
Personality-based Adaptation for Teamwork in Game Agents

Chek Tien Tan and Ho-lun Cheng
Department of Computer Science
National University of Singapore

3 Science Drive 2, Singapore 117543
{tanchekt, hcheng}@comp.nus.edu.sg

Abstract

This paper presents a novel learning framework to pro-
vide computer game agents the ability to adapt to the
player as well as other game agents. Our technique gen-
erally involves a personality adaptation module encap-
sulated in a reinforcement learning framework. Unlike
previous work in which adaptation normally involves a
decision process on every single action the agent takes,
we introduce a two-level process whereby adaptation
only takes place on an abstracted actions set which
we coin as agent personality. With the personality de-
fined, each agent will then take actions according to
the restrictions imposed in its personality. In doing so,
adaptation takes place in appropriately defined intervals
in the game, without disrupting or slowing down the
game constantly with intensive decision-making com-
putations, hence improving enjoyment for the player.
Moreover, by decoupling adaptation from action selec-
tion, we have a modular adaptive system that can be
used with existing action planning methods. With an
actual typical game scenario that we have created, it
is shown that a team of agents using our framework to
adapt towards the player are able to perform better than
a team with scripted behavior. Consequently, we also
show the team performs even better when adapted to-
wards each other.

Introduction
Artificial Intelligence (AI) in games has evolved much in re-
cent years, with various work being performed in the area
of synthesizing intelligent behaviors in game agents (Hus-
sain & Vidaver 2006; Horswill & Zubek 1999; Gerami-
fard, Chubak, & Bulitko 2006; McDonald et al. 2006;
White & Brogan 2006). A game agent is defined here as
a fictional character in the game world. It can be either
a player controlled character (PC) or a non-player charac-
ter (NPC). NPCs either can be computer opponents that the
PCs go against, allies that fight alongside the players or even
innkeepers whom the players trades with.

Whilst there exists a vast number of challenges present in
this area of research, we will focus on ally NPCs that adapt
towards the PC as well as amongst each other. We find that
this aspect is lacking as most current game AI research aims

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

to create better opponents to challenge the player. However,
it should be noted that our framework can be easily extended
for the adaptive AI of the opponents as well. In this paper,
we embark upon this area by introducing a new perspec-
tive of adaptivity using a concept we coin personality-based
adaptation.

Motivation
From highly scripted ally NPCs in Blizzard’s Diablo II
(Blizzard 2006a) to highly dynamic and interactive ones in
their recent World of Warcraft (Blizzard 2006b), AI in ally
NPCs have improved much over the years. However, the ally
NPCs in World of Warcraft still need lots of manual instruc-
tions in order for them to work the way the player expects,
according to the player’s unique strategy. This inadvertently
places another restriction on the game, which is the number
of NPCs a player can control, since it becomes rather impos-
sible to control a whole team of NPCs when the population
gets large.

In other modern games that boast intelligent agents like
Sierra’s No One Lives Forever (Sierra 2006), a group of ally
NPCs “play” alongside the player in combat scenarios. The
AI in these agents allow them to know how to avoid friendly
cross-fires, automatically take up cover positions, and even
perform flanking maneuvers on the enemies instinctively.
However, the ally agents perform and react in the same way
regardless of whoever is playing the game. Take for exam-
ple a poorer player who tends to die when not enough agents
are protecting him. Then, in certain scenarios where some
agents always decide to flank the enemy, it leaves him with
less ally protection and hence he is more likely to die repeat-
edly, resulting in frustration. On the other hand, an expert
player may be frustrated when in certain situations his team-
mates move too slowly and carefully. In general, most AI
in current games may react automatically to new unintended
situations, but does not tailor to different styles and levels of
players.

Our Approach
The work in this paper is driven by the grand goal of cre-
ating adaptive game agents that automatically conform to
individual styles and strategies of different players, so as to
effectively achieve common goals with the players. In this

37

paper, we generalize the goal of the agents to be able to con-
form to another agent, regardless of whether it is the PC or
NPC. We also extend our work for each agent to be able to
conform to multiple agents. In short, we have devised agents
that adapt to:
• the PCs’ personalities
• the other NPCs’ personalities in a team
This enables adaptation to be possible in current massively
multi-player games in which PCs and NPCs are mixed in
a team, for example in the Guild Wars game series (NCsoft
2006) where multiple players combine with different classes
of NPCs for game missions.

