
A Demonstration of SQUEGE: a CRPG Sub-Quest Generator

Curtis Onuczko, Duane Szafron, Jonathan Schaeffer, Maria Cutumisu, Jeff Siegel,
Kevin Waugh and Allan Schumacher

Department of Computing Science, University of Alberta
Edmonton, Canada

{onuczko, duane, jonathan, meric, siegel, waugh, schumach}@cs.ualberta.ca

Abstract

Scripting the plot in a computer role-playing game requires a
large number of scripts that are difficult to program, track and
maintain. Game adventures often include simple plots, called
side-quests, that are independent from the main plot. Side-
quests are important, as they add value to the open-world ap-
peal of the game (e.g., for acquiring experience or resources),
but they still need scripts. We have designed a tool to aid in
the rapid creation of side-quests. The game designer provides
the game setting and a list of objects in the setting. Our tool
uses this information to create an outline for the side-quests.
Then we use ScriptEase, a generative design pattern tool, to
generate scripts from the side-quest outlines for the Never-
winter Nights game. A game designer can also adapt these
outlines after the generation process, to add value such as hu-
mour to the side-quests.

Introduction
In the not-so-distant past, Computer Role-Playing Games
(CRPGs) were authored by a small team of programmers
and consisted of simple graphics, simple sounds, and a sim-
ple story. Just as the power of computers has increased dra-
matically, so has the quality of the CRPGs being produced.
This presents a challenging problem for CRPG authors since
an immersive and entertaining interactive story is difficult
to create. Not only must the game designers be technically
creative, they must be capable of crafting better non-player
characters (NPCs), plots, dialogue, action, and interaction –
in short better stories.

Often a CRPG story is made modular using quests. Each
quest is a small story that focuses on a small subset of NPCs,
NPC interactions, and settings found in the story. A complex
quest will involve the player character (PC) in many differ-
ent interactions (with NPCs, containers, items, etc.). These
interactions are called encounters. Each encounter requires
a script to record and control the game state. This makes
scripting the quest difficult, since all the scripts must work
together to maintain a cohesive story.

Many quests are similar enough that we introduce the no-
tion of aquestpattern.Questpatterns are a class of design
patterns (Gammaet al. 1995) that serve to provide a reusable
solution in scripting quests (Onuczko 2007). Aquestpattern

Copyright c© 2007, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

contains the encounters that occur in the quest and also de-
scribes a structure that determines when the encounters are
available for the PC to perform.

In CRPGs, a side-quest’s primary purpose is to add
breadth to the game by increasing the player’s freedom.
Since these quests do not need depth, most can be unal-
tered instances of aquestpattern. Instead of having a game
designer create hundreds of side-quests for a commercial
CRPG, many of these side-quests can be rapidly created
through instantiatingquestpatterns whose options are au-
tomatically picked by an intelligent system.

This demonstration describes our Sub-QUEst GEnerator
(SQUEGE), a tool that aids in the rapid development of side-
quests in CRPGs by generatingquestpattern outlines. The
goal of this research is to generate sub-quests quickly and
conveniently. Given a scene (setting, NPCs, items, contain-
ers, etc.), a game designer can “push a button” and a sub-
quest is automatically generated. Parameters can be set to
make the generated quests as simple or as complex as de-
sired. The designer can generate hundreds of different side-
quests quickly and easily (guaranteeing variety and enhanc-
ing the game experience). In effect,SQUEGEcould be used
to facilitate the rapid generation of important game content,
reducing costs and improving the quality of the product.

Quest Patterns
To understand howSQUEGEworks, some knowledge about
questpatterns is necessary. Each quest pattern consists of a
list of quest points. Each quest point has alabel, a list of
quest points, called theenablers, that enable the quest point,
and an encounter that the PC must perfrom to have the quest
point become reached. When any of theenablersis reached,
the quest point becomes enabled. Theenablerslist may also
specify that the point is initially enabled at the start of the
quest. To reach a quest point, it must be enabled and its
encounter must occur.

