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Abstract1 
In this document, we describe our work applying natural 
language (NL) technologies to improve non-player 
character (NPC) dialog interactions in games, specifically 
role-playing games (RPGs). Our approach is to adapt the 
standard dialog menu interaction so that the menu items are 
dynamically-generated during game runtime rather than 
scripted during development time. In our system, menu 
items are constructed by manipulating abstract semantic 
representations stored in the NPC knowledgebase, con-
verting them into NL text, and then ranking them so that the 
most relevant items are placed at the top of the menu. We 
demonstrate our approach in the context of a small RPG. 

Introduction 
Despite the oft-expressed interest in using natural language 
(NL) interactions in gaming worlds, a number of serious 
issues relating to language ambiguity – notably paraphrase 
handling and coreference resolution – need to be addressed 
before these techniques become practical. These problems 
are evident even in the ideal case where we have a co-
operative player and assume that the speech recognizer or 
parser is working flawlessly. Real-world situations make 
these issues even more problematic. 

It is thus unsurprising that commercial games rely pri-
marily on scripted dialog interactions, often presented as a 
menu of choices. While this approach is flexible and 
expressive, the cost of authoring each interaction 
separately limits its ability to scale to large, complex, and 
dynamic interactions. 

In this work, we explore the ground between scripted 
menu and full NL interactions. More specifically, we seek 
to merge these two approaches to avoid the NL interface 
problems while creating a system that is more capable of 
supporting dynamic interactions. 

Related Work 
While considerable work has gone into creating interactive 
dialog systems, the game industry has until recently 
expended relatively little effort making systems that work 
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outside of predetermined scripts. Interactive storytelling 
(IS) strives to move away from scripted storylines by 
constructing a framework in which the stories emerge from 
the data. While recent work has reported success, these 
systems still rely primarily on scripted or templatic 
utterances as their building blocks. 

NL interfaces are commonly used in these systems 
because they can help reinforce the dynamic nature of the 
interaction. However, one of the touted advantages of NL 
interfaces, the expressiveness granted to the player, is 
actually an illusion that the game developer must expend 
considerable effort to maintain. All possible input 
variations must be anticipated and encoded so that they can 
be handled correctly, and out-of-domain input must be 
managed robustly. Failure to handle this properly can 
frustrate the player and can break the immersion, thus 
defeating the purpose of the providing a rich interaction. 

Our approach supports dynamic interactions and avoids 
NL input problems by creating dialog menus dynamically 
(and directly) from the contents of the NPC’s knowledge-
base (KB). To address the cognitive overload problem that 
can occur with a complex menu, we rank all of the menu 
items based on their relevance to the current game state so 
that the top-most items are always the most interesting. 

Dynamic menus with NL underpinnings were first 
described in (Tennant at al. 1983), where a predictive left-
corner parser was used to construct NL input using a 
cascading series of menus. We differ significantly from 
this approach in that we produce a single menu of complete 
utterances that are presented in ranked order of relevance. 

The goals of the present work have much in common 
with that of (Szilas and Kavakli 2006) in that we both seek 
to improve interaction in dynamic environments without 
relying on NL input. Our approaches differ in that their 
work provides a two-tiered menu with no ranking of the 
items and context sensitivity only on the second tier. Their 
first tier is also comprised of a trace of all game events, 
which is unmanageable for all but the shortest games. 

Dialog Model 
For this project, we were interested in creating a dialog 

interaction that would support a dynamically changing 
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environment without incurring the cost and problems 
associated with a NL interface. We employ a variant of the 
standard dialog menu where the menus are populated 
dynamically with context-sensitive options that are 
automatically extracted from the NPC’s KB. 

In essence, we have the game engine simulate both the 
player and the NPC side of each dialog. For the NPC, the 
options are evaluated and the best option is selected. For 
the player, the options are ranked and an n-best list of 
options is presented to the player to select from. 

