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Abstract 
Learning how to defeat human players is a challenging task 
in today’s commercial computer games. This paper suggests 
a goal-directed hierarchical dynamic scripting approach for 
incorporating learning into real-time strategy games. Two 
alternatives for shortening the re-adaptation time when 
using dynamic scripting are also presented. Finally, this 
paper presents an effective way of throttling the 
performance of the adaptive artificial intelligence system. 
Put together, the approach entails the possibility of an 
artificial intelligence opponent to be challenging for a 
human player, but not too challenging. 

Introduction   
The quality of the opponent intelligence in modern 
computer games primarily comes from the ability of 
artificial intelligence opponents (AIOs) to exert human-like 
behavior (Spronck, et al. 2003). A cornerstone of human 
behavior is learning; humans are able to quickly adapt to 
and cater for changing situations. This is valid for players 
of computer games too; they are able to quickly identify 
and exploit the behavior of the opponent intelligence. We 
argue that the entertainment value of a computer game can 
be increased by allowing AIOs to adapt to the opponent 
behavior, i.e. to the behavior of the human player. 
 Learning how to defeat human players might however 
raise issues when incorporated into commercial computer 
games, as the goal is for the player to win (Lidén 2003), 
but not too easily (Woodcock, et al. 2000). Hence, an AIO 
needs to be carefully balanced. 
 Balancing the performance of an AIO is however not a 
trivial task, as the expertise amongst game players varies. 
Learning paradigms also usually aim at reaching the best 
available performance. Therefore, methods for balancing 
AIOs might be of even more importance, as a game should 
be challenging for both novice and expert players. 
 This paper extends the approach of dynamic scripting 
(Spronck, et al. 2003), by adding a goal-directed ability as 
a means for enabling fast learning in RTS games. Two 
alternatives for shortening re-adaptation times are also 
presented. Finally, this paper presents an efficient approach 
for throttling the performance of adaptive AIOs. 

                                                 
Copyright © 2006, American Association for Artificial Intelligence 
(www.aaai.org). All rights reserved. 

RTS games 
In real-time strategy games two or more players fight each 
other on a battlefield, where each player is in control of an 
army. An army usually consists of various combat units 
and structures for managing the war, such as: training 
facilities, in-game research facilities, stationary defenses, 
and resource gathering centers. A vital component in many 
RTS games is resources such as gold and supplies. These 
need to be gathered and allocated in order to construct a 
base to operate from and in order to create combat units.  
 The key to victory in an RTS game often depends on 
two factors: good resource management and strategic 
thinking. Everything comes to a certain cost and resources 
can be of limited amounts. Therefore, an efficient flow and 
good allocation of resources is needed. Furthermore, 
tactical and strategic decisions are needed for how to 
defeat the opponents. Advantages in the terrain need to be 
found and weaknesses of enemies need to be spotted. 
Together, these advantages and weaknesses can be used to 
implement a good strategy for victory. 

