
Learning a Table Soccer Robot a New Action Sequence
by Observing and Imitating

Dapeng Zhang and Bernhard Nebel
Research Group on the Foundations of Artificial Intelligence

University of Freiburg
Germany D-79110

Abstract

Star-Kick is a commercially available and fully auto-
matic table soccer (foosball) robot, which plays table
soccer games against human players on a competitive
level. One of our research goals is to learn this table
soccer robot skillful actions similar to a human player
based on a moderate number of trials. Two indepen-
dent learning algorithms are employed for learning a
new lock and slide-kick action sequence by observing
the performed actions and imitating the relative actions
of a human player. The experiments with Star-Kick
show that an effective action sequence can be learned
in approximately 20 trials.

Introduction

Table soccer (or foosball) is a popular table game in which
two teams play against each other. Each of them controls
four game rods, which are called attacker, midfield, de-
fender, and goalkeeper. The playing surface is 1200mm in
length and 680mm in width. There is a goal at both ends
of the playing surfaces. Each team tries to score goals while
defending against attacks from the opponent.

Star-Kick is a robot that plays table soccer games with
human players. Under the playing surface, a black-white
camera observes the ball and eight DC motors control the
movements of the four game rods. Each motor can either
move or turn a game rod. A processing cycle for the whole
system takes about 20ms, which is already fast enough to
play against human players on a competitive level. Statistics
show that our robot wins approximately 85% of all games
(Weigel 2005).

So far, Star-Kick shows a good performance on actions
such as kick, block, and clear. Human players are able to do
more complex and interesting actions such as lock, dribble,
and slide-kick. A lock action locks the ball moving along
the direction perpendicular to the game rods. A slide-kick
action passes the ball along the rod direction and then kicks
it towards the goal. Performing these actions would dramat-
ically increase the ability of Star-Kick. However, using uni-
form parameters with different playing figures to success-
fully perform actions such as lock is impossible due to the
current system accuracy.

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

The system accuracy of Star-Kick is affected by the ac-
curacy of the sensors as well as the accuracy of different
mechanical parts and the way in which these parts work to-
gether. Assuming that the environment is ideal, the cali-
bration process of Star-Kick establishes a coordinate system
which brings the ball and all the rods together in a playing
field. This assumption entails that the vertical axes of the
playing figures mounted on the same rod are in a plane and
that the camera image restored from the projection and dis-
tortion is linear with respect to the coordinate system. In re-
ality, however, these assumptions do not hold, and there are
enough correlated errors to affect the successful execution
of actions significantly. Although many system errors are
inevitable, Star-Kick does well in repeating the same perfor-
mance in the same situation. This characteristic can also be
found in other systems, and is generally called repeatability.
Typically, the repeatability of a system is much better than
its accuracy.

Learning algorithms often require thousands of trials to
converge to an optimal behavior. With Star-Kick, however,
a learning process that requires one thousand trials would be
too much for the final users who want to enjoy the games.
Learning by imitation is one of the methods which can dra-
matically reduce the number of required trials. It utilizes
the experiences of others as a shortcut to good outcomes.
It is particularly interesting to imitate human actions with
Star-Kick because playing in a human-like fashion makes
the game more interesting for human opponents. Further-
more, it is possible to interpret the human actions of moving
and turning the rods in terms of motor commands, making it
easier to imitate them.

Assuming that Star-Kick can repeat an action with the
same set of parameters, two independent learning methods
are implemented to find a proper set of parameters for the ac-
tion sequence lock and slide-kick. One method searches the
parameter space to implement the action of locking a mov-
ing ball. The other method is used for finding a set of motor
commands to perform a slide-kick action similar to the abili-
ties of a human player. With these methods running parallel,
the experiments show that Star-Kick acquires an effective
sequence of lock and slide-kick after about 20 trials.

