
Using Natural Language to
Manage NPC Dialog

Gary Kacmarcik

Natural Language Processing Group
Microsoft Research

Redmond, WA
garykac@microsoft.com

Abstract1
In this document, we describe our work applying natural
language (NL) technologies to improve non-player
character (NPC) dialog interactions in games, specifically
role-playing games (RPGs). Our approach is to adapt the
standard dialog menu interaction so that the menu items are
dynamically-generated during game runtime rather than
scripted during development time. In our system, menu
items are constructed by manipulating abstract semantic
representations stored in the NPC knowledgebase, con-
verting them into NL text, and then ranking them so that the
most relevant items are placed at the top of the menu. We
demonstrate our approach in the context of a small RPG.

Introduction
Despite the oft-expressed interest in using natural language
(NL) interactions in gaming worlds, a number of serious
issues relating to language ambiguity – notably paraphrase
handling and coreference resolution – need to be addressed
before these techniques become practical. These problems
are evident even in the ideal case where we have a co-
operative player and assume that the speech recognizer or
parser is working flawlessly. Real-world situations make
these issues even more problematic.

It is thus unsurprising that commercial games rely pri-
marily on scripted dialog interactions, often presented as a
menu of choices. While this approach is flexible and
expressive, the cost of authoring each interaction
separately limits its ability to scale to large, complex, and
dynamic interactions.

In this work, we explore the ground between scripted
menu and full NL interactions. More specifically, we seek
to merge these two approaches to avoid the NL interface
problems while creating a system that is more capable of
supporting dynamic interactions.

Related Work
While considerable work has gone into creating interactive
dialog systems, the game industry has until recently
expended relatively little effort making systems that work

Copyright © 2006, American Association for Artificial Intelligence
(www.aaai.org). All rights reserved.

outside of predetermined scripts. Interactive storytelling
(IS) strives to move away from scripted storylines by
constructing a framework in which the stories emerge from
the data. While recent work has reported success, these
systems still rely primarily on scripted or templatic
utterances as their building blocks.

NL interfaces are commonly used in these systems
because they can help reinforce the dynamic nature of the
interaction. However, one of the touted advantages of NL
interfaces, the expressiveness granted to the player, is
actually an illusion that the game developer must expend
considerable effort to maintain. All possible input
variations must be anticipated and encoded so that they can
be handled correctly, and out-of-domain input must be
managed robustly. Failure to handle this properly can
frustrate the player and can break the immersion, thus
defeating the purpose of the providing a rich interaction.

Our approach supports dynamic interactions and avoids
NL input problems by creating dialog menus dynamically
(and directly) from the contents of the NPC’s knowledge-
base (KB). To address the cognitive overload problem that
can occur with a complex menu, we rank all of the menu
items based on their relevance to the current game state so
that the top-most items are always the most interesting.

Dynamic menus with NL underpinnings were first
described in (Tennant at al. 1983), where a predictive left-
corner parser was used to construct NL input using a
cascading series of menus. We differ significantly from
this approach in that we produce a single menu of complete
utterances that are presented in ranked order of relevance.

The goals of the present work have much in common
with that of (Szilas and Kavakli 2006) in that we both seek
to improve interaction in dynamic environments without
relying on NL input. Our approaches differ in that their
work provides a two-tiered menu with no ranking of the
items and context sensitivity only on the second tier. Their
first tier is also comprised of a trace of all game events,
which is unmanageable for all but the shortest games.

Dialog Model
For this project, we were interested in creating a dialog

interaction that would support a dynamically changing

115

environment without incurring the cost and problems
associated with a NL interface. We employ a variant of the
standard dialog menu where the menus are populated
dynamically with context-sensitive options that are
automatically extracted from the NPC’s KB.

In essence, we have the game engine simulate both the
player and the NPC side of each dialog. For the NPC, the
options are evaluated and the best option is selected. For
the player, the options are ranked and an n-best list of
options is presented to the player to select from.

Knowledgebase Creation
Rather than create our own special purpose representation
for the NPC’s knowledgebase, we opted to use the logical
form (LF) structures produced by an existing parser
(Heidorn 2000). The advantages of this approach are that it
defines a truly general representation (Iwańska 2000) and it
also provides a straightforward mechanism for creating
these forms (via the parser).