AI in RTS games 
An AIO in an RTS game faces similar tasks as a human 
player. In order to appear intelligent it might need to create 
one cohesive strategy for victory. The AI system in an RTS 
game can be compared with how real-world armies 
operate. At the top, the commander-in-chief decides on a 
grand plan based on doctrines, reports etc. This plan is 
propagated through the chain of command down to 
regiments or similar units, which execute different parts of 
the plan. Eventually, orders reach the lower levels where 
individual soldiers contribute with their part to the plan. 
 Similarly, an AIO can be structured in a hierarchical 
fashion stretching from strategic and tactical warfare to 
individual unit combat. At the top, resources need to be 
collected and managed efficiently. The order in which to 
produce buildings and units also needs to be scheduled 
efficiently. Furthermore, Buro & Furtak (2004) state that 
both spatial- and temporal reasoning is of great 
importance. Temporal reasoning is concerned with how 
actions relate to each other over time, and spatial reasoning 
is concerned with analyzing the environment. Forbus et al. 
(2001), point out the importance of exploiting the terrain in 
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war games. Key positions need to be found for where to 
put defenses and for where to attack.  Moreover, it can be 
of importance to detect movement patterns of enemies in 
order to place defenses strategically and to appear 
intelligent. 
 The battlefield in an RTS game is usually unknown from 
the beginning, and players need to explore it to find 
resource locations and key positions in the environment. 
Even though the world has been explored, or if its structure 
is known in advance, regions not seen by friendly units are 
usually covered by a fog of war (FOW). Considering that 
an RTS game is a dynamic environment the view of the 
world for one player might not be completely true, as other 
players might have changed it. Therefore, an AIO needs to 
be capable of making decisions under uncertainty. A model 
might need to be established for how the opponents play 
and what their intentions are.  
 Several players are also allowed to team up against 
common enemies. AIOs might therefore need to be able to 
collaborate with each other, as well as with human players.  
 It can be important to combine many of these aspects 
and create a plan which also considers future situations that 
might occur. In order to achieve the longer-term goal of 
victory, a plan might also need to include objectives that 
are not directly profitable, or even unprofitable, in the near 
future. In the end, everything however needs to be 
executed through issuing low-level commands that control 
the behavior of each individual unit.  
 At the lower levels, the main task for the AI system is 
pathfinding. It might however also need to possess the 
capabilities of unit coordination and situation analysis, in 
order for the units to appear intelligent. Even though the AI 
system can be quite complex, shortcuts are allowed as it is, 
in the end, the entertainment value that counts. 

Dynamic scripting 
Dynamic scripting (Spronck, et al. 2003) is a technique for 
achieving online adaptation of computer game opponents. 
In dynamic scripting, scripts are created online, i.e. during 
game-play, based on rules extracted from a rulebase. The 
technique is based on reinforcement learning and 
adaptation proceeds by rewarding or punishing certain 
rules according to their influence on the outcome.  
 Originally, dynamic scripting was used to create scripts 
for opponent parties in computer role-playing games 
(CRPGs). Before an encounter between the party of a 
human player and an opponent party, controlled by the AI, 
rules are extracted to govern the behavior of the opponent 
party.  All rules in a rulebase are associated with weights 
which determine the probability that they are extracted and 
used in a script. Rules are evaluated when an encounter has 
ended and their weights are updated according to the 
outcome of the encounter.  
 A fitness function is used to calculate fitness values for 
all rules during the adaptation process. The fitness values 
are based on the contribution to the outcome and they are 
used to calculate new weights. This is handled by a weight-

update function which maps fitness values to weight 
changes. Finally, a weight redistribution function is applied 
so that the total weight-sum remains constant. Hence, if 
one weight is increased, then other weights are decreased. 
 A cornerstone of dynamic scripting is that it is based on 
domain knowledge. Domain knowledge is used when rules 
are created, as the designer has knowledge of the domain. 
Domain knowledge is also used to separate rules during 
run-time; rules for controlling a warrior are different from 
rules for controlling a wizard. Different rulebases are 
therefore created for each character type in a CRPG.  
 The fact that the rules are manually designed is very 
attractive from a game developer’s perspective, as the 
quality assurance phase becomes easier. Moreover, the 
behavior of AIOs in an RTS game is often determined by 
scripts (Spronck, et al. 2002). Spronck (2005) also states 
that dynamic scripting achieves eight demands that can be 
needed to successfully implement online learning in 
computer games: speed, effectiveness, robustness, 
efficiency, clarity, variety, consistency, and scalability. 
Therefore, dynamic scripting should be suitable for 
achieving adaptive behavior in RTS games. 

Dynamic Scripting in RTS games 
According to Ponsen & Spronck (2004), dynamic scripting 
is not directly applicable to RTS games due to the 
differences between scripts for CRPGs and RTS games. 
Ponsen & Spronck (2004) has however applied a modified 
dynamic scripting algorithm to an RTS game, which 
mainly differs with regard to two aspects: 
1. Instead of separating rules with respect to different 

opponent types (warrior, wizard, etc.), rules are 
separated with respect to different game states. 