The approach presented in this paper is based on a learn-
ing framework centered around an adapter module which
assigns different personalities to game agents, based on the
personality of another agent. We introduce a novel way of
injecting adaptivity in that we decouple the computation-
ally intensive machine learning process from the low level
action selection process. Other than saving precious game
processing cycles, this also ensures modularity which en-
ables our adaptive system to work with various action selec-
tion methods from simple rule-based action selection sys-
tems to newer paradigms like Goal-Oriented Action Plan-
ning (GOAP) (Orkin 2004).

In the remaining sections of this paper, we will first review
work related to our area of research. We then define agent
personality and formally define the problem. Thereafter, our
solution framework is presented. Next, we show our experi-
mental results as empirical proof of our concept. Lastly, we
conclude the paper along with our plans for future work.

Related Work
Synthesizing intelligent game agents (Horswill & Zubek
1999; Hussain & Vidaver 2006; Geramifard, Chubak, &
Bulitko 2006; McDonald et al. 2006; White & Brogan
2006) has been one of the core areas in game AI research.
In an older study (Horswill & Zubek 1999), attention was
focused on agents that could automatically choose actions
that helped them to survive and attack. Hussain and Vi-
daver (Hussain & Vidaver 2006) used an evolutionary con-
trol mechanism originally intended for unmanned ground
vehicles to control an NPC in a modern commercial game.
In the work done by Mcdonald et al (McDonald et al. 2006),
they devised a five-level architecture as an abstracted frame-
work to enable inter-operability amongst different agent
controllers. Common to these studies are the issues of use-
fulness and believability in the individual agent behaviors.
We believe that the area of multi-agent intelligence is lack-
ing in game agent research. Although the work done by
Geramifard et al (Geramifard, Chubak, & Bulitko 2006) is
directed at multiple game agents, they only concentrated on
the pathfinding problem in real-time strategy games. How-
ever, White and Brogan (White & Brogan 2006) has pre-
sented a method to produce that employs a self-organizing
Kohonen map coupled with reinforcement learning effective
game-play in multiple agents in RoboCup simulated soccer.
Nevertheless, their work did not address the issue of adapt-
ability towards the human player. On the whole, these stud-

ies make use of decision-making systems that need perform
heavy computation for each action the agents take, and fre-
quently update the knowledge in the system, hence possibly
causing disruptions to the actual game-play. This are the
deficiencies the work in this paper targets to alleviate.

In player-centric approaches in games, though existing
literature is scarce, there has been some exploratory work
based on the notion of player modeling (Charles et al. 2005;
Thue & Bulitko 2006; Yannakakis & Maragoudakis 2005).
It can be also noted that all of them are rather recent, demon-
strating the infancy of this research area. Charles et al
(Charles et al. 2005) presented an extensive exploration of
various ways to gather a player’s profile, and then described
ways of making use of it in different aspects of the game.
Their work serves as a good overview for an introduction
to common player modeling concepts. In the work done by
Thue and Bulitko (Thue & Bulitko 2006), they introduced
a concept which they term as goal-directed player model-
ing, in which they made use of the fact that quest goals
are always known in advance in RPG games. Since quest
goals are abstracts that roughly define what steps the player
needs to take to accomplish them, this is used to predict the
player’s future actions. One limitation is that their method
only applies to quests in RPG and puzzle type games. In the
work done by Yannakakis and Maragoudakis (Yannakakis &
Maragoudakis 2005), they predicted players’ actions based
on a Bayesian network with a subset of attributes of the cur-
rent world state as the inputs. They were partially able to
predict player actions in previously unseen circumstances.
Generally, these studies uses techniques that aim to predict
specific user actions ahead of time, and thereby act on them.
This might be extremely tedious and resource intensive as
player actions take place almost every second, again disrupt-
ing game-play.

Agent Personality
For any agent in the game (PC or NPC), its agent person-
ality consists of a set of allowable actions, with each action
tagged with a relative weight value as shown in Figure 1.
Each action in the set is tagged with a certain value between
0 and 1. Formally defined, if P is the set of all agent per-
sonalities, the agent personality, Pk ∈ P , of an agent k is a
function that assigns a value to each action.