Parsing the text for the KB does introduce some risk to
our system. We address the problem associated with the
inevitable parse errors by parsing only during development
time and providing feedback about questionable parses.
This permits any errors encountered to be fixed before the
game is released. We also require that all coreferences
within the text are appropriately tagged.

Interaction Candidates
Interaction candidates (ICs) are the items used to populate
the dialog menus that are presented to the player when
interacting with NPCs. An IC consists of two parts: a
stimulus string and a response string. During gameplay, the
player chooses from the set of available stimulus strings
and is then shown the corresponding response.

Rather than scripting the ICs, we create them
dynamically from the KB of the NPC. As a simplification
for the current implementation, we limit ourselves to a
question-answering (QA) interaction, so the stimulus is a
question being asked and the response is the answer.

The list of potential ICs for an NPC is created by
examining the entries in the KB and applying tree regular
expression (trex) patterns to identify common structures
and extract the interaction pairs. These trex templates are
designed to be as general as possible so that once they are
developed they can be reused among different games.

For example, given the sentence: “She will be OK if you
can get a healing potion” our parser produces the following
tree structure that is stored in the KB:
 be [Futr]
 └─Tobj─OK
 ├─Tsub────she
 └─Conditn─get [if]
 ├─Tsub──you
 └─Tobj──potion
 └─Attrib─heal

On this tree, the following trex extraction pattern can be
applied:

 *0 be [Futr]
 └─Tobj─*1
 └─Conditn──*2

Applying this pattern extracts the subtrees that
correspond to the *’ed nodes. (Note that when discussing
trex patterns, we make use of a concise inline notation.
E.g., “{*0 Lemma "be" Futr Tobj {*1 Conditn {*2}}}” for
the above tree.)

The matches obtained from the above extraction pattern
are then inserted into a construction pattern: “{*0 YNQ
Tobj {*1 -Conditn}}” to create the following tree:
 be [Futr YNQ]
 └─Tobj─OK
 └─Tsub──she

From which the generation component produces the
stimulus string “Will she be OK?”. The matches are also
inserted into a second trex pattern (“{*2}”) to produce the
corresponding response string (“If you can get a healing
potion.”). This process is repeated for all the extraction
patterns across all KB entries to create the initial set of ICs.

Managing Game State
While it is a straightforward process to create the list of
ICs from the KB, it is necessary to present the items to the
player in a manner that is dependant on the current game
context. This context is managed by the introduction of
game tokens into the NPC’s KB. These tokens are abstract
entities used to track game events and chunks of
knowledge that are relevant to the gameplay. In our
implementation, the game tokens correspond to specially-
marked nodes or tuples (node-relation-node) in the KB.
Accumulating Tokens. Tokens are accumulated by the
player in one of two ways. The first way is by participating
in some event (like visiting a location), which will result in
the token being given to the player.

The second way is by interacting with NPCs in the game
to get the tokens that are encoded in that NPC’s KB. For
example, given a KB that contains “She got sick by eating
a poisonous berry”:
 get
 ├─Manner──eat [*1]
 │ ├─Tsub──she
 │ └─Tobj──berry [*2]
 │ └─Attrib──poisonous
 └─Tobj────sick [*3]
 └─Tsub──she

The game designer could attach tokens to each of the
nodes marked with an * depending on the requirements of
the game:

[*1]: she ate a poisonous berry
[*2]: poisonous berries exist
[*3]: she is sick

When ICs are extracted from KB entries, the tokens that
exist in the KB are copied onto the stimulus and response
structures of the IC. So, the “How did she get sick?”

116

question would be associated with the *3 token and the
response “By eating a poisonous berry” would have the *1
and *2 tokens. In this fashion, the game can keep track of
what the player has already learned and make appropriate
adjustments to subsequent interactions.
Enabling ICs. The primary use for the tokens is to control
the game story by enabling and disabling ICs based on the
current game context. ICs are enabled if the player has
obtained all of the tokens that correspond to the stimulus
and is lacking at least one token in the response.
Player Goals. For our current implementation, we use a
token dependency graph to encode the storyline for the
game. Given the player’s current set of tokens and this
graph, we can trivially calculate the player’s current goals.
This goal calculation is done by identifying the set of
tokens in the graph that have all of their preconditions met
but have not yet been obtained by the player.
Ranking ICs. The primary purpose of the goal tokens is so
that we can properly rank the ICs that are presented to the
player. This is a critical component of the interaction
because it prevents the player from being overwhelmed by
a large number of “uninteresting” options.