2. Rules for an AIO are adapted when a state change 
occurs and rules are evaluated with respect to the fitness 
for the previous state and the fitness for the whole game. 
In the original dynamic scripting algorithm (Spronck, et 
al. 2003), rules are evaluated after each encounter 
between opponent parties. 

Ponsen & Spronck (2004) separate states based on what 
type of buildings that are available in the game at any point 
in time, since each building allows for various kinds of in-
game actions. Therefore, a state change occurs every time a 
new building is constructed. For example, if a heavy 
weapons factory is constructed, then tanks and artillery can 
be built. If the factory is destroyed, then heavy weapons 
cannot be constructed any more and rules associated with 
these are useless. On top of this, Ponsen & Spronck 
implemented a loop which was used to continuously 
launch attacks against the opponent player. 

Extending dynamic scripting 
In this section, a goal-directed hierarchical approach for 
extending the dynamic scripting algorithm (Spronck, et al. 
2003) is presented. We argue that two main advantages can 
be gained by introducing a goal-directed component: 
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1. The illusion of intelligence can be strengthened given 
that: (1) it is important that agents in computer games 
seem to possess some intelligence (Laird 2000), and (2) 
the most important aspect of an agent’s intelligence is its 
goal-directed component (Nareyek 2002). 

2. The complex domain knowledge possessed by human 
designers can easily be translated to individual goals and 
prerequisites. These can be used to dictate the behavior 
of AIOs whilst the structure is kept simple and allows 
for fast learning through a smaller learning space. 

The approach also extends the dynamic scripting algorithm 
by utilizing a hierarchical structure which allows for 
emergent planning and resource allocation. We argue that 
AIOs in RTS games are preferably built in a hierarchical 
fashion as the tasks for an AIO in an RTS game span from 
strategic decisions and tactical command, all the way down 
to individual unit behavior. A hierarchy should thus 
constitute good mapping from tasks to behavior. 

Goal-directed rule hierarchy 
Similarly to dynamic scripting, goal-directed hierarchical 
dynamic scripting (GoHDS) maintains several rulebases, 
one for each basic player type in a game. Each rule in a 
rulebase has a purpose to fill and several rules can have the 
same purpose, e.g. to attack an enemy but in different 
ways. We extend the amount of domain knowledge by 
grouping rules with the same purpose, and say that these 
rules have a common goal. Hence, goals are introduced 
and put in several goalbases, one for each player type. A 
rule is seen as a strategy for achieving a goal, which can be 
seen as domain knowledge used to direct the behavior. 
 The learning mechanism in GoHDS operates on the 
probability that a specific rule is selected as strategy for 
achieving a specific goal. In order to allow for reusability 
of rules, so that many goals can share individual rules, 
weights are detached from rules and instead attached to the 
relationships between goals and rules, see Figure 1. By 
assigning weights to each goal-rule relationship, adaptation 
can occur in a separate learning space for each goal. This 
can allow for higher flexibility and reuse. 

 
Figure 1: Illustration of the goal-rule layout.  
 Rules in GoHDS are divided in two distinct states: init 
and active. The init state has the purpose of asserting that 
the global tactical/strategic state is suitable for a given rule, 
e.g. preconditions are checked to see if the rule is at all 
applicable. If the rule is not applicable, then goals are 