There are three different types of quest points. When a
PC reaches anormal point, all points in the quest become
disabled except for those that have this point in theiren-
ablers list. An optionalquest point is a point that does not
need to be reached to complete the quest. Reaching anop-
tional point does not eliminate any previously enabled quest
points. The final type of point is aclosepoint that completes
the quest. When a closed point is reached, all points for the

110



Figure 1: A sub-quest outline generated bySQUEGE.

quest become disabled and no new points can become en-
abled.

Questpatterns are specific enough that creating the scripts
for them is a straightforward process. Eachquestpoint
needs one script. The associated encounter describes which
event will trigger the script, while theenablingpoints and
type ofquestpoint determine how the script alters the game
state of the quest. When using a generative design pattern
tool, such as ScriptEase (McNaughtonet al. 2004), the
scripting process becomes automated.

UsingSQUEGE
To show howSQUEGEworks we give an example that gen-
erates a quest in Neverwinter Nights (NWN) by Bioware
Corp. While this example only shows the generation of
one simple quest,SQUEGEcan be used to generate mul-
tiple quests of arbitrary complexity within the same CRPG
adventure.

First, a game designer creates a new game adventure using
the NWN Aurora Toolset, a CAD tool for the game. The
author creates a city setting with several buildings that the
PC can enter. The author then prepares the game adventure
for quest generation by creating several NPCs, containers,
and items that will populate the game.

SQUEGEis currently external to the Aurora Toolset so
the game designer must list all the NPCs, containers, and
items that can be used in the side-quest. Next,SQUEGEau-
tomatically generates a side-quest by first selecting aquest
pattern from its catalogue of patterns.SQUEGEinstantiates
values for the various options of the quest pattern and pro-
duces a graph that acts as an outline for thequestinstance.
This outline contains all the information required to produce
scripts for the side-quest.

Figure 1 shows the graph thatSQUEGEgenerates for the
game designer. Thisretrieve/deliver an itemside-quest in-
stance has the PC performing four encounters: beginning
the quest by talking to Emmel, finding the location of the
item by talking to Fistoon, acquiring the item in a shop crate
container, and returning the item by talking to Emmel again.
The triangle represents the start of the side-quest and it en-
ables the first quest point in which the quest is given to the
PC.

The game designer creates the conversations for Emmel
and Fistoon in the Aurora Toolset.SQUEGEdoes not at-
tempt to do this, as writing dialogue is one of the game de-
signer’s specialties. The author may add humour and spe-

cific story-related references to make the conversations in-
teresting and unique.

The author uses the outline to instantiate the correspond-
ing questpattern in ScriptEase. The process is straightfor-
ward as the author only specifies the options for the pattern.

Now the author has the opportunity to adapt the side-quest
instance in ScriptEase to add a creative touch to the story.
One of these adaptations could be to have a bandit NPC
appear and attack the PC when the item is acquired. Such
adaptations are quick and easy to do in ScriptEase.

At this point, the game designer has finished generating a
side-quest and can now play the adventure in NWN. If the
process is repeated, the designer would end up with a com-
pletely different side-quest using different NPCs, containers,
and items in the same setting.

Demonstration
This demonstration showcases the entire side-quest genera-
tion process ofSQUEGEfor NWN. First, the demonstrator
creates a game setting in the Aurora toolset. Then,SQUEGE
generates a sub-quest outline from its pattern catalogue. The
conversations required for the sub-quest are created in Au-
rora. Next, a pattern for the sub-quest outline is instantiated
in ScriptEase. Finally, the sub-quest is played in NWN.

References
Gamma, E.; Helm, R.; Johnson, R.; and Vlissides, J. 1995.
Design Patterns. Elements of Reusable Object-Oriented
Software. Addison-Wesley.
McNaughton, M.; Cutumisu, M.; Szafron, D.; Schaeffer,
J.; Redford, J.; and Parker, D. 2004. ScriptEase: Genera-
tive Design Patterns for Computer Role-Playing Games. In
Automated Software Engineering, 88–99.
Onuczko, C. 2007. Quest Patterns in Computer Role-
Playing Games. Master’s thesis, University of Alberta, Ed-
monton, Alberta, Canada.

111