61

Related Work

The first table soccer robot KiRo, which is the prototype
of Star-Kick, was developed at the University of Freiburg
(Weigel & Nebel 2002). The actions of both KiRo and Star-
Kick have been developed by hand-coding, whereby also so-
phisticated actions such as lock and slide-kick have been im-
plemented (Zhang 2005). Unfortunately, these are not adap-
tive to different playing figures and therefore cannot be used
in a market-available product such as Star-Kick.

Recently, table soccer robots have become the research
topics in at least five universities. However, there do not
seem to exist any formal publications from the others to date.
Nevertheless, a Wikipedia page shows that researchers from
Rice University also developed a table soccer robot called
foosbot which plays table soccer games with human players
on a competitive level (foosbot 2006). A video of foosbot
shows that it can do some actions similar to slide-kick and
is controlled by some “control laws” which are described in
the Wikipedia page.

Learning by imitation or programming by demonstration
has been an important branch of artificial intelligence for
years. It is particularly interesting in connection with hu-
manoid robots, which can be difficult to control because of
their high degrees of freedom (Schaal 1999; Billard & Sieg-
wart 2004). It can also be found within other systems for
example a mobile robot (Smart & Kaelbling 2002) and a
virtual intelligent agent (Price 2003). The essential point
of programming by demonstration is to reduce the learn-
ing costs by observing the performance of other systems,
which is very useful for our table soccer robots. The typical
steps for programming by demonstration, such as observa-
tion, interpretation, and replication (Dillmann et al. 1999;
Mataric 2000), can also be found in our work.

Similar to learning by imitation, behavioral cloning (Sam-
mut et al. 1992) takes the control-commands of human op-
erators as input. It is different from our work in several as-
pects. Behavioral cloning induces rules from the command
sets of a number of human operators, while the learning al-
gorithms in our work improve the action sequence over the
trials by imitating only one input set. In addition, behavioral
cloning finds some general rules to achieve a complex task.
In the imitation process our work aims at mimicing a single
human action as closely as possible.

Our ideas in this paper are similar to the ones used with a
humanoid robot to play air-hockey (Bentivegna et al. 2004).
The two systems have similar problems, such as system er-
rors, which effect the performance of the actions, also the
learning process cannot be too long etc. Additionally, air-
hockey and table soccer are both games with a target run-
ning in a plane and two sides playing against each other.
Consequently, the solutions are similar from the aspect that
the learning is structured, the feedbacks of the performed ac-
tions are analyzed to retrieve the information, and the robots
learn to play the games from the human players. From a
different perspective, the humanoid robot is very different
from Star-Kick. Thus the mathematics models used to con-
trol the humanoid robot, such as “locally weighted projec-
tion regression” are not a proper solution for Star-Kick.

The Learning Problems

In the following, we describe two independent learning
problems. The first one is concerned with learning the ac-
tion lock. The second problem is about learning the action
slide-kick. We call the direction perpendicular to the game
rods as x direction, while the direction along the rod is y
direction.

Action Lock

In order to lock a ball running in the x direction the active
playing figure waits at an angle aw and position yw. Then,
the ball’s x position in the near future xt+δt is predicted by
its current speed and its current position xt. Finally, the
playing figure is turned to lock the moving ball when the
prediction xt+δt arrives at a waiting position xw. Figure 1
shows the sequence of a lock action and the involved param-
eters.

Waiting Locked

Figure 1: Parameters of a lock action

As yw is kept concurrent with the ball’s y position, which
can be easily obtained in the games, and xt+δt is given
by the ball model, we only focus on the unknown vari-
ables aw and xw. Ideally, these variables are given by the
calibration and would be uniform for every playing figure.
However, the hand-measured values for all playing figures
in a Star-Kick turn out to be aw ∈ [0.74, 1.05(rad.)] and
xw ∈ [29, 61(mm)].