started with the purpose of fulfilling the global 
tactical/strategic state that is needed for the rule. For 
example, if an assault squad of tanks is to be built, then a 
heavy weapons factory is needed. In the case where a 
heavy weapons factory does not exist, then it is not 
necessary to check if there is enough cash to build tanks, 
and instead, a goal to create a heavy weapons factory can 
be started. Rules change to the active state when their 
preconditions are fulfilled. The active state has the purpose 
of executing the main action of rules if their optional 
condition(s) is (are) true, e.g. to build an assault squad in 
the previous example. 
 An advantage of using dynamic scripting is that rules are 
designed in a clear and understandable fashion. This might 
pose a problem if rules are to give the illusion of 
intelligence at the tactical/strategic level. For example, a 
single rule for ordering a blitzkrieg assault might neither be 
simple nor reusable if a single rule handles the complete 
behavior. Hence, rules are broken down into smaller rules 
and sub-goals which are connected to form a hierarchy of 
goals and rules. This is illustrated in Figure 2. By dividing 
rules into many small rules and goals, the simplicity and 
understandability can more easily be maintained. 

 
Figure 2: Illustration of a simple goal-rule hierarchy. 

GoHDS in an RTS game 
Is the GoHDS method enough for creating an AIO which 
gives the illusion of intelligence in an RTS game? At the 
tactical/strategic level an AIO faces tasks such as resource 
allocation, modeling, spatial- and temporal reasoning, 
planning, and decision making. These tasks can all be 
important when creating AIOs in RTS games, but which 
tasks can GoHDS handle and how can it be combined with 
other systems in order to achieve such a system? 
 The GoHDS method does not contain a communication 
system, it is not a spatial reasoning system, nor is it a 
temporal reasoning system; hence, collaboration and 
spatial- and temporal reasoning are excluded. Explicit 
modeling is ruled out as dynamic scripting is not a system 
for making plausible hypotheses concerning enemy intent. 
Dynamic scripting is however a machine learning 
technique and its weights implicitly model the behavior 
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previously expressed by its enemies. Some degree of 
resource allocation and planning is also managed in the 
hierarchy and by the preconditions. 
 We argue that the GoHDS method might need to be 
complemented with other systems in order to be applicable 
in practice. A collection of many sub-systems can in 
combination be used to form an overall strategy for 
victory, and GoHDS can be used as one such sub-system. 
The introduction of goals through GoHDS can be exploited 
further by using goals as an interface between the different 
systems. For example, GoHDS might need to be fed with 
goals to be efficient. It might also need to retrieve 
information concerning vantage points, paths, and avenues 
of approach. A simple example of how to combine a set of 
systems with GoHDS is now presented. 
 First, a perception system is needed in order to act. This 
can for example be achieved through a 2D map containing 
all vital objects that are seen by friendly units. 
Furthermore, the perception system can be complemented 
with influence maps for detecting movement patterns of 
enemies. The perception system can be used by a modeling 
system which, for instance, keeps a state vector of the 
world. Each state can then be matched against a target state 
and for each state that is not fulfilled a goal to fulfill it can 
be fed to GoHDS. Furthermore, GoHDS can communicate 
with the perception system on its own in order to retrieve 
state information. The modeling system and GoHDS could 
also communicate with some form of resource 
management system that prioritizes and performs 
production scheduling. In addition, a pathfinding system 
could be used by GoHDS, the modeling system, and an 
object system. The pathfinding system could also use some 
form of terrain analysis system for input. Figure 3 
illustrates a simple example of the described system. 

 
Figure 3: Example of how GoHDS can be combined 
with other systems. 

Learning in RTS games 

Exploiting the feedback 
At the tactical/strategic level in an RTS game, the number 
of occasions when feedback is available can be rather few. 
It is therefore important to exploit the feedback as much as 

