
Memory-Efficient Abstractions for Pathfinding

Nathan R. Sturtevant
Department of Computing Science, University of Alberta,

Edmonton, Alberta, Canada T6G 2E8
nathanst@cs.ualberta.ca

Abstract

From an academic perspective there has been a lot of work on
using state abstraction to speed path planning. But, this work
often does not directly address the needs of the game develop-
ment community, specifically for mechanisms that will fit the
limited memory budget of most commercial games. In this
paper we bring together several related pieces of work on us-
ing abstraction for pathfinding, showing how the ideas can be
implemented using a minimal amount of memory. Our tech-
niques use about 3% additional storage to compute complete
paths up to 100 times faster than A*.

Introduction and Overview
Pathfinding is a key task in many domains, including video
games. In games in particular, computers must compute a
path between two points as efficiently as possible, as there
many are many other demands on the CPU, such as physics,
graphics, and even additional pathfinding tasks from other
units (agents). We present a new method to build automated,
minimal-memory state abstractions to speed pathfinding.
With just 3% additional storage, we show large reductions
in computational costs.

State abstractions for pathfinding have been explored by
in a variety of different settings using a variety of methods
for abstraction (Holteet al. 1996a; 1996b; Tozour 2003;
Sturtevant & Buro 2005; Botea, M̈uller, & Schaeffer 2004).
This paper describes in detail how state abstraction tech-
niques can be optimized for use in games which have tight
memory constraints. Specifically, this work is the product
of a successful collaboration between BioWare CorpR© and
our university. According to Mark Brockington, Program-
ming Fellow for BioWare CorpR©, “Our collaboration with
the University of Alberta on this project has been successful,
and we are pleased with the performance and implementa-
tion of their pathfinding research within Dragon AgeTM .”

Abstraction For Pathfinding
Automatic state abstractions are able to take a high-
resolution map of the world and automatically transform
it into a smaller, more abstract map, which can be used to
speed pathfinding in the actual world environment.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The concept of using some sort of abstraction for
pathfinding is a natural one, as humans often use abstrac-
tions to reason about the world. A long car trip does not be-
ing with minute-by-minute planning of the expected route.
Instead, a general plan is composed which includes the start
and goal cities and a high-level route between these cities.
One may, for instance, decide whether to travel from Los
Angeles to San Francisco by taking the faster but less scenic
interstate or to take the scenic drive up the coast at the cost
of additional time. Once this high-level decision has been
made, it is up to the driver of the car to make low-level de-
cisions such as which lane to drive in and how and when to
pass other cars on the road.

Once a high-level route is known, pathfinding becomes
a local operation. It is sufficient to plan the next few steps
leading along the high-level abstract route as they guaran-
tee that the goal will be reached. This is an ideal feature
when running in environments which tightly limit computa-
tion costs.

The approach of first planning an abstract path before re-
fining it has been considered in a variety of forms (Holte
et al. 1996b; Sturtevant & Buro 2005; Botea, Müller, &
Schaeffer 2004) and in a variety of domains (G.R. Jagadeesh
2002; Yang, Tenenberg, & Woods 1996). In this paper we
address the issue of automatically building a state abstrac-
tion from an underlying map representation in a memory
efficient manner. We then demonstrate the performance of
our implementation in terms of memory used, pathfinding
speed, and resulting path optimality.

Efficient Abstraction Implementation
We first describe how we can represent a map in a memory
efficient manner, and then demonstrate how the representa-
tion can be used for pathfinding.

Computing Abstract Map
One common representation of a map is a simple grid, where
a grid cell is the smallest unit of space that can be occupied
by a single unit within the world. This is the underlying
representation that BioWare CorpR© decided to use for their
maps in Dragon AgeTM . In one respect this representation
is efficient, as there is a simple mapping betweenx/y co-
ordinates and grid cells, avoiding the memory cost of using
pointers. But for large maps, the total memory usage and

31

a

b

a b c

a

b

a

b

0 1

2 3

Figure 1: Computing sectors.

cost of planning on such a grid can still be expensive. This
is particularly true because we must store information for
every grid cell, whether or not it can ever be occupied or
traversed. The overhead of the high-resolution map means
that our abstraction mechanism must use a minimum amount
of memory. We propose an abstraction mechanism which
maintains memory efficiency by using a large-scale grid. It
is also effective in reducing planning costs. We call this a
minimal-memory (MM) abstraction. We distinguish the ab-
straction representation from the techniques which use the
abstraction for pathfinding. Although much of a MM ab-
straction can be built quickly, we expect that the abstraction
will be built offline and stored with the map.