If the parameters are detrimental to lead a successful ac-
tion, we consider two situtations that the ball is bounced
back by the playing figure, or it is not touched at all. Al-
though there can be more reasons for a failed lock action,
we will focus on these two situations since they are help-
ful for the parameters’ adjustment. Figure 2 shows these
situations, where the horizontal in the graphs is the counter
of the system cycles, or simply time; the vertical is the x
coordinates of the game ball. The area between the upper
and lower line in Figure 2 shows the range where the ball
can be touched by the playing figure. We say a lock action
is too fast if the estimated parameters (aw, xw) are lower
than the expected values which would lead to a successful
lock action, and it is untouched if the estimated parameters
are higher than the expected values. Since the time point tt
is known when the playing figure is turned, the ball’s track
near tt can be recorded and easily classified into too fast
or untouched by considering the rod’s position and its un-
touchable line. Thus, the feedbacks of a failed lock action
are known.

62

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10

x
 (

m
m

)

system cycle counter (times)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 2 4 6 8 10

x
 (

m
m

)

system cycle counter (times)

ball track

rod position

untouchable line

Too Fast Untouched

Figure 2: The feedbacks of a failed lock action

If the performed actions successfully lock the ball the
outcome of the parameters (aw, xw) is positive. Addition-
ally, from the stopped playing figure and the locked ball, we
know an angle al and an x distance xl, which are shown
in Figure 1. Three situations are illustrated in Figure 3, in
which the game ball is “close locked”, “optimally locked”
or “far locked”. In the table soccer games, the “optimally
locked” position always offers more chances to continue
successfully with other actions such as slide-kick. Human
players have the possibility to dribble the ball to the “opti-
mally locked” position if the ball is “close” or “far” locked.
In the figures, the “optimally locked” point has the highest
absolute al, where the angle of a playing figure is 0 if it is
upright.

Close Locked Optimally Locked Far Locked

Figure 3: the situations of a locked ball

At the very beginning of the learning process, the param-
eter set is initialized to some guessed values (aw(0), xw(0)),
which are calculated from the length and thickness of the
figure, the diameter of the game ball, and the theoretical po-
sition of the rod. The parameters are updated according to
equation 1 every time the feedbacks are available. In the
equation, dai and dxi are the learning discount factors. fai

and fxi denote the feedback values of the last performed ac-
tion.

{

aw(i+1) = aw(i) + dai ∗ fai

xw(i+1) = xw(i) + dxi ∗ fxi

(1)

To simplify the problems, a little update unit sa is defined
for the parameter aw, and sx for the parameter xw. An up-
date only changes the parameters by adding or subtracting
one or more update units. As aw and xw cannot be unlim-
ited values, the searching space is reduced to a set of discrete
values for the parameter set (aw, xw).

In order to choose a proper dai for an update, the number
of the successfully performed lock actions nl are recorded
for each parameter set (aw, xw). The higher nl is, the lower
is dai. If the ball has never been successfully locked with
a parameter set, dai is set to 1 for the set, which means the
feedback is not discounted.

In case the ball is not successfully locked by the per-
formed action with the parameter set (aw(i), xw(i)), fai is
set to −1 if the trajectory of the ball can be classified as un-
touched, and 1 for the classification of too fast. In case the
ball is locked by the performed action, angle al and position
xl can be obtained from the performed action. al is used
to estimate the quality of the action because the “optimally
locked” point should have the highest absolute al. If al has
the highest value among all locked cases so far, fai is set to
0, which leads to an untouched “updated” angle. Otherwise,
the feedback fai is calculated from the difference between
the locked distance xl and the xl which leads to the max-
imum al. Also, we have chosen a factor to map fai into
[−0.5, 0.5] for a proper feedback.

In short, the learning algorithm will continue adjusting
the lock waiting angle aw with an angle step sa when the
ball has never been locked. Afterwards, the adjusted angle
is discounted by the number of the successful trials and the
quality of the actions.

Different from dai, dxi is set to −1 or 1 in the follow-
ing two situations, otherwise it is set to 0. One situation is
that the waiting angle aw(i) goes beyond the predefined an-
gle limitations. The other is if a new estimated “optimally
locked” position is found, dxi is chosen to move xw(i+1) to-
wards xl. fxi is set to sx in both situations. Theoretically,
xw would equal xl. However, as the sensor data is noisy,
sometimes xl is only an error. The adjustments of aw offer
some chances to explore the area near xl. If better positions
could be continuously found, xw will eventually arrive at xl.
Otherwise, it only moves towards xl with a small step sx.