possible, when it actually exists. In other words, there is a 
need for rapid learning. In many learning paradigms, a 
distinct learning rate (LR) factor usually controls the speed 
at which learning proceeds. In dynamic scripting the LR 
factor consists of a reward and a punishment factor. In 
order to actually exploit the feedback from the 
environment, it is important to understand how these 
factors affect the learning process, both individually, as 
well as when combined with a distinct LR factor. It is also 
interesting to investigate if the time to achieve adaptation 
can be lowered by manipulating these factors.  
 In order to compare how the punishment and reward 
factors affect the learning process, this paper has 
investigated three different settings of these factors: (1) 
higher rewards, (2) higher punishments, and (3) equal 
rewards and punishments. It is also interesting to 
investigate if the adaptation time can be shortened by 
increasing both factors proportionally at the same time. 
Hence, this paper has also investigated if a larger LR yields 
shorter adaptation times. It is however important to 
remember that having too large a LR factor could 
introduce predictability, which eliminates one of the 
benefits of using dynamic scripting – unpredictability 
(Spronck, et al. 2003). 
 In methods based on reinforcement learning, the 
punishment and reward factors are usually proportional to 
the fitness relative to some pre-defined break-even point 
i.e. the point where good and bad behaviors join. Temporal 
aspects are however usually neglected. In case of dynamic 
scripting, considering temporal aspects of results could 
however be applicable. For example, if a rule achieves low 
fitness for a number of consecutive evaluations, then that 
rule is potentially no good and its weight can be drastically 
decreased. Similarly, in the case of consecutive good 
results the weight for a rule can be drastically increased. A 
potential realization of this could be to track the trend of 
change over time in fitness results, i.e. to introduce the 
derivative of the fitness results. 
 Using the derivative of the results is however not 
directly applicable as the fitness results do not constitute a 
continuous function. The point-wise derivative could be 
used, but with the potential problem of introducing 
oscillating results. A third approach for exploiting the 
derivative is to use some form of smoothing function, such 
as a non-uniform rational b-spline (NURBI), or similar 
function. Fitness results can be inserted into a NURB 
which can be used to find the derivative. By using a 
NURB, the influence of historical fitness results can be 
weighted so that recent results have a higher impact on the 
derivative. Historical results can however help to minimize 
the impact of the derivative in case of uncertain direction.  
 This paper has investigated if adaptation time can be 
lowered by including the derivative in the weight-update 
function. 

                                                 
I For more information regarding NURB curves and their 
derivative, see for example Piegl and Tiller (1995). 
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Performance throttling 
Computer games need to be fun for both novice and expert 
players. This can be a problem for many adaptation 
algorithms since they usually aim at reaching the best 
available performance. This problem could however 
possibly be solved by designing fitness criteria that do not 
promote the best performance, but which promote high 
entertainment value. Entertainment value is a complex 
term, but we argue that it can be increased if the 
performance of an AIO matches that of the human player. 
This means that the performance of an AIO might need to 
be throttled to match the expertise exerted by its human 
opponent, i.e. to put up a good fight, but to lose.  
 One approach for limiting the performance of an AIO is 
to investigate the fitness and weight-update functions. The 
fitness function determines the score achieved for each rule 
and the weight-update function translates the fitness scores 
into weight changes. Establishing design criteria for a 
fitness function that does not promote the best available 
behavior can be considered a difficult problem and hence 
we focus on the weight-update function. The weight-
update function used by Spronck, et al. (2003) 
proportionally maps fitness values into weight changes so 
that the best available fitness gives the largest weight 
increase and vice versa. We suggest that a fitness-mapping 
function can be used in between the fitness and weight-
update functions, which maps fitness scores into a fitness 
space that promotes behaviors relative to a difficulty level. 
 We have investigated if a fitness-mapping function, 
based on the sine function, can be used to throttle the 
performance of an AIO. One revolution of the sine 
function has been used and its amplitude and frequency has 
been translated and scaled to fit the fitness space. Further, 
the function is phase-shifted to center its peak on a fitness 
value that corresponds to the currently active difficulty 
level. The following function has been used: 
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where f* denotes the fitness after mapping, f the original 
fitness value, and fT the target fitness.  

Simulation experiments 
The results in this section are based on Dahlbom (2004). 

Test environment 
The aim of the test environment is to: (1) compare various 
settings of the punishment and rewards factors, (2) 
measure the adaptation time over varying learning rates, 
(3) measure the adaptation time when including the 
derivative, and (4) measure the performance when 
applying varying fitness-mapping targets. 