The first step in building a MM abstraction is to place
a lower-resolution grid over the map. This grid implicitly
breaks the world up into sectors; the sector of any unit in the
world can quickly be calculated given its actualx/y coordi-
nate. However, sectors are not guaranteed to be contiguous,
so we need to do more than just divide the map into sectors.

Sectors are further divided into regions. There is one re-
gion for each connected component within a sector, that is,
we require all nodes within a region to be reachable with-
out leaving the sector. The nodes in a region are identified
by performing a breadth-first search within a sector. We
demonstrate sectors and regions in Figure 1, which shows
a simple map. Black areas are considered blocked. In this
figure there are 4 sectors,0 . . . 3. Sector 2 has three regions
(2.a, 2.b, 2.c), while sector 3 only has two regions (3.a, 3.b).

Each region within a sector is represented by a single
point or node within the sector. Initially we place this point
at the weighted center of the region, although we will later
discuss how these points can be optimized.

Computing Edges
Once the sectors and regions have been established, we must
compute edges between regions. During this process we as-
sume that all cells in the original map are marked with their
respective regions. Once the MM abstraction is built, we lift
this assumption.

Edges are computed by iterating along the border of each
sector, comparing the region for states on either side of the
border. We add an edge to the abstraction for each unique
pair of values between adjacent sectors and regions. This
is illustrated in Figure 2, which is a closer view of sector 3
and its borders. We must iterate through the marked cells to

b c

a

b

a

b

1

2 3

0

a

Figure 2: Computing edges.

add edges between sector 3 and other sectors. Region 3.a,
for instance, has four edges: to region 2.c, region 0.a, and
regions 1.a and 1.b.

In addition to the cardinal directions, we add diagonal
edges to the abstraction. This increases the size of the ab-
straction, but if diagonal moves are possible in the world,
having them in the abstraction results in higher quality paths.

The final abstract graph is shown in Figure 3. While the
original map had approximately 900 states (four 16×16 sec-
tors) and thousands of edges (not stored explicitly), the ab-
stract map has 9 states, one for each region, and 10 edges.

a

b

a b c

a

b

a

b

0 1

2 3

Figure 3: The final abstract graph.

Memory Allocation
Memory for the abstraction is allocated in two portions. The
first portion is fixed-size, based on the size of the map being
abstracted. This memory references the number of regions
in each sector and the memory address in which the regions
and edges are stored. The second piece of memory is vari-
able sized and depends on the complexity of the map being
abstracted. This memory contains the abstract regions and
the edges between them. To store an abstract region we need
the location of at least one node within the abstract region
and the number of edges.

To make this presentation more concrete we make a few
assumptions about sector sizes and density, and then com-
pute the exact memory needed to store such an abstraction.
First, we will assume that the maximum sector size is 16×16
or 256 grid squares. We will also assume that the number of
regions inside a sector is limited. It is fairly simple to con-
struct worst-case examples where there could be 32 or more

32

Sector Data Example

Regions 2

unused -

Region Data Example

center 196

edges 3

center 142

edges 4

left:3

upleft:1

up:1

up:2

up:1

variable-sized

edge storage

1
6
 b

it
s

Memory Address 0

3
2
 b

it
s

Figure 4: Memory layout for storing abstraction and exam-
ple data.

regions inside a sector with as many edges. But these exam-
ples should not occur in real-world game maps.

The description of our data structures as well as an ex-
ample are found in Figure 4. Sectors contain the number
of regions (8 bits) and their memory address (16 bits). For
memory efficiency, we pad them to 32 bits. Using a small
secondary lookup table it is possible to squeeze this data into
16 bits, although we haven’t done so for this implementa-
tion. We leave these bits free for other sector information
that we might want to store (eg. occupancy information).