Knowledgebase Creation 
Rather than create our own special purpose representation 
for the NPC’s knowledgebase, we opted to use the logical 
form (LF) structures produced by an existing parser 
(Heidorn 2000). The advantages of this approach are that it 
defines a truly general representation (Iwańska 2000) and it 
also provides a straightforward mechanism for creating 
these forms (via the parser). 

Parsing the text for the KB does introduce some risk to 
our system. We address the problem associated with the 
inevitable parse errors by parsing only during development 
time and providing feedback about questionable parses. 
This permits any errors encountered to be fixed before the 
game is released. We also require that all coreferences 
within the text are appropriately tagged. 

Interaction Candidates 
Interaction candidates (ICs) are the items used to populate 
the dialog menus that are presented to the player when 
interacting with NPCs. An IC consists of two parts: a 
stimulus string and a response string. During gameplay, the 
player chooses from the set of available stimulus strings 
and is then shown the corresponding response. 

Rather than scripting the ICs, we create them 
dynamically from the KB of the NPC. As a simplification 
for the current implementation, we limit ourselves to a 
question-answering (QA) interaction, so the stimulus is a 
question being asked and the response is the answer. 

The list of potential ICs for an NPC is created by 
examining the entries in the KB and applying tree regular 
expression (trex) patterns to identify common structures 
and extract the interaction pairs. These trex templates are 
designed to be as general as possible so that once they are 
developed they can be reused among different games. 

For example, given the sentence: “She will be OK if you 
can get a healing potion” our parser produces the following 
tree structure that is stored in the KB: 
 be [Futr] 
 └─Tobj─OK 
        ├─Tsub────she 
        └─Conditn─get [if] 
                  ├─Tsub──you 
                  └─Tobj──potion 
                          └─Attrib─heal 

On this tree, the following trex extraction pattern can be 
applied: 

 *0 be [Futr] 
  └─Tobj─*1 
          └─Conditn──*2 

Applying this pattern extracts the subtrees that 
correspond to the *’ed nodes. (Note that when discussing 
trex patterns, we make use of a concise inline notation. 
E.g., “{*0 Lemma "be" Futr Tobj {*1 Conditn {*2}}}” for 
the above tree.) 

The matches obtained from the above extraction pattern 
are then inserted into a construction pattern: “{*0 YNQ 
Tobj {*1 -Conditn}}” to create the following tree: 
 be [Futr YNQ] 
  └─Tobj─OK 
          └─Tsub──she 

From which the generation component produces the 
stimulus string “Will she be OK?”. The matches are also 
inserted into a second trex pattern (“{*2}”) to produce the 
corresponding response string (“If you can get a healing 
potion.”). This process is repeated for all the extraction 
patterns across all KB entries to create the initial set of ICs. 

Managing Game State 
While it is a straightforward process to create the list of 
ICs from the KB, it is necessary to present the items to the 
player in a manner that is dependant on the current game 
context. This context is managed by the introduction of 
game tokens into the NPC’s KB. These tokens are abstract 
entities used to track game events and chunks of 
knowledge that are relevant to the gameplay. In our 
implementation, the game tokens correspond to specially-
marked nodes or tuples (node-relation-node) in the KB. 
Accumulating Tokens. Tokens are accumulated by the 
player in one of two ways. The first way is by participating 
in some event (like visiting a location), which will result in 
the token being given to the player. 

The second way is by interacting with NPCs in the game 
to get the tokens that are encoded in that NPC’s KB. For 
example, given a KB that contains “She got sick by eating 
a poisonous berry”: 
 get 
 ├─Manner──eat [*1] 
 │         ├─Tsub──she 
 │         └─Tobj──berry [*2] 
 │                 └─Attrib──poisonous 
 └─Tobj────sick [*3] 
           └─Tsub──she 

The game designer could attach tokens to each of the 
nodes marked with an * depending on the requirements of 
the game: 

[*1]: she ate a poisonous berry 
[*2]: poisonous berries exist 
[*3]: she is sick 