 A simulation involves two artificial players launching 
assault raids against each other. One of the players is a 
dynamically scripted player and the other is a manually 
designed player, referred to as opponent player. At the start 
of each simulation both players are given 1500 cash to 
symbolize some form of resources. A simulation proceeds 
by ordering the players to attack each other in an 
alternating fashion, which starts an encounter. For each 
encounter both players select a rule, either for attacking or 
for defending, and for each rule, a group of ten units are 
created to a cost of ten. Consequently ten are withdrawn 
from each player’s stash of cash for each encounter.  
 During an encounter, the two opposing groups fire at 
each other in an alternating fashion. Each group has a 
predetermined probability of hitting each other. This 
probability depends on the rules that are applied. One unit 
is withdrawn from a group when hit by the other and an 
encounter ends when one of the two groups has run out of 
units. The remaining units for the victorious player are 
transferred back to the stash of cash. Finally, a simulation 
ends when a player has run out of cash.  

Goal-rule hierarchy 
The structure of GoHDS has been delimited to cover only 
two levels in the goal-rule hierarchy. By limiting the size 
of the structure, simulations can be carried out under 
similar circumstances. Disadvantages of limiting the 
structure are however that: (1) the usefulness GoHDS is 
not tested and (2) game specific implications are ignored. 
 Two goals have been created: attack and defend. Each of 
these goals has eight rules for accomplishing the goal, see 
Figure 4. In order for adaptation to be possible in the 
environment, some rules are stronger and some are weaker, 
according to a predefined scheme. By using a predefined 
scheme it is known in advance that reaching convergence 
is always possible, and hence, the time to reach 
convergence can always be measured. The environment 
can also be seen as a variant of the prisoner’s dilemma. 

 
Figure 4: Illustration of the goal-rule setup used. 
 During a simulation both players always have the defend 
goal active, which yields that they are always prepared to 
defend themselves. An attack goal is then given to each 
player in an alternating fashion to start an encounter.  
 When an opponent player is assigned a goal it selects 
rules according to a predefined scheme. A dynamically 
scripted player selects rules according to the dynamic 
scripting procedure.  
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Weight-update functions 
Everything in the test environment is based on groups of 
units fighting each other, and hence, the fitness function is 
based on the number of surviving units in a group, uS, and 
the number of units killed by the group, uK. As each group 
initially consists of ten units, the fitness value, f, will be in 
the range of 0 to 1, and it is calculated as:  

