duration of the route,
guiding the cooperative search quickly towards the destina-
tion. The ongoing cost of WHCA* is under 0.6ms per agent,
suitable for real-time use.

The size of the window has a significant effect on the suc-
cess and performance of the algorithm. With a large win-
dow, WHCA* behaves more like HCA* and the initialisa-
tion time increases. If the window is small, WHCA* be-
haves more like Local Repair A*. The success rate goes
down and the path length increases. The window size pa-
rameter thus provides a spectrum between Local Repair A*
and HCA*. An intermediate choice (16 in these environ-
ments) appears to give the most robust overall performance.
In general, the window size should be set to the duration
of the longest predicted bottleneck. In Real-Time Strategy
games groups of units are often moved together towards a
common destination. In this case the maximum bottleneck
time with cooperative pathfinding (ignoring units in other
groups) is the number of units in the group. If the window
size is lower than this threshold, bottleneck situations may
not be resolved well. If the window size is higher, then some
redundant search will be performed.

Conclusion
Local Repair A* may be an adequate solution for simple en-
vironments with few bottlenecks and few agents. With more
difficult environments, Local Repair A* is inadequate and is
significantly outperformed by Cooperative A* algorithms.

By introducing Hierarchical A* to improve the heuristic and
using windowing to shorten the search, a robust and efficient
algorithm, WHCA*, was developed. WHCA* finds more
successful routes than Local Repair A*, with shorter paths
and fewer cycles. It is efficient both at calculating routes and
for ongoing processing, with a run-time cost that is suitable
for use in real-time video-games.

Although this research was restricted to grid environ-
ments, the algorithms presented here apply equally to more
general pathfinding domains. Any continuous environment
or navigational mesh can be used, so long as each agent’s
route can be planned by discrete motion elements. The grid-
based reservation table is generally applicable, but reserving
mesh intersections may be more appropriate in some cases.
Finally, the cooperative algorithms may be applied in dy-
namic environments, so long as an agent’s route is recom-
puted whenever invalidated by a change to the map.
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