Pk : A → [0, 1], (1)

where A is the set of all allowable actions.
As expected, this simply means that when an action selec-

tion mechanism is applied, the value determines the chance
of choosing that action in view of other simultaneous ac-
tions. That is to say, we normalize their values to determine
a probability that it can be chosen. Hence, to exhibit a cer-
tain personality, it means a combination of different action
values in the set. As can be seen, this is a practical and flexi-
ble way to define personality in agents. A change in person-
ality inevitably leads to a change of actions being exhibited,
hence affecting the agent’s behavior. Intuitively, this is also
true in humans, as our personalities directly translate into
the actions we take in life. As will be shown in the next few
sections, adaptation only takes place on the personality, and

38

action planning can take place thereafter, independent of the
adaptation process. In a simple sense, to use the personal-
ity with modern action planning paradigms like Hierarchi-
cal Task Networks (HTNs) (Wallace 2004) or GOAP (Orkin
2004), it means coupling each primitive action in the respec-
tive systems with the value as defined here. Also note that
some actions like “goto” or “die” may be always executed
whenever it is required of the agent to perform them. Hence
they can be set to be non-adaptable and always given a value
of 1, since they do not occur simultaneously with other ac-
tions. They are shown in Figure 1 as the non-shaded actions.
In this paper, the issue of how we obtain the personality for
a PC is not covered as it is not the focus in this paper.

Figure 1: An example agent personality: Each action is
tagged with a relative weight value that can be evaluated into
a probability of choosing it. The shaded ones are the adapt-
able actions whilst the unshaded ones are non-adaptable (al-
ways having value 1).

Problem Formulation
A computer game can be represented as a world with at-
tributes that describe it. An attribute is made up of an iden-
tifier and a value. Let the set of all attribute identifiers be I
and the set of all attribute values be V . Depending on where
each v ∈ V is assigned to each i ∈ I , we would have a
different state in which the world can exist.

Γ = {γ : I → V }. (2)

Therefore, the set of all states, Γ, is the set of func-
tions γ : I → V . For example, in a role playing game
(RPG), we have I = {monster health, player gold, . . .} and
V = {0, 50, 100, 888, . . .}. In an arbitrary state γ, we have
γ(monster health) = 100 and γ(player gold) = 888, which
means that in this state the monster has full health of 100%
and the player has 888 units of gold currencies.

As from the previous section, we define the set of all ac-
tions as A. An example can be A = {melee, shoot, heal, . . .}
as previously seen in Figure 1. In the game world, the states
can be changed by executing certain actions that alter the
mapping of some attribute identifiers with their values (in
other words, alter γ).

Now, we define the following functions:

1. An adapter function, ζk, that determines the agent per-
sonality, Pk of a certain kth game agent, via the agent

personalities, Pi, of one or more other agents (which can
be a PC or NPC), as well as the set of all actions, A.

Pk = ζk(P1, P2, . . . , Pi, . . . , Pn, A), (3)

where k = 1..n and k 6= i, with n being the total number
of game agents.

2. A behavior function, β, that, for each kth game agent,
generates a behavior plan, Bk ∈ A∗, from the set of all
actions, A, given the agent’s personality, Pk, a set of goal
attributes, Ig ⊆ I , a goal state, γg ∈ Γ, and the current
state, γ0 ∈ Γ, of the world. The result, Bk, is basically a
sequence of actions chosen from A.

Bk = β(A,Pk, Ig, γg, γ0). (4)

3. An execute function, ξ that executes a set of behav-
ior plans such that the current world state, γ0, is being
changed. It means the output is a state of the world as a
result of the behavior plans being executed.

γ1 = ξ(B1, B2, . . . , Bk, . . . , Bn, γ0), (5)

where γ1 ∈ Γ is the resultant world state.

Therefore, represented mathematically, the problem is to
construct the adapter functions, ζk, such that the error, E, is
minimized.

E =
∑
g∈Ig

|∆g(γ1(g), γg(g))|, (6)

where ∆i(γx(i), γy(i)) = Wi(γy(i) − γx(i)), i ∈ I and
γx, γy ∈ Γ, basically a weighted function to balance the
contribution of each attribute.

Here we can see that the smaller E is, the closer it gets to
the actual goal, and hence is a measure of how effective our
adaptive system is in achieving the game goal.

Personality-based Adaptation Framework
At a macro level, our framework consists of the following
steps as shown in Figure 2. It is basically a constant cyclic
process that enables online training for the adapters.

Figure 2: The adaptive game loop: a cyclic process that en-
ables online training for the adapters.