Each region is defined by a representative node (8 bits)
and edge information (8 bits). The node is stored as the off-
set from the top-left corner of the sector, and so this limits
the sector size to at most 16×16. This also limits this imple-
mentation of the abstraction to 256 edges per sector. Instead
of storing the number of edges explicitly, we store the cu-
mulative number of edges thus far in the abstraction. This
optimizes the time needed to extract the edges for a region.

After the region center and edge information for each sec-
tor, we store edge data. The start sector and region of an
edge are implicitly known and do not need to be stored. We
just store the edge direction, which implicitly specifies the
target sector. There are eight possible edge directions, which
can be stored in 3 bits. The remaining 5 bits store the region
which can be reached by the edge. This limits the number of
regions in a sector to 32.

The right portion of Figure 4 shows the actual data layout
for sector 3 from Figure 1. This sector is 16×16 and has 2
regions. Because we haven’t stored other sector information
here, the memory address in our table is 0. In the region
data, the center of region 3.a is offset 196 cells (12 rows,
4 columns) from the top left of the sector, and this region
has 3 edges. The center of region 3.b is offset 142 cells (8
rows, 14 columns) from the top left of the sector and has
only one edge. The last edge for this region is offset four
bytes from the first edge. The first edge for each region can
be computed from the previous region.

In some maps there may be large regions of open space for
which there will always be 8 edges, one in each direction. As
a further optimization, we can mark these sectors with a spe-

cial value which indicates that they are ‘default’ sectors, and
then avoid storing these sectors explicitly to save memory.
Note also that edges are directed, so we store them twice. It
is possible to eliminate half of the edges, however this would
increase the computation costs of finding edges as well.

Pathfinding Using Abstraction
A pathfinding problem is typically defined by start and goal
locations. These locations are in the actual world, so the first
step is to transform them into abstract space. In sectors with
only one region this is trivial. But, in sectors with more than
one region, the process is a bit more complicated. If extra
memory is available, cells in the world can be annotated with
their abstract region. Otherwise, a small search will find the
current region center. The abstract location of a unit in the
world can be cached so that this process does not have to be
repeatedly applied.

The next step of any pathfinding process is to use
A* (Hart, Nilsson, & Raphael 1968) to find a path through
abstract space. We use the octile-distance between region
centers both as our heuristic value, and as the g-cost of ab-
stract edges. Given a complete abstract path, there are many
different ways to use this information for computing paths
in the actual world. We will describe a strategy for refining
an abstract path as R[n, t, c, s].

The most simple way to use the abstract path is to follow
the abstract region centers exactly. That is, plan from the
start location to the first region location. Then, successively
plan between each region along the abstract path, and finally
plan between the final region center and the goal location.
This can be generalized so that we refine longer portions in
each step by skipping some segments of the path. The first
parameter of R[n, t, c, s], n, is the number of abstract edges
we refine in each step. So, the above approach is R[1, -, -, -].
If a parameter is unused, we will replace it with a dash ‘-’.

R[1, -, -, -] has several drawbacks. If we always plan
paths between region centers along the abstract path, we of-
ten travel much further than required. We demonstrate this
in Figure 5. If we start at the node labeleds and first proceed
to the region centers along the abstract path before proceed-
ing to the goal, the distance travelled will be much further
than the optimal distance, which is a single step. The first
and last steps of basic refinement can be optimized by not
planning a path through the region centers, but just traveling
directly to the goal. This same problem manifests itself, to
a lesser extent, when traveling to each region center along a
path. One partial solution is to implement a trimming pol-
icy. After reaching each region center, trim the returned path
using some policyt. For instance, we might always remove
the last 5 nodes from our path. Or, we can trim off the last
10% of the computed path. After trimming, plan from the
end of the current path to the next region center. So, the
actual path executed will not be forced to travel through all
region centers. Refining 1 step at a time and then subse-
quently trimming the path by 10% would be R[1, 10%, -, -].
We use both of these techniques together whenever we trim.

The next option is to limit the refinement process to some
corridor,c defined by the abstract path. That is, do not allow
A* to expand nodes which fall outside the sectors on the

33

a a

0 1

S G

Figure 5: Paths through region centers are suboptimal.

abstract path. This can prevent the cost of any single step
from getting too large, but it may result in strange paths, as
units are forced to stay within bounds which aren’t visible
to the user. A better approach seems to be to optimize the
region locations, which we will discuss in the next section.