⎩
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otherwiseu
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f
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SS
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Informally this means that if a group has lost an encounter, 
its fitness is below 0.5 and proportional to the number of 
opposing units destroyed. If a group has won an encounter, 
then its fitness is above 0.5 and relative to the number of 
surviving units in the group.  
 The fitness for a rule is used to calculate a weight 
change. Two weight-update functions have been used: (1) 
fitness proportional weight function and (2) the fitness 
proportional function combined with a fitness derivative 
function. A similar weight update function to that used by 
Spronck, et al. (2003), has been used as the proportional 
function, and a new weight WP, is calculated as follows: 
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where WO denotes the old weight, f the fitness, MP the 
maximum punishment, MR the maximum reward, and b the 
break-even point. A break-even point of 0.5 has been used 
in all simulations. 
 When including the derivative, a new weight WPD is 
calculated as a sum of the proportional function, WP, and 
the derivative function, WD, multiplied by the maximum 
weight, MW. The derivative of the fitness results, WD, has 
been calculated by inserting historical fitness results into a 
NURB curve of degree four with evenly distributed knots, 
and then extracting the derivative from it as follows: 
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where n is the degree of the NURB, i.e. 4, d(t, fv, wv) is the 
derivative at point t on a NURB curve based on a fitness 
vector fv, and a weight vector wv. Observe that wvT and 
wvN are not to be confused with rule weights; they describe 
weights for pulling the NURB curve towards its control 
points, here constituted of the fitness results. 
 The motivation for using two different weight vectors is: 
if the point in which the derivative is calculated resides on 
a local maxima or minima, then the derivative will point in 
the wrong direction. Hence we use wvT which pulls the 
curve towards the most recent fitness result in order to 
avoid bad behaviors. wvN and wvT are defined as: 
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Experiments 
Four opponent players have been used during simulation: 
two statically designed and two dynamically designed. The 
static opponents have a predefined scheme for exactly 
which rules to deploy during run-time and their purpose is 
to allow for clear measurements on adaptation and re-
adaptation times. To assess the performance against more 
human-like behavior the dynamic opponents dynamically 
select rules, but according to a predefined scheme.  
 Constant: This opponent always deploys the first 
available rule for each assigned goal.   
 Changing: This opponent deploys the first rule for each 
assigned goal during the first 80 encounter pairs (attack 
and defend), after which it deploys the second rule for each 
goal. The second rule has an 80% probability of beating 
the rule that is strong against the first rule.  
 Consecutive: This opponent deploys a rule until the 
average fitness for that rule, over the last five encounters, 
is below 0.5, then the next available rule is selected which 
in turn has an 80% probability against the rule that is 
strong against the previously deployed rule. The purpose is 
to simulate some form of human-like domain knowledge. 
 Best: An average of ten previous fitness results are 
calculated for each rule and the rule with the highest 
average is used at each selection point. This opponent has 
the purpose of simulating human-like short-term memory. 
 During and after simulation we have used three different 
measures to quantify the quality of the dynamically 
scripted opponents: (1) turning point, (2) re-adaptation 
point, and (3) average fitness. The turning point is a 
combination of the average and absolute turning point 
calculations used by Spronck, et al. (2003), and it is 
calculated as the first encounter: (1) followed by at least 
ten consecutive successful encounters and (2) after which 
the number of consecutive successful encounters is never 
followed by a longer run of consecutive unsuccessful 
encounters. The re-adaptation point is calculated as the 
length of the longest interval of unsuccessful encounters 
occurring after the turning point has been reached.  

Results 
Table 1 presents average turning point results achieved 
during simulation. For each opponent, seven different 
settings have been used: higher rewards (R+), higher 
punishments (P+), equal punishments and rewards over 
three different learning rates (1x, 2x, and 4x), and inclusion 
of the derivative (df/dt). A 95% confidence is also included 
which determines the average to a 95% certainty given that 
the results follow a normal distribution. All simulations 
have been carried out 20 times in order to calculate the 
confidence intervals. All values have also been rounded off 
to the nearest integer. 
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Table 1: Average turning point results. 
Opponent Constant Changing Consec. Best 

Setting μ ± μ ± μ ± μ ± 
R+ 12 3 16 4 116 33 132 32 
P+ 10 3 12 4 105 33 76 31 
1x 11 2 11 3 110 32 96 34 
2x 8 2 10 4 98 34 68 30 
4x 8 2 10 2 37 20 41 21 

df/dt 12 3 10 3 86 36 74 29 

 It is clear that the consecutive and best opponents are 
much harder to defeat than the two static opponents, since 
the average number of encounters before a turning point 
could be reached is much higher. It can also be observed 
that the adaptation time is significantly shorter against the 
dynamic opponents when using a learning rate of four 
instead of one. A learning rate of four is also significantly 
better than a rate of two against the consecutive opponent. 
It is obvious that a higher learning rate has a potential of 
shortening the adaptation time. 
 Figure 5 illustrates the adaptation time against the tactic 
changing opponent when investigating the punishment and 
reward factors. We see that it can be slightly more efficient 
to have equal factors, or to have higher punishments than 
rewards, but not to a significant extent. 