Adaptation
The game loop starts with the adaptation process, which is
also the core of our framework . During this process, each
NPC agent, which is individually assigned an adapter mod-
ule, activates its respective adapter to generate a personality
of its own. An illustration of the adapter can be seen in Fig-
ure 3. It receives the personalities of the PC(s) as well as the

39

Figure 3: The adaptation process: for each agent, its adapter
takes in either one or more agent personalities from other
agents to generate its own personality.

rest of the NPCs as input, and generates its own personality,
based on those. In this paper, the adapter is implemented via
feed-forward neural network with a single hidden layer, al-
though it can be any function approximation system in gen-
eral. The back-propagation algorithm (Orr, Schraudolph, &
Cummins 1999) is used for the network’s learning processes.
We chose neural networks because it can handle non-linear
arbitrary relationships well, and deals well with large dimen-
sions of input. This allows us to easily extend the adapter to
large action sets as well as multiple agents. The network
is initialized based on training with some synthetic data we
have crafted, but the main learning is done online, at conve-
nient intervals in the game. After each agent obtains its own
personality, Pk, the game proceeds to the execution step.

Execution
Execution basically means the game is being played. It is
worth pointing out that the end of execution does not always
mean a “game over” or “you win” scenario, although it can
be defined this way. Execution should end at a suitable pre-
defined time in the game which does not disrupt game-play,
for example, the next stage in a shooting game or quest tran-
sitions in a role-playing game. At the end of execution, the
error, E, is calculated for the next step, namely, the rein-
forcement stage.

Reinforcement
Based on reinforcement learning terminology (Sutton &
Barto 1998), a reward or punishment is given according to
the feasibility of the results after execution ends. In our case,
E is our punishment-to-reward ratio to the reinforcement
learning system, with a value of 0 being a perfect result and
a value of 1 being the worse result. The policy maker here
would be the adapters collectively. This E is passed on to
each adapter to enable it to update the weights of the neural
network. At the end of reinforcement, basically an updated
adapter, ζk, is being generated for each agent, to get them
ready for the adaptation process.

Common to any online learning framework, we need
to address the problem of exploration versus exploitation,

namely, at each loop, the adapters choose whether to exploit
the learnt knowledge and generate a well adapted personality
(as of the current loop), or to generate a random personality
to possibly create new learning instances for the adapters.
We will adopt the standard ε-greedy algorithm to tackle this
issue, with ε = 0.2. This basically means that at the adap-
tation step, each adapter will generate a random personality
with probability ε, and exploit the knowledge to generate the
best adapted personality otherwise.

We can see that the adaptation and reinforcement pro-
cesses only happen in between executions, hence eliminat-
ing disruptions to the main game-play. Also, the occasional
exploration mechanism (choosing a new random personal-
ity) adds variety to NPC behaviors which also enhances the
entertainment value for players (Spronck 2005).

Empirical Evaluation and Discussion
In order to evaluate our framework in a real game environ-
ment, we have created a typical action game scenario built
on the Truevision3D 6.2 game engine. A screenshot is as
shown in Figure 4. Although the results to be shown here
are based on an action game close to that of an FPS, the
framework can be applied to any game in general.

Game Mechanics
The goal of the game is to kill all the zombies in the game
world. The PC is a marine equipped with a laser gun with
limited range. The player is accompanied with 5 ally NPCs
carrying the same type of gun. The PC and his NPCs can
also run up close to melee damage the opponent. The zom-
bies are packed in groups and when any of the agents are in
range, they will approach the respective agent and melee at-
tack by biting them. The game ends when either all zombies
are killed or the PC is killed. An agent’s melee attack does
double the damage compared to shooting because the agent
exposes itself to the attacks of the zombies and attracts more
zombies towards it. Also, all attacks have a chance of hitting
critically for twice the damage.

Figure 4: A screenshot of our experimental game scenario.
The PC is in the center, and each of the other NPCs in white
are busy with their own tasks chosen. The opponents are the
zombies scattered over the map in packs.

In our experiments, we will only allow the actions melee,
shoot and heal to be adaptable. An example personality of
that used in our experimental setting is as shown in Figure

40

1. Our action planning system for the experiments is gen-
erally a rule-based system with the NPCs following the PC
wherever he goes. At each zombie encounter, the NPCs will
choose to either run up close and melee the zombie, stay far
and shoot it, or if an agent’s health is less than full, decide
whether to heal him. And the choice of these three actions
are dependant on the probabilities defined in the agents’ per-
sonalities.