Finally, after a path is complete, we can optionally apply a
smoothing algorithms to smooth the final path. This is par-
ticularly useful if our units walk on real-valued coordinates
instead of on our pathfinding grid. So, in our experimen-
tal results and description of related work we will refer to
refinement algorithms as R[n, t, c, s].

The refinement process can be performed in several in-
dependent operations, which means it is ideal for the tight
time bounds of computer games. Given a time bound for
path planning in each frame, successive portions of the ab-
stract path can be refined until that time bound is exceeded.
If one refinement step is not finished, the partial work can
be discarded and re-computed on the next frame, as each re-
finement step is small. Only a minimal amount of state must
be carried over between frames, just the current and abstract
path, making this approach well-suited for time and mem-
ory constrained environments. Additionally, it is possible to
begin executing the path before planning is finished.

Pathfinding Cost
In this section we analyze the total cost of pathfinding using
the abstraction and the R[1, -, -, -] refinement policy. That is,
what is the cost of computing an entire path when we refine
one abstract step at a time without trimming, corridors or
smoothing. Assume that we are trying to find a path length
`, with sector sizez. The length of the abstract path,a,
will be approximately`/z. Assuming that it is simple to
plan paths between region centers, the cost of refining one
portion of the actual path will bez (the distance between
sector centers), and the cost of refining the complete path
(all abstract steps) will beza = `. This means that the cost
of refinementusing this policy is independent of the sector
size. Thus, because larger sector sizes decrease the cost of
finding an abstract path, thetotal work required to find a
complete path will decrease as the sector sizes increase. We
verify this prediction in the experimental results.

Abstraction Enhancements
We consider two possible enhancements for the abstraction.

Dynamic Maps
In many games, designers would like to see changes made
to the map during play which may affect pathfinding. We
present two possible approaches for handling this in the MM

abstraction. First, if the changes are localized, the abstrac-
tion can just be dynamically rebuilt after these changes oc-
cur. This only has to occur locally in the sectors which were
changed. A second approach, which can handle changes
even more quickly, is to apply the changes to the map dur-
ing preprocessing, and then build the abstraction a second
time. This abstraction can be compared to the original ab-
straction, and any sectors which do not change can be dis-
carded. Then, the region data for the sectors that do change
can be appended to the end of the region data for the original
abstraction. When the changes occur in-game, we only need
to change the memory address of the region data for these
regions, and the abstraction will effectively be updated.

Optimizing Region Centers
One potential optimization is to choose appropriate loca-
tions for region centers to minimize the computational cost
of pathfinding. This computation can be performed differ-
ently depending on which refinement approach we are us-
ing. For simplicity, we assume we are using R[1, -, -, -].
Note that while we want to minimize the cost of traveling
between region centers, we actually want to minimize the
maximum cost, that is the worst-case performance.

We first place region centers as close to the center of the
region as possible. Then, for each possible location where
the region center can be placed, we compute the maximum
number of nodes expanded by A* to reach each of the neigh-
boring region centers. The region center of the current re-
gion is placed in the location which minimizes this cost.

We demonstrate the usefulness of this approach in the ex-
perimental results. In fact, any in-game parameters can be
used to optimize the region centers in this way. For instance,
we may also want to optimize the distance from walls, etc.

Related Work
The approach we describe in this paper can be seen as a
combination of HPA* (Botea, M̈uller, & Schaeffer 2004)
and PRA* (Sturtevant & Buro 2005). We make tradeoffs
between these two approaches to decrease the memory used
for abstraction. These algorithms both use A* at an ab-
stract level to find an initial, abstract path, and then refine
it, however, they use multiple levels of refinement and dif-
ferent types of abstraction.

HPA* uses a sector-based abstraction similar to our MM
abstraction, however it has multiple entrance points in each
sector, and it computes and uses optimal paths between these
points. It then uses a simple smoothing mechanism once the
paths are complete, so HPA* can be described as R[1, -, -,
simple]. When HPA* caches optimal paths within the world
it will use much more memory than the MM abstraction.
The HPA* abstraction also stores many more points in the
map, and so must use more memory for storage.