 
Figure 5: Diagram showing re-adaptation point over 
three different settings of punishments and rewards. 
 Table 2 shows the average performance against the four 
opponents. Again, we observe that the consecutive and best 
opponents are much harder to defeat. It can also be 
observed that fitness increases against the tactic changing 
opponent when increasing the learning rate and when 
including the derivative. 
Table 2: Average performance results. 
Opponent Constant Changing Consec. Best 

Setting μ Μ μ μ 
R+ 0.69 0.63 0.49 0.50 
P+ 0.69 0.64 0.50 0.51 
1x 0.70 0.66 0.49 0.50 
2x 0.71 0.68 0.50 0.51 
4x 0.72 0.68 0.52 0.53 

df/dt 0.69 0.68 0.50 0.51 

 Figure 6 illustrates the re-adaptation time against the 
tactic changing opponent over three different learning rates 
and when including the derivative. It can be observed that 
increasing the learning rate significantly shortens the re-
adaptation time. The re-adaptation time is however also 
significantly shortened when including the derivative. 

 
Figure 6: Re-adaptation point over varying learning 
rate and when including the derivative. 
 Figure 7 shows results regarding performance throttling 
when applying a fitness-mapping function. In all four 
diagrams it can be observed that the fitness centers on 0.5 
against the consecutive and best opponents. This complies 
with earlier results, which points out that the GoHDS 
algorithm clearly has problems easily defeating the 
dynamic opponent types. It can however be seen that when 
applying fitness-mapping targets between 0.2 and 0.5, the 
average fitness increase similarly against all four opponent 
types. This means that the performance can be throttled. 
 In Figure 7, it can also be observed that by applying a 
fitness-mapping function, the performance can be throttled 
to negative levels against all four opponents. This means 
that an AIO can be designed to lose against a human 
player. It can however also be designed to play even.   

 
Figure 7: Average fitness (F) over varying fitness-
mapping target (FT), against (a) constant opponent, (b) 
changing opponent, (c) consecutive opponent, and (d) 
best opponent. The dotted line at 0.5 separates victories 
from losses and results below 0.5 mean that the AIO 
using GoHDS lost on average. 
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Conclusion and discussion 
A goal-directed hierarchical approach for extending 
dynamic scripting has been proposed, GoHDS. In GoHDS, 
goals are used as domain knowledge for selecting rules, 
and a rule is seen as a strategy for achieving a goal. A goal 
can in turn be realized through an arbitrary number of rules 
and the adaptation process operates on the probability that 
a specific rule is used as strategy for achieving the purpose 
of the goal. Rules are divided into sub-goals which put 
together forms a hierarchical structure. Some degree of 
planning is introduced by allowing rules to have 
preconditions, which if false initiate goals with the purpose 
of fulfilling them. 
 Simulation results have shown that by increasing the 
learning rate, or by including the derivative, re-adaptation 
times can be significantly shortened. Increasing the 
learning rate too much could however result in predictable 
behavior. This could lower the entertainment value, and 
hence, it could possibly be preferred to include the 
derivative. An approach for effectively throttling the 
performance of AIOs has also been presented, fitness-
mapping, which provides the ability for throttling 
performance to negative levels, i.e. to lose. 
 The simulation results might however be dependent on 
the test environment, and hence, investigations conducted 
in real games are of great interest in order to verify the 
results. We however argue that fitness-mapping should be 
applicable elsewhere too. 
 Even though the goal-rule hierarchy proposed in this 
paper has not been thoroughly evaluated, it should still 
provide a good platform for constructing an RTS game 
AIO system. The system covers not only the strategic 
level, but also all levels of the AIO down to every single 
unit. Hence, the system also serves as an interface between 
different levels of the AIO. Given that AIOs in an RTS 
game are preferably built in a hierarchical fashion, the 
goal-rule hierarchy provides a good structure for achieving 
a goal directed behavior, which includes adaptation. 

Future work 
In future work we will investigate the applicability of 
GoHDS in practice, both in RTS games as well as in other 
simulated environments and when applied in other 
domains. We will also investigate the surrounding systems 
for achieving an illusion of intelligence. The complete 
picture is considered of high importance. 
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