Observing these two learning updates together, we can see
that if a new estimated “optimally locked” position is found,
the angle will retain the last value. Because xw is adjusted
by a small value, the parameter set as a whole is not changed
dramatically. Hopefully, the lock action following the up-
date will still be successful.

Action Slid-Kick

Slide-kick is one of the possible actions following the action
lock. Figure 4 shows the movements of the game rod during
a slide-kick action of a human player, where the horizontal
in the figure is time. The values of the position and angle
are “normalized” by setting their start points to zero, so that
the actions of Star-Kick can be compared with the human
action even if the start points of the actions are very different.
From the “position sequence” and “angle sequence” we can
observe that the action mainly passes the locked ball along
the game rod and then kicks it.

-120

-100

-80

-60

-40

-20

 0

 20

 0 100 200 300 400 500 600 700

p
o

s
it
io

n
 (

m
m

)

time (ms)

-3
-2
-1
 0
 1
 2
 3
 4
 5
 6

 0 100 200 300 400 500 600 700

a
n

g
le

 (
ra

d
)

time (ms)

Position Sequence Angle sequence

Figure 4: The action slide-kick by a human player

63

Taking the information in the above figures as input, Star-
Kick needs to translate these data into its own motor com-
mands. An important principle in our learning method is to
use as few motor commands as possible. The first reason is
that the feedback data of Star-Kick is not as informative as
the data of the human action. For example, there are 146
data points that describe the action of a human, but only
17 data points from Star-Kick. The second reason is that
sending too many motor commands within a short time span
always causes performance problems with Star-Kick. If a
motor needs to be turned with a speed st from a standstill, it
will need some time δt to accelerate to the required speed.
If another motor command is sent before δt, the motor will
always be in an accelerating condition. And the third reason
is “the simpler, the better”.

-120

-100

-80

-60

-40

-20

 0

 20

 0 100 200 300 400 500 600 700

p
o

s
it
io

n
 (

m
m

)

time (ms)

-4

-2

 0

 2

 4

 6

 0 100 200 300 400 500 600 700

a
n

g
le

 (
ra

d
)

time (ms)

Moving Turning

Figure 5: The filtered data of the slide-kick action

In order to describe the human action by a few motor
commands we need to find out the “significant” movements
while ignoring the “irrelevant” ones. Therefore, a filter is
implemented to achieve this task. Figure 5 shows the fil-
tered data, in which every line segment with a significant
slope khi and its start point shi is translated as a motor com-
mand. Thus, the action is expressed by a series of (mi, ti)
where mi is the speed of the motor and ti is the time to send
the command. As (mi, ti) is a basic element which cannot
be divided, it is also called “motor primitive”.

-30
-25
-20
-15
-10

-5
 0
 5

 10
 15
 20

 0 100 200 300 400 500 600

m
o

to
r

s
p

e
e

d
 (

%
)

time (ms)

-80

-60

-40

-20

 0

 20

 40

 60

 0 100 200 300 400 500 600

m
o

to
r

s
p

e
e

d
 (

%
)

time (ms)

Moving Turning

Figure 6: Motor primitives for imitating slide-kick

We illustrate an example of motor primitives in Figure
6. Now, the slope of a line segment in Figure 5 could be
mapped with a linear function to (mi, ti) in figure 6. This
solution, however, assumes that the motor will achieve a
speed mi after a constant delay δt. In reality, δt depends
heavily on the current status of the motor. Both mi and ti
need to be adjusted according to the situations.

Figure 7 shows an example of a performed slide-kick. Us-
ing these data as the feedbacks, and assuming that the turn-
ing and moving are two independent actions, a learning al-
gorithm is implemented to refine the motor commands. The
refinement is shown in equation 2.