PRA* uses a more fine-grained abstraction based on
merging groups of connected cells, or cliques, in the original
map. PRA* avoids smoothing the final path by doing multi-
ple refinements using a small refinement window around the
abstract path,p. The length of refinement,k is a parameter
for PRA*, so PRA* can be described as repeated applica-
tions of R[k, -, p+, -]. The clique abstraction which PRA*

34

Figure 6: An example of a map used for our experiments.

uses explicitly stores parent and child information and is not
memory-efficient at all.

An overview of other pathfinding methods can be found
in, eg (Botea, M̈uller, & Schaeffer 2004). An longer discus-
sion of many types of abstraction and their use for search
and robotics can be found in (Fernandez & Gonzalez 2001).

Experimental Results
In our experiments we used a set of 120 maps taken from
a popular role-playing game. We scaled these maps to
512×512 grid cells and then selected 93,235 total paths over
these maps ranging in length from 1 to 512. An example
map is shown in Figure 6. When experiments depend on
path length, the problems are divided into 128 buckets, each
bucket size 4.

Memory
We first look at the amount of memory needed to store ab-
stract maps as the sector size increases. Note that if we use
8 bits of storage for each grid cell, a 512×512 map will take
256k of memory. We present the average memory used for
the abstraction in Figure 7. With 16×16 sectors, the abstrac-
tion uses 6-7k, less than 3% of the cost of the full map. The
top line is the amount of memory used when the abstraction
stores all nodes and edges in the map. The bottom line is the
amount of memory used when we mark the default sectors
and do not store them. Because the maps in our experiments
are scaled from smaller maps, this may be an over-estimate
of the amount of the memory savings, but for larger sector
sizes the gain from compression is minimal.

Maps Size 512x512

0

10

20

30

40

50

60

70

5 6 7 8 9 10 11 12 13 14 15 16

Sector Size

To
ta

l M
em

or
y

(K
B

) Without Compression
With Compression

Figure 7: Memory used to store the abstraction.

Dynamic v. Static Centers
(1-Step Planning)

0

50

100

150

200

250

5 6 7 8 9 10 11 12 13 14 15 16
Sector Size

N
od

es
 E

xp
an

de
d

Static (95th percentile)
Dynamic (95th percentile)

Figure 8: Dynamic or static region centers.

Region Center Optimization
Next we analyze the gains from optimizing regions centers
in the abstraction. We run the same experiment on the MM
abstraction with and without optimized region centers and
compare the work that is done. For this experiment, we com-
pare the work done on the largest bucket of problems in our
data set (length 508-512) by R[1, 10%, -, -] as the sector size
increases. We measured the maximum number of nodes ex-
panded for any single refinement operation, and then graph
the 95th percentile over all paths in Figure 8. This graph
shows that dynamic centers can reduce the planning cost of
an individual step by a factor of two or more.

Total Work
Third, we look at the total work performed when pathfind-
ing using abstraction. We again use R[1, 10%, -, -] to re-
fine abstract paths. In Figure 9 we show the total work in
nodes expanded, needed to compute an entire path, includ-
ing the abstract path and all portions of the actual path. We
graph the 95th percentile of the number of nodes expanded
in this figure. As expected in our theoretical analysis, in-
creasing the sector size decreases the total number of nodes
expanded, although there are diminishing returns. In fact, if
we plot the same curves without optimizing region centers,
we do the least work at sector size 14, and slightly more
work with larger sector sizes. With larger sector sizes it is
no longer easy to travel from one region center to the next,
unless the region centers are optimized.

In Figure 10 we compare the total nodes expanded when
planning an entire path using the MM abstraction and R[1,
10%, -, -] to the nodes expanded by A*. Note that we are
plotting on a log-axis. The maximum number of nodes ex-
panded using the MM abstraction even on the longest paths
is just over 1,000. But, A* averages over 10,000 nodes for
long paths and may expand nearly 100,000 nodes in the
worst case. The minimum number of nodes expanded by
each algorithms is similar, so we only plot one curve, al-
though A* expands up to 100 fewer nodes.