Experiments
To enable a large enough sample size of experiments, we
have scripted the PC to allow numerous repetition runs. Ini-
tially, we run the game scenario 500 times with scripted
NPCs with each NPC personality being fixed at random val-
ues. Next, we make 500 iterations again with each NPC
having its adapter which only adapts to the PC. In a third set
of 500 iterations, the adapters will adapt to the PC as well
as all the other NPCs in the team. In each iteration, the po-
sitions of the zombies are re-shuffled randomly (but with all
sets of experiments having the same random seed to ensure
fairness). Hence this experiments aim to test whether the
personality adapted NPCs are better than scripted ones, and
also to test the online adaptability of our framework.

The attributes used in the calculation of E in our experi-
ments are the total number of ally NPC agents dead and the
total number of zombies alive, with a weightage of 0.3 and
0.7 respectively. These two attributes are the most straight-
forward metrics to determine the success rate of the game.
More weightage was given to the former attribute because
the goal of the game is to eliminate the zombies, and that
the latter attribute is more of a factor to determine teamwork
effectiveness, though it does have an effect on the game’s
goal.

The results are as shown in Figure 5. The agents using
our framework that only adapt to the PC performs better as
compared to scripted agents, with the adaptive agents pro-
ducing a total average of E = 0.576 versus a total average
of E = 0.628 for scripted ones. Consequently, when us-
ing agents that adapt to all other agents, it performs vastly
better than both the scripted and the agents that only adapt
to the PC, with a total average of E = 0.393. This might
be due to the fact that the team of agents that adapt to each
other has implicitly learnt cooperative behavior with the en-
tire team, whilst the team of agents that only adapt to the PC
only learns how to complement the PC.

We also include 2 further experiments to show the adapt-
ability cross different player personalities. In Figure 6, it
shows the results where we fixed the melee and healing at-
tributes at 0.5 each respectively, and vary the shooting prob-
ability from 0 to 1. Similarly, for the results in Figure 7,
we fix the melee and shooting attributes at 0.5 whilst vary-
ing the healing attribute from 0 to 1. In terms of the ac-
tual averages, for the first experiment as in Figure 6, it is
E = 0.533 for scripted agents, E = 0.392 for agents that
adapt only to the PC, and E = 0.340 for agents that adapt
to each other. For the other experiment as in Figure 7, it is
E = 0.538, E = 0.441, and E = 0.416 in the same order.
Hence the same conclusion as those deduced from Figure 5
can be drawn here also, now generalized to more instances

Figure 5: Experimental Results: Plot of E against number
of iterations. The lightest colored line at the top depict the
results with non-adaptive agents, the darker line below it
shows the results with adaptive agents but only towards the
PC, and the darkest line at the bottom shows the results with
adaptive agents that adapt to all other agents. The lines are
moving averages of 20 iterations so as to eliminate the noise
of the actual iterations.

of the PC personalities, namely that the team-based adap-
tive agents perform better than player-only adaptation and
scripted agents in various configurations of the PC person-
alities. However, we see that the improvements gained in
healing is lesser comparatively. As shown in Figure 7, as the
player’s healing attribute get higher, the performance of both
types of adapted agents gets poorer and closer to the scripted
agents, likely due to the fact that he gets killed more often
(and when the PC is killed, it marks the end of an execu-
tion). This is because in the game mechanics, the healer is
especially vulnerable to death as the zombies are scripted to
attack healers first because they pose a greater threat.

Figure 6: Experimental Results: Plot of E against the shoot-
ing probability. The lightest colored line at the top depict
the results with non-adaptive agents, the darker line below it
shows the results with adaptive agents but only towards the
PC, and the darkest line at the bottom shows the results with
adaptive agents that adapt to all other agents.

Conclusion and Future Work
To conclude, we have presented our initial efforts to devised
a framework that enables player-centric adaptability of game
agents. We have also introduced a novel concept of person-
ality in game agents as a pre-step before actual action se-
lection. In doing so, we reduce computational overhead as
adaptation only takes place on the personality, and personal-

41

Figure 7: Experimental Results: Plot of E against the heal-
ing probability. The lightest colored line at the top depict
the results with non-adaptive agents, the darker line below it
shows the results with adaptive agents but only towards the
PC, and the darkest line at the bottom shows the results with
adaptive agents that adapt to all other agents.

ity adaptation only needs to be performed at convenient in-
terludes in the game. It also enables modularity in the adap-
tive framework so that it can be used with various state of the
art action planning methods. Moreover, with the personality
defined commonly across both PCs and NPCs, the source of
personality adaptation can be either the PCs or NPCs. We
have also shown that our work can be easily extended to fa-
cilitate a network of adaptation needed in group scenarios.
In modern multi-player games, it is common to see a mix-
ture of PCs and NPCs “playing” together, hence this will be
inevitably useful in recent games.

