
Controlling Unreal Tournament 2004 Bots with the Logic-based Action Language
GOLOG

Stefan Jacobs and Alexander Ferrein and Gerhard Lakemeyer
Knowledge-based System Groups

Computer Science Department
RWTH Aachen

52056 Aachen, Germany
{sjacobs,ferrein,gerhard}@cs.rwth-aachen.de

Abstract
Computer games and the accompanying entertainment indus-
try branch has become a major market factor. AI techniques
are successfully applied to tasks like path planning or intelli-
gent swarm behavior. On the decision-making level the state
of the art are state machines with a fixed set of behaviors. The
perception of the computer player is perfect. They exactly
know where the other players are located, even if they cannot
“see” them. This approach seems to be limited for intelligent
decision making. Therefore, we propose another approach.
We use a variant of the logic-based action language GOLOG
for implementing so-called game bots in the UNREAL TOUR-
NAMENT 2004 environment. First results show that we can
compete with the omniscience game bots in the Unreal do-
main.

Introduction
Computer games and the accompanying entertainment in-
dustry branch has become a major market factor. With in-
creasing processor speed and powerful graphic engines com-
puter games are becoming more and more realistic.

An important aspect for game-play is that the computer
opponents act in an “intelligent” and realistic way. AI tech-
niques are applied to so-called “low-level” tasks like path
planning or intelligent swarm behavior. On this level com-
puter animated creatures seem to act human-like.

A very successful branch of computer games are the so-
called ego-shooter games, where the player is controlling
one character perceiving the environment from the charac-
ter’s point of view. In those games, the characters act mainly
in an adversarial environment where the goal is to eliminate
opponent players. Examples for such games are Quake (Id
Software Inc. 2002) or Unreal Tournament (Epic Games Inc.
2004b). Computer controlled characters are called game
bots or bots, for short.

While ego-shooter games may not be everybody’s cup
of tea, they are nevertheless very challenging from the AI
perspective. The environment is highly-dynamic, one has
to deal with uncertainty, and decisions have to be made in
real-time. Programming those bots in a way that the hu-
man player regards them as “intelligent” and intriguing op-
ponents is a challenging task for game AI.
Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

The state of the art techniques for implementing game
bots are mainly state automata with fixed transitions. To
let them appear more realistic, the programmer equips them
with a nearly perfect world model. The human player can
see through this omniscience very easily. To let the behavior
of a game bot appear more realistic, it should be equipped
with a human-like world model. Then, the decision mak-
ing algorithms become more complex, and, for AI research,
more interesting.

Therefore, our approach to decision making of a game bot
is based on the logic-programming language GOLOG which
combines explicit agent programming with the possibility to
reason about actions and change. In particular, we use our
variant READYLOG which, moreover, integrates decision-
theoretic planning techniques.

Our application domain is the game “Unreal Tournament
2004” which will be outlined in the next section. After-
wards, we give an overview of the language features of
READYLOG which we use to model Unreal game bots, be-
fore we describe the contents of the demonstration.

Unreal Tournament 2004
UNREAL TOURNAMENT 2004 (Epic Games Inc. 2004b)
was developed by EPIC GAMES (Epic Games Inc. 2004a).
It is a multi-player game where human players compete in
performing different tasks. The opponents are either human
players or computer-controlled game bots. There exist dif-
ferent game modes like death match or capture the flag. The
goal of the former is to disable as many opponents as possi-
ble, while in the latter two teams of players have to defend
their own home base. Here, strategic planning and coordi-
nation is needed.

While the game engine of UNREAL TOURNAMENT 2004
is not publicly available, the decision making routines of the
game bots are open source. The bots are implemented in the
object-oriented language USCRIPT, a script language which
comes with the game. The algorithms for path planning or
collision detection are part of the game engine and therefore
cannot be modified.

The bot framework in USCRIPT offers high-level actions
like move to, attack, or retreat. The original bots were im-
plemented using a state machine consisting of nine different
states. The state classification is controlled by the game en-
gine.

151

Proceedings of the First
Artificial Intelligence and Interactive

Digital Entertainment Conference
(AIIDE-2005)

As the decision making code of the bots is available, it is
possible to change it in such a way that agent technologies
become applicable. We therefore implemented a new in-
terface to the game engine which allows to transmit world
model information like the topology of a game level, vi-
sual information of opponents, team-mates, or items like
weapons or health packs. This means that these items are
only transmitted if the game bot can perceive them. Using
this information we build a world model which is used for
specifying the bot’s behavior in the READYLOG framework.
In contrast to omniscient agent programs, the information
provided by the world model is incomplete in general.

Previously, (Kaminka et al. 2002) used the the Unreal
framework as research subject. They proposed an interface
to connect to the Unreal engine which is different from ours.
Mainly their work focused on the “low-level” tasks like path
planning.