-70

-60

-50

-40

-30

-20

-10

 0

 10

 0 100 200 300 400 500 600 700

p
o

s
it
io

n
 (

m
m

)

time (ms)

-2.5
-2

-1.5
-1

-0.5
 0

 0.5
 1

 1.5
 2

 2.5

 0 100 200 300 400 500 600 700

a
n

g
le

 (
ra

d
)

time (ms)

Moving Turning

Figure 7: A slide-kick performed by Star-Kick

{

mi(t + 1) = mi(t) + w1 ∗ (khi − ki(t))
ti(t + 1) = ti(t) + w2 ∗ (shi − si(t))

(2)

In the equation, t is the trial index and ki is the slope of the
line segments which are obtained by filtering the feedbacks.
si is the start point of the line segment. w1 and w2 are small
constants manually chosen as learning rates.

The overall similarity between the original human action
and the imitation of that action is also taken into considera-
tion. As a measurement for the similarity, the difference of
the actions is calculated in the following way.

da =
n

∑

i=1

√

(vi − vhi)2 (3)

In the equation, n is the number of the feedbacks. vi is the
angle or position values of the performed action, vhi is the
relative values of the original human action. The two actions
are more similar if da is smaller.

The learning algorithm performs a fixed number of tri-
als using the refinements defined in equation 2. Then the
amount of the refinements is discounted with the help of the
overall similarity da. In other words, the learning algorithm
helps to search a sub-optimal overall similarity. If the re-
finements do not help to improve the similarity, the learning
algorithm will continue to try some motor commands closer
to the known “best” case.

Experiments

The experiments described in the following were conducted
with a Star-Kick. The scenario of the experiments is shown
in figure 8. The game ball is passed manually from the mid-
field. The passings are with intentional variations of speed,
as in real games of human players. Then, the locked ac-
tion is performed by the middle playing figure of Star-Kick’s
attacker. If the ball is successfully locked, Star-Kick will
continue with a slide-kick action. The trajectory of the ball
follows the arrows roughly. If the first lock action fails, Star-
Kick is reset to do the lock action again. In the scenario, the
forward direction of the ball is blocked by the opponent’s
playing figures, which means a direct kick will never bring
the ball into the goal.

Over 100 trials are carried-out within the defined scenario.
Figure 9 shows these results. If the game ball is successfully
kicked into the goal with the action sequence, a reward with
value 1 is gained. If the game ball is successfully kicked but
does not roll into the goal, a reward with value 0.5 is gained.

64

Figure 8: The scenario of the experiment

Otherwise the reward value is 0. The results are smoothed
by averaging the rewards over 9 trials. In the figure, the
horizontal is the number of performed trials; the vertical is
the average rewards for each trial.

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 20 40 60 80 100

re
w

a
rd

s

trial

Figure 9: Learning Curve for the action sequence

We can see from the results that the action sequence is
improved during the learning since there is an increase in re-
wards from 0.16 to 0.5 in about 20 trials. In the very begin-
ning, the action sequence can hardly achieve any rewards.
After the second data point, the 18th trail, the rewards os-
cillate around 0.5. Since a successful lock action actually
triggers the learning process of the next action in the action
sequence, slide-kick is not performed in every trial in this
learning curve.

Figure 10 shows the rate of the successful lock actions
during the same learning process as in Figure 9. The game
ball can be locked with a probability of approximately 80%
after Star-Kick performed more than 20 trials with the help
of the learning, while the trials at the beginning have a suc-
cess of approximately 55%. We need to mention here that
the very first trial of the lock action is hardly successful
due to the guessed parameters. Also the learning curves
would be much better if we alternated the evaluation and
the learning. The evaluation is done in this way because we
want to show that the learning of the action sequence can be
achieved while human players actually play Star-Kick.