When ICs are extracted from KB entries, the tokens that 
exist in the KB are copied onto the stimulus and response 
structures of the IC. So, the “How did she get sick?” 
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question would be associated with the *3 token and the 
response “By eating a poisonous berry” would have the *1 
and *2 tokens. In this fashion, the game can keep track of 
what the player has already learned and make appropriate 
adjustments to subsequent interactions. 
Enabling ICs. The primary use for the tokens is to control 
the game story by enabling and disabling ICs based on the 
current game context. ICs are enabled if the player has 
obtained all of the tokens that correspond to the stimulus 
and is lacking at least one token in the response. 
Player Goals. For our current implementation, we use a 
token dependency graph to encode the storyline for the 
game. Given the player’s current set of tokens and this 
graph, we can trivially calculate the player’s current goals. 
This goal calculation is done by identifying the set of 
tokens in the graph that have all of their preconditions met 
but have not yet been obtained by the player. 
Ranking ICs. The primary purpose of the goal tokens is so 
that we can properly rank the ICs that are presented to the 
player. This is a critical component of the interaction 
because it prevents the player from being overwhelmed by 
a large number of “uninteresting” options. 

When ranking the ICs, they are first categorized into 
bins based on whether or not they contain a goal token, 
repeat information that the player has already obtained, or 
are disabled. ICs may be disabled if they are not yet 
askable by the player or are duplicates of other ICs. 

Within each bin, we rank each IC based on the 
TreeRank for each IC’s stimulus and response and 
summing the weighted values. The TreeRank is computed 
by summing the TextRank (Mihalcea and Tarau 2004) 
values of each node in the tree. Beyond simply moving the 
most relevant results to the top of the candidate list, this 
approach also gives each NPC its own set of personal IC 
biases based on the overall contents of its KB. 

Evaluation Metrics 
There are three aspects of our system that require some sort 
of evaluation: Authoring, Gameplay, and Generation. 
Authoring is a development time metric and the other two 
are runtime evaluations. 
Authoring. For this approach to be viable, we need to 
show that the authoring cost is reduced when compared 
against a scripted system that provides equivalent player 
choice. Given that we can extract multiple ICs from a 
single KB entry, we have a potential advantage over 
scripted systems which produce one interaction per 
authored entry. This fact, coupled with our ability to share 
KBs between NPCs and apply deictic substitutions to 
localize the content for each NPC, gives an advantage 
which should be apparent when applied to larger game 
scenarios. Of course, the parsing and coreference 
annotation requirements for each KB entry make them 
more costly to author than dialog tree entries. This cost 
delta is hard to quantify, but it is clear that our approach 
would be cost-effective only for non-trivial games. 

Gameplay. The gameplay risk in a dynamic system is that 
the game may have dead-ends where the game is difficult 
to solve or unsolvable. We address this problem by running 
the game through a simulator that visits all available 
locations and automatically chooses each of the top 3 menu 
options, continuing as long as a new token is acquired. 
Non-game final situations where no new tokens can be 
acquired are problem areas that need to be addressed. 
Generation. Being the only runtime NL component, the 
generation engine requires its own evaluation. Given the 
closed domain defined by the union of all KBs in the game, 
we can generate all possible utterances by producing all 
combinations of allowable tree manipulations. These 
utterances can either be reviewed manually or the 
perplexity of the stimulus and the response strings can be 
compared relative to an n-gram language model. 

Conclusion 
Our system for managing dialog allows the dialog text to 
emerge from an underlying NL-based representation. 
Through the creation of dynamic dialog menus, we extend 
a proven interaction technique and make it useful for 
dynamically generated game content. By virtue of ranking 
the content in this menu, we also provide a mechanism for 
guiding for the player through the game. 

The current system presents many opportunities for 
future enhancement. A full goal-driven dialog model with 
a sensible personality, mood and emotion model would 
offer obvious advantages over the currently implemented 
QA interaction. Menu item ranking can be improved by 
incorporating recent dialog context and topic tracking. We 
also anticipate replacing the static KBs and token graphs 
with dynamic structures to create more compelling dialog 
interactions. 
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