READYLOG
For specifying our high-level control we use a variant
of the logic-based high-level agent programming language
GOLOG (Levesque et al. 1997). GOLOG is a language
based on the situation calculus (Reiter 2001). Over the re-
cent years many extensions like dealing with concurrency,
exogenous and sensing action, a continuous changing world
and probabilistic projections (simulation) (Giacomo, Les-
perance, & Levesque 2000; Grosskreutz & Lakemeyer 2000;
2003) made GOLOG an expressive robot programming lan-
guage. We further integrated a planning module into
GOLOG which chooses the best action to perform by solving
a Markov Decision Process (MDP) (we refer to (Puterman
1994) for reading on MDP and to (Boutilier et al. 2000) on
integrating MDPs into GOLOG).

In the following we give an overview of some of the fea-
tures of READYLOG, not going into details. We successfully
apply READYLOG in the robotic soccer domain and refer to
(Ferrein, Fritz, & Lakemeyer 2005; Dylla, Ferrein, & Lake-
meyer 2003) for details.
• Sequence: a1, a2

• Nondeterministic Choice: a1; a2

• Solve an MDP: solve(p, h), where p is a GOLOG program and
h is the horizon up to which the MDP is solved

• Test: ?(c)

• Event-Interrupt: waitFor(c)

• If-then-else: if (c, a1, a2)

• While-loops: while(c, a1)

• Condition-bounded execution: withCtrl(c, a1)

• Concurrent actions: pconc(a1, a2)

• Probabilistic actions: prob(valprob, a1, a2)

• Probabilistic (offline) projection: pproj (c, a1)

• Procedures: proc(name(parameters), body)

These are the ingredients for implementing an agent in the
READYLOG framework. For space reasons we cannot give
an example of a game bot program.

Demonstration
In the demonstration we show the current state of the game
bot implementation. For the game variant death match we
can show that the READYLOG-bot performs at an 80 % level
compared to the original Unreal bots. We find this remark-
able because the world model of the Unreal bot is nearly
perfect compared to our world model. For the variants cap-
ture the flag more strategic planning is needed. We are cur-
rently working on that matter. Especially in this variant of
the game we expect to perform much better in the future.

We want to present our framework as an agent program-
ming framework for highly-dynamic and adversarial real-
time domains. Other decision making algorithms could be
easily integrated as our framework provides a well struc-
tured world model.

Several recorded demonstration sessions can be found at
http://robocup.rwth-aachen.de/readybot/.

References
Boutilier, C.; Reiter, R.; Soutchanski, M.; and Thrun, S. 2000.
Decision-Theoretic, High-Level Agent Programming in the Situa-
tion Calculus. In Workshop on Decision-Theoretic Planning, Sev-
enth International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR2000).
Dylla, F.; Ferrein, A.; and Lakemeyer, G. 2003. Specifying mul-
tirobot coordination in ICPGolog – from simulation towards real
robots. In Proc. of the Workshop on Issues in Designing Physical
Agents for Dynamic Real-Time Environments: World modeling,
planning, learning, and communicating (IJCAI 03).
Epic Games Inc. 2004a. http://www.epicgames.com/.
Epic Games Inc. 2004b. Unreal tournament 2004.
http://www.unrealtournament.com/.
Ferrein, A.; Fritz, C.; and Lakemeyer, G. 2005. Using golog for
deliberation and team coordination in robotic soccer. KI (1).
Giacomo, G. D.; Lesperance, Y.; and Levesque, H. J. 2000. Con-
golog, a concurrent programming language based on the situation
calculus. Artificial Intelligence 121(1-2):109–169.
Grosskreutz, H., and Lakemeyer, G. 2000. cc-Golog: Towards
More Realistic Logic-Based Robot Controllers. In AAAI-00.
Grosskreutz, H., and Lakemeyer, G. 2003. Probabilistic complex
actions in golog. Fundamenta Informaticae 57(1):167–192.
Id Software Inc. 2002. Quake 3 arena.
http://www.idsoftware.com/games/quake/quake3-arena/.
Kaminka, G. A.; Veloso, M. M.; Schaffer, S.; Sollitto, C.; Adob-
bati, R.; Marshall, A. N.; Scholder, A.; and Tejada, S. 2002.
Game Bots: A Flexible Test Bed for Multiagent Research. Com-
munications of the ACM 45(2):43–45.
Levesque, H.; Reiter, R.; Lespérance, Y.; Lin, F.; and Scherl, R.
1997. GOLOG: A Logic Programming Language for Dynamic
Domains. Journal of Logic Programming 31:59–84.
Puterman, M. 1994. Markov Decision Processes: Discrete Dy-
namic Programming. New York: Wiley.
Reiter, R. 2001. Knowledge in Action. Logical Foundations for
Specifying and Implementing Dynamical Systems. MIT Press.

152