Our implementation of A*, which is entirely generic and
not optimized for any domain specific features, takes an av-
erage of 12µs to expand a node (83,000 nodes per second)
on a 1.5Ghz PPC with 1GB of memory.

35

Total Work

0

500

1000

1500

2000

2500

3000

0 16 32 48 64 80 96 112
Bucket (Path Length/4)

To
ta

l N
od

es
 E

xp
an

de
d

Sector Size 5

Sector Size 16

Figure 9: Total work required to compute paths.

Savings Over A*

1

10

100

1000

10000

100000

0 16 32 48 64 80 96 112
Bucket (Path Length/4)

To
ta

l N
od

es
 E

xp
an

de
d

Max (A*) Max (MM)
Average (A*) Average (MM)
Minimum

Figure 10: A* nodes expanded v R[1, 10%, -, -].

Optimality

The speed that comes with using an abstraction technique
comes at the cost of optimality. We show the suboptimal-
ity introduced by the MM abstraction and R[1, 10%, -, -]
refinement in Figure 11. These are the results only for the
largest bucket, with paths of length 508-512. This illustrates
that using larger sectors results in better optimality. For a
sector size of 16, 90% of paths are between 5% and 12%
suboptimal. All paths are between 4% and 18% suboptimal.

Suboptimality can be decreased in several ways. For in-
stance, using R[2, 15%, -, -] refinement with sectors size
16×16, 90% of the paths will be just 2-6% longer than op-
timal, although this will increase the total pathfinding cost.
Note that these results are on the longest paths from our ex-
periments. Paths which only span one or two sectors will
just use A* and be optimal. Paths that span a few sectors
can have a higher percentage of suboptimality because they
are so short. In practice, smoothing is applied as a post-
processing step to further reduce suboptimality and to en-
hance the visual quality of the paths.

Conclusions
In this paper we have shown how known abstraction tech-
niques can be adapted to domains with tight memory
bounds. With roughly 3% more memory, pathfinding and re-
finement using the MM abstraction is up to 100 times faster

Optimality

0

5

10

15

20

25

5 6 7 8 9 10 11 12 13 14 15 16
Sector Size

%
 S

ub
op

tim
al

95%
Average
5%

Figure 11: Suboptimality over sector sizes.

than using A*. The MM abstraction is similar to other meth-
ods used in computer games, such as navigation meshes (To-
zour 2002). This can be seen as a specialized type of navi-
gation mesh, optimized for grid-based maps.

The MM abstraction has been implemented in
BioWare’sR© upcoming title Dragon AgeTM (due out
in Winter 2007/2008), and has thus been proven to meet the
needs of the games industry.

References
Botea, A.; M̈uller, M.; and Schaeffer, J. 2004. Near optimal
hierarchical path-finding.J. of Game Develop.1(1):7–28.
Fernandez, A., and Gonzalez, J. 2001.Multi-Hierarchical
Representation of Large-Scale Space. Kluwer.
G.R. Jagadeesh, T. Srikanthan, K. Q. 2002. Heuristic tech-
niques for accelerating hierarchical routing on road net-
works. IEEE Transactions on Intelligent Transportation
Systems3:301–309.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Trans. on Systems Science and Cybern.4:100–107.
Holte, R.; Perez, M.; Zimmer, R.; and MacDonald, A.
1996a. Hierarchical A*: Searching abstraction hierarchies
efficiently. InAAAI/IAAI Vol. 1, 530–535.
Holte, R. C.; Mkadmi, T.; Zimmer, R. M.; and MacDonald,
A. J. 1996b. Speeding up problem solving by abstraction:
A graph oriented approach.Artificial Intelligence85(1-
2):321–361.
Sturtevant, N., and Buro, M. 2005. Partial pathfinding
using map abstraction and refinement. InProceedings of
AAAI, 47–52.
Tozour, P. 2002. Building a near-optimal navigation mesh.
In Steve Rabin, editor, AI Game Programming Wisdom,
171–185. Charles River Media, Inc.
Tozour, P. 2003. Search space representations. InAI Game
Programming Wisdom 2, 85–102. Charles River Media.
Yang, Q.; Tenenberg, J.; and Woods, S. 1996. On the im-
plementation and evaluation of ABTweak.Computational
Intelligence Journal12(2):295–318.

36