An immediate extension to our work can be applying the
framework to the NPC opponents in a game. For example,
the NPC opponents can take in the PCs personality and con-
sequently adjust its attack power to create an appropriate
level of challenge for different players. We can also include
the opponent personalities as extra inputs to the ally NPCs,
as a further source of environmental knowledge to deduce
better personalities for themselves. As future work, we will
be embarking on an evaluation of better machine learning
paradigms to implement the adapter module and the rein-
forcement process, so as to increase the improvements we
gain. We also would like to investigate the feasibility of
pairing our personality-based adaptation system with state
of the art action planning systems like HTNs and GOAP.
Another aspect we hope to enhance in the future is the inclu-
sion of an enjoyment variable in our empirical evaluations.
In this work, our definition of “goodness” is only confined
to whether the NPCs can complete goals feasibly. We recog-
nize that in commercial games, entertainment value is what
defines the “goodness”, hence we hope to evaluate the im-
provements we have attained in this aspect next time. As it
is very difficult to define and evaluate enjoyment in a techni-
cal sense, we will be employing a survey method, whereby
users will actually play our game and be asked to fill out a
questionnaire thereafter.

References
Blizzard. 2006a. Diablo ii. Accessed April 12, 2006. Avail-
able via http://www.blizzard.com/diablo2/.

Blizzard. 2006b. World of warcraft. Accessed April 12,
2006. Available via http://www.worldofwarcraft.com/.
Charles, D.; Kerr, A.; McNeill, M.; McAlister, M.; Black,
M.; Kcklich, J.; Moore, A.; and Stringer, K. 2005. Player-
centred game design: Player modeling and adaptive digi-
tal games. In Proceedings of the Digital Games Research
Conference 285,298.
Geramifard, A.; Chubak, P.; and Bulitko, V. 2006. Bi-
ased cost pathfinding. In Proceedings of the Artificial Intel-
ligence and Interactive Digital Entertainment conference
112,114.
Horswill, I., and Zubek, R. 1999. Robot architectures for
believable game agents. In Proceedings of the 1999 AAAI
Spring Symposium on Artificial Intelligence and Computer
Games, AAAI Technical Report SS-99-02.
Hussain, T. S., and Vidaver, G. 2006. Flexible and pur-
poseful npc behaviors using real-time genetic control. In
Proceedings of The IEEE Congress on Evolutionary Com-
putation 785,792.
McDonald, D.; Leung, A.; Ferguson, W.; and Hussain, T.
2006. An abstraction framework for cooperation among
agents and people in a virtual world. In Proceedings of the
Second Conference on Artificial Intelligence and Interac-
tive Digital Entertainment.
NCsoft. 2006. Guild wars. Accessed April 12, 2006. Avail-
able via http://www.guildwars.com/.
Orkin, J. 2004. Applying Goal-Oriented Action Planning
to Games. Hingham, Massachusetts: Charles River Media,
first edition.
Orr, G.; Schraudolph, N.; and Cummins, F.
1999. Cs-449: Neural networks lecture notes.
Accessed December 20, 2005. Available via
http://www.willamette.edu/ gorr/classes/cs449/intro.html.
Sierra. 2006. No one lives forever 2. Accessed April 12,
2006. Available via http://nolf.sierra.com/.
Spronck, P. 2005. A model for reliable adaptive game
intelligence. In IJCAI-05 Workshop on Reasoning, Repre-
sentation, and Learning in Computer Games 95,100.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, Massachusetts: The MIT
Press.
Thue, D., and Bulitko, V. 2006. Modeling goal-directed
players in digital games. In Proceedings of the Artificial
Intelligence and Interactive Digital Entertainment confer-
ence 285,298.
Wallace, N. 2004. Hierarchical Planning in Dynamic
Worlds. Hingham, Massachusetts: Charles River Media,
first edition.
White, C., and Brogan, D. 2006. The self organization
of context for multi agent games. In Proceedings of 2nd
Annual Conference on Artificial Intelligence in Interactive
Digital Entertainment.
Yannakakis, G. N., and Maragoudakis, M. 2005. Player
modeling impact on players entertainment in computer
games. In Springer-Verlag: Lecture Notes in Computer
Science 3538:74.

42