When ranking the ICs, they are first categorized into
bins based on whether or not they contain a goal token,
repeat information that the player has already obtained, or
are disabled. ICs may be disabled if they are not yet
askable by the player or are duplicates of other ICs.

Within each bin, we rank each IC based on the
TreeRank for each IC’s stimulus and response and
summing the weighted values. The TreeRank is computed
by summing the TextRank (Mihalcea and Tarau 2004)
values of each node in the tree. Beyond simply moving the
most relevant results to the top of the candidate list, this
approach also gives each NPC its own set of personal IC
biases based on the overall contents of its KB.

Evaluation Metrics
There are three aspects of our system that require some sort
of evaluation: Authoring, Gameplay, and Generation.
Authoring is a development time metric and the other two
are runtime evaluations.
Authoring. For this approach to be viable, we need to
show that the authoring cost is reduced when compared
against a scripted system that provides equivalent player
choice. Given that we can extract multiple ICs from a
single KB entry, we have a potential advantage over
scripted systems which produce one interaction per
authored entry. This fact, coupled with our ability to share
KBs between NPCs and apply deictic substitutions to
localize the content for each NPC, gives an advantage
which should be apparent when applied to larger game
scenarios. Of course, the parsing and coreference
annotation requirements for each KB entry make them
more costly to author than dialog tree entries. This cost
delta is hard to quantify, but it is clear that our approach
would be cost-effective only for non-trivial games.

Gameplay. The gameplay risk in a dynamic system is that
the game may have dead-ends where the game is difficult
to solve or unsolvable. We address this problem by running
the game through a simulator that visits all available
locations and automatically chooses each of the top 3 menu
options, continuing as long as a new token is acquired.
Non-game final situations where no new tokens can be
acquired are problem areas that need to be addressed.
Generation. Being the only runtime NL component, the
generation engine requires its own evaluation. Given the
closed domain defined by the union of all KBs in the game,
we can generate all possible utterances by producing all
combinations of allowable tree manipulations. These
utterances can either be reviewed manually or the
perplexity of the stimulus and the response strings can be
compared relative to an n-gram language model.

Conclusion
Our system for managing dialog allows the dialog text to
emerge from an underlying NL-based representation.
Through the creation of dynamic dialog menus, we extend
a proven interaction technique and make it useful for
dynamically generated game content. By virtue of ranking
the content in this menu, we also provide a mechanism for
guiding for the player through the game.

The current system presents many opportunities for
future enhancement. A full goal-driven dialog model with
a sensible personality, mood and emotion model would
offer obvious advantages over the currently implemented
QA interaction. Menu item ranking can be improved by
incorporating recent dialog context and topic tracking. We
also anticipate replacing the static KBs and token graphs
with dynamic structures to create more compelling dialog
interactions.

References
Heidorn, G. 2000. “Intelligent Writing Assistance”. In R.
Dale, H. Moisl and H. Somers (eds.) A Handbook of
Natural Language Processing: Techniques and
Applications for the Processing of Language as Text.
Marcel Dekker, Inc. New York.
Iwańska, Ł. 2000. “Natural Language Is a Powerful
Knowledge Representation System: The UNO Model”. In
Ł. Iwańska and S. Shapiro (eds.), Natural Language
Processing and Knowledge Representation. AAAI Press/
MIT Press. Menlo Park CA. 7-64.
Mihalcea, R. and Tarau, P. 2004. “TextRank: Bringing
Order into Texts”, EMNLP ‘04, Barcelona.
Szilas, N. and Kavakli, M. 2006. “PastMaster @
Storytelling: A Controlled Interface for Interactive
Drama”. IUI ‘06. Sydney, Australia. pp. 288-290.
Tennant, H., Ross, K., Saenz, R., Thompson, C., and
Miller, J. 1983. “Menu-based Natural Language
Understanding”. ACL ‘83. pp. 151-158.

117