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 20 40 60 80 100

lo
c
k
 r

a
te

trial

Figure 10: lock rate

There are mainly two reasons for the fluctuation in the
learning curves of figures 9 and 10. The first reason is that
the games are not fully observable and predictable. Errors
from other parts of the system, for example the ball model,
are inevitable. The second reason comes from our assump-
tions that Star-Kick can repeat the same performance in the
same situation, and that the turning and moving are inde-
pendent in the imitation. The experiments show that with
these assumptions the performance is better, but they are not
dependable to the extent that they are 100% right.

 160
 170
 180
 190
 200
 210
 220
 230
 240
 250
 260

 0 10 20 30 40 50 60 70

p
o

s
it
io

n
 (

m
m

)

trial

 9

 10

 11

 12

 13

 14

 15

 16

 0 10 20 30 40 50 60 70

a
n

g
le

 (
ra

d
.)

trial

Position Difference Angle Difference

Figure 11: Difference between human and robot actions

With the improvements of the overall performance, not
only the lock action, but also the slide-kick action is im-
proved during the learning process. Figure 11 shows that
the values of the angle and position differences defined in
equation 3 are decreased during the learning. The values
are averaged over 10 trials. If the first part of the action se-
quence, the lock action, failed in a trial, the second slide-kick
action cannot be performed in that trial. Therefore, the trials
shown as the horizontal in the figure do not include the trials
with a failed lock action.

The difference in positions seems to be more difficult to
reduce than the difference in angles in figure 11. Addition-
ally, the position difference appears more noisy than the an-
gle difference. The reason is that there are 3 motor primi-
tives for the moving and 2 for the turning, as shown in figure
6. As we have argued, the performance of a motor primi-
tive will be effected by the status of the motor on which the
next motor primitive depends heavily. The learning of the
moving is therefore slower and with more noises than the
learning of the turning.

In order to give a concrete impression on how the human
action is imitated, we show the moving and turning of Star-
Kick together with the human action in Figure 12. The first
row of the figures shows the trial at the very beginning of the
learning excluding the slide-kick action. The second row of
the figures shows one of the examples in which the ball was
successfully kicked into the goal. In these figures, human
actions are shown as a base line in solid. The point-lines de-
pict the actions of Star-Kick. The learning algorithm moves
the point-lines towards the solid lines over the trials.

As shown in the first row of the figures, the first guess of
the motor speed is already very close to the target values,
whereas the second and third commands do not work in a
proper way. The ball is kicked from 500 to 600(ms) by the
human player, and should be kicked within the same period
by Star-Kick. The position difference at this period appears
to be 20 to 40(mm) and the angle difference is 2 to 4(rad.),
which means that the pose of the playing figure is nearly up-

65

-140
-120
-100

-80
-60
-40
-20

 0
 20

 0 100 200 300 400 500 600 700

p
o

s
it
io

n
 (

m
m

)

time (ms)

-2

 0

 2

 4

 6

 8

 0 100 200 300 400 500 600 700

a
n

g
le

 (
ra

d
)

time (ms)

human
Star-Kick

1st trial: moving turning

-140
-120
-100

-80
-60
-40
-20

 0
 20

 0 100 200 300 400 500 600 700

p
o

s
it
io

n
 (

m
m

)

time (ms)

-2

 0

 2

 4

 6

 8

 0 100 200 300 400 500 600 700

a
n

g
le

 (
ra

d
)

time (ms)

22th trial: moving turning

Figure 12: Different stages of the imitation

side down and the position is on average 30(mm) different
from the ball. Obviously, the ball would not be touched at
all in this situation.

The second row of the figure 12 shows that the 22nd trial
has a much smaller position and angle differences from 500
to 600(ms). However, at least one data point in “turning”,
which is near time point 550(ms), is still significantly dif-
ferent from the relative data point of the human action. The
turning from 6 to −2(rad.) during 550 to 700(ms) eventu-
ally kicks the ball with a fast speed in the slide-kick action of
the human player. We observed in the experiments that the
motor cannot reach a similar acceleration comparable to the
movement of a human player even if the motor is set to turn
in full speed. Due to this limitation of the motors, the human
action cannot be imitated perfectly. An interesting point in
our experiments is that although the action sequence of Star-
Kick cannot be 100% similar to the human action sequence,
the game ball can still be kicked into the goal.

Conclusion and Perspectives

In this paper, two independent learning algorithms are de-
scribed that are able to refine an action sequence lock and
slid-kick for the table soccer robot Star-Kick. One of them
utilizes feedbacks of the performed actions. The other em-
ploys learning by imitation. Our approach allows for a sce-
nario where the action sequence can be acquired while hu-
man players enjoy the games. We show in the experiments
that the two algorithms can work together to improve the re-
sults of the action sequence. The learning process requires
about 20 trials to reach a usable outcome, which happens
when the lock action has a successful rate of approximately
75%, and the slid-kick action becomes a threatening attack,
i.e. making a goal.

Our approach and experiments show a way to acquire
a new action sequence in limited trials for the table soc-
cer robot Star-Kick. We observed in the experiments that
the ball can be effectively kicked into the goal even if the
performed actions of the robot do not perfectly imitate the
human actions. This observation indicates that human ac-
tions are suitable for Star-Kick to imitate with noise in a

result-driven way, and learning by imitation is an effective
approach to reduce the number of required trials.

We also trained two independent learning models with
one learning process in our experiments. It indicates that
separating and isolating learning problems into smaller mod-
els helps to improve efficiency in the learning process. The
approach is practical for real robot systems such as Star-
Kick.

In the future, we will explore miscellaneous human ac-
tions that Star-Kick might be able to imitate. A more
complex action selection mechanism using policy gradient
MDPs will be implemented to choose a proper action in dif-
ferent situations.

Acknowledgments
Star-Kick is a product of Gauselmann AG. Recording and
imitating human actions in table soccer games was sup-
ported by a Karl-Steinbuch scholarship.

References
Bentivegna, D.; Ude, A.; Atkeson, C.; and Cheng, G. 2004.
Learning to Act from Observation and Practice. Interna-
tional Journal of Humanoid Robotics 1.

Billard, A., and Siegwart, R. 2004. EDITORIAL: Robot
Programming by Demonstration. Robotics & Autonomous
Systems, Special Issue on Robot Programming by Demon-
stration 47/2-3.

Dillmann, R.; Rogalla, O.; Ehrenmann, M.; Zollner, R.;
and Bordegoni, M. 1999. Learning Robot Behaviour and
Skills based on Human Demonstration and Advice: the
Machine Learning Paradigm. In 9th International Sympo-
sium of Robotics Research (ISRR 1999), 229–238.

foosbot. 2006. http://en.wikipedia.org/wiki/Foosbot.

Mataric, M. J. 2000. Getting Humanoids to Move and
Imitate. IEEE Intelligent Systems 15(4):18–24.

Price, B. 2003. Accelerating Reinforcement Learning
with Imitation. Ph.D. Dissertation, University of British
Columbia.

Sammut, C.; Hurst, S.; Kedzier, D.; and Michie, D. 1992.
Learning to Fly. In The Ninth International Conference on
Machine Learning. In D. Sleeman and P. Edwards (Eds.).
Aberdeen: Morgan Kaufmann.

Schaal, S. 1999. Is Imitation Learning the Route to Hu-
manoid Robots? Trends in Cognitive Sciences 3.

Smart, W. D., and Kaelbling, L. P. 2002. Effective re-
inforcement learning for mobile robots. In International
Conference on Robotics and Automation.

Weigel, T., and Nebel, B. 2002. Kiro – An Autonomous
Table Soccer Player. In Proceedings of RoboCup Sympo-
sium ’02, 119 – 127.

Weigel, T. 2005. Kiro – A Table Soccer Robot Ready for
the Market. In Proceedings of the IEEE International Con-
ference on Robotics and Automation (ICRA), 4277–4282.

Zhang, D. 2005. Action Selection and Action Control for
Playing Table Soccer Using Markov Decision Processes.
Master’s thesis, University of Freiburg, Germany.